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(a) 
Is this maybe to do with the whole “cheapest acces method overall” plus the cheapest of each 
access method in an interesting order? Not sure how to spin that out for 7 marks though... 
Actually, I believe this should be related to dynamic programming. 
I would have mentioned how it pushes selections and projections down, and tries to delay 
cartesian joins for as long as possible (ie, reduces the number of relations first, if it can). It’s 
limited to nested loops and sort-merge and left-deep plans though.   
 
It uses equivalence rules to push down selections and projections. It delays cartesian products. 
It does so in order to minimise the input cardinality and the memory requirements of the join. 
Finally the optimiser uses a cardinality based cost model to pick, not always the cheapest plan 
overall, but usually one of comparable cost. 
 
(b) 
(i) 



In fact, this is the Grace hash join algorithm. Let the number of pages for R is Pr and the 
number of pages S is Ps. Then in the buliding phase, we should read and write R and s once 
respectively:  2Pr + 2Ps.   In the probe phase, we have to scan R and S once again. So the total 
cost is 3(Pr + Ps).  Basically, the special property we us have hash join is the tuples with the 
same values on the join attributes are together. Yes, A System R style query optimiser could 
take advantage of it. For example, if we need to project the join attributes (select distinct), due to 
the tuples with the same values on the join attributes are together, System R query optimiser 
know it can eliminate the duplicates easily if it uses hash join, rather than select nested loop 
join. 
 
As the output is a list of partitions, it may be posible to use pipelining. Send partitions as 
generated instead of wait for the hole input to be processed. 
 
 
(ii) 
After the partion phase,   
if the number of  values in all partions are uniform distributed, it will have a good performance. 
 
On contrast, the the case of skew, it behaves badly 
  
I agree with the skew-data answer, but I would add up to that that we need at least m pages on 
the buffer pool (m is the number of partitions) and that B > sqrt(f * Pr). In case we dont have that 
memory grace join will behave badly as well. 
