УТВЕРЖДАЮ

Заместитель председателя оргкомитета третьего этапа республиканской олимпиады по учебным предметам, заместитель начальника управления образования Могилевского облисполкома

	О.В.Стельмашок
«	» ноября 2012 г.

ЗАДАНИЯ

второго этапа республиканской олимпиады по учебному предмету «Математика» 2012/2013 учебного года

Дата проведения: 1 декабря 2012г.

10 класс

- 1. Купец нанял пароход для перевозки грузов на расстояние 1000 км. Он предлагает плату хозяину парохода в размере 1500 золотых монет, но требует вернуть 9 монет за каждый час пребывания парохода в пути. Пароход будет двигаться с постоянной скоростью. Если скорость будет равна V км/ч, то в конце пути хозяин должен выплатить команде премию в размере 10V монет. С какой скоростью хозяин должен вести пароход, чтобы заработать наибольшее число монет? Найти это число монет.
- 2. Рабочие должны были выложить пол прямоугольной комнаты плитками двух видов:

1) ш 2) ш

Размеры пола таковы, что он может быть полностью покрыт некоторым набором плиток указанных размеров. Нужное количество плиток каждого размера было подготовлено. Однако при переносе их к месту работы, рабочие уронили ящик с плитками первого вида и 6 плиток (первого вида) разбились. Их решили заменить тремя плитками второго вида. Докажите, что теперь выложить поверхность пола имеющимися плитками не удастся. (Резать плитки запрещается.)

- 3. Внутри выпуклого 14-угольника отмечено 1000 различных точек. На какое наибольшее число треугольников можно разрезать этот 14-угольник, если вершинами треугольников могут быть вершины 14-угольника и отмеченные точки?
- **4**. Решить уравнение $20\{x\}-13[x]=0$, где [x] это наибольшее целое число, не превосходящее x; $\{x\}=x-[x]$. Примечание: [x] называется *целой частью* числа x. Например, [5,2]=5, [7]=7, [-3,1]=-4. $\{x\}$ называется *дробной частью* числа x. Например, $\{5,2\}=0,2$, $\{7\}=0$, $\{-3,1\}=0,9$.
- 5. Две окружности ω_1 и ω_2 с центрами O_1 и O_2 касаются внешним образом в точке C. К окружностям проведена общая касательная AB (A и B точки касания окружностей ω_1 и ω_2 соответственно). Найдите радиусы окружностей ω_1 и ω_2 , если радиус окружности,

проходящей через точки A, B и C, равен 6, а площадь четырехугольника $\mathrm{O_{1}ABO_{2}}$ равна 78. Пользоваться калькулятором не разрешается

Время работы: 4,5 часа

Решения учащихся могут отличаться от предложенных авторских решений!

Решение

Из условия следует, что количество монет N, которые заработает хозяин парохода, выражается

формулой:
$$N = 1500 - \left(9 \cdot \frac{1000}{V} + 10V\right)$$
. Минимально возможное значение величины $\frac{9000}{V} + 10V$

можно определить при помощи производной, либо используя неравенство Коши:

$$\geq 2\sqrt{\frac{9000}{V}\cdot 10V} = 2\sqrt{90000} = 600 \text{ (монет)}. \ 3 \text{аработок хозяина в этом случае составит} \\ 1500-600=900 \text{ монет. Скорость, с которой хозяин должен вести пароход найдем из условия} \\ \text{(если решали по неравенству Коши):} \ \frac{9000}{V} = 10V \\ \text{, откуда V= 30 (км/ч)}.$$

Ответ: 30 км/ч, 900 монет.

Решение.

Разобьем пол на квадраты 1×1 (из условия следует, что это можно сделать) и раскрасим полученные квадраты в шахматном порядке в черный и белый цвета. Тогда 6 плиток вида 1 покрыли бы 6 черных и 6 белых клеток (т.е. четное количество). Но одна плитка вида 2 покрывает неодинаковое число черных и белых клеток: 3 черных и 1 белую, или 1 черную и 3 белые клетки. Тогда 3 плитки вида 2 покроют нечетные количества черных и белых клеток. Получили противоречие. Значит, выложить поверхность пола имеющимися плитками не удастся. Что и требовалось доказать.

Решение

Заметим, что наибольшее число треугольников получится, если в качестве вершин этих треугольников будут задействованы все отмеченные точки. (Если отмеченная точка попадает внутрь какого-либо треугольника, то этот треугольник можно разрезать на более мелкие треугольники, соединив отрезками данную отмеченную точку с вершинами треугольника). Пусть 14-угольник разрезан на n треугольников, тогда сумма углов этих треугольников равна 180*п*. С другой стороны сумма углов этих треугольников, вершиной которых является некоторая вершина 14-угольника, равна величине угла при данной вершине, а сумма углов этих треугольников, вершиной которых является внутренняя точка 14-угольника, равна 360°. Сумма всех углов 14-угольника равна $180^{\circ}(14-2) = 180^{\circ} \cdot 12$. Тогда имеем: $180^{\circ}n = 180^{\circ} \cdot 12 + 360^{\circ} \cdot 1000$. откуда $n = 12 + 2 \cdot 1000 = 2012$.

Ответ: 2012 треугольников.

4. Решение

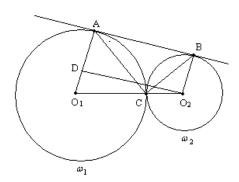
Из определения дробной части числа x следует, что $0 \le \{x\} < 1$. Тогда имеем $0 \le \frac{13[x]}{20} < 1$, $0 \le [x] < \frac{20}{13}$. Получаем, что [x] = 0 или [x] = 1. Если [x] = 0, то $\{x\} = 0$, и x = 0. Если [x] = 1, то $\{x\} = \frac{13}{20}$ 0, и $x = 1\frac{13}{20}$.

Ответ: 0;
$$1\frac{13}{20}$$
.

5. Решение

Пусть С – точка касания окружностей ω_1 и ω_2 . Докажем, что \angle ACB = 90° .

$$\angle BAC = \frac{1}{2} AO_1C$$
, $\angle CBA = \frac{1}{2} BO_2C$. Но $\angle AO_1C+\angle BO_2C=180^\circ$ (внутренние односторонние при $AO_1 \parallel BO_2$ и секущей O_1O_2). Тогда $\angle CAB+\angle CBA=90^\circ$, и значит $\angle ACB=90^\circ$.



Поскольку по условию радиус окружности, описанной около треугольника ABC, равен 6, то гипотенуза AB=12.

Пусть радиусы окружностей ω_1 и ω_2 равны R и r соответственно. Пусть $R \ge r$. Выразим AB через R и r. Проведем $O_2D \parallel AB$. $DA=O_2B=r$, $DO_1=R-r$.

Рассмотрим прямоугольный треугольник O_1DO_2 ($\angle D=90^\circ$).

$$O_1O_2^2 = O_1D^2 + O_2D^2$$
.

$$(R+r)^2 = AB^2 + (R-r)^2$$
, откуда AB= $2\sqrt{Rr}$.

$$2\sqrt{Rr} = 12$$
, $Rr = 36$. (*)

Четырехугольник O_1ABO_2 является трапецией с основаниями O_1A и O_2B и высотой AB.

$$S_{O_1ABO_2} = \frac{AO_1 + BO_2}{2} AB = \frac{R+r}{2} \cdot 12 = 6(R+r)$$
 =78, r.e. $R+r=13$. (**)

Итак, из (*) и (**) имеем систему уравнений:

$$Rr = 36$$

$$R+r=13$$
; откуда, полагая, что $R \ge r$, получаем $R=9, \, r=4.$

Ответ: 9 и 4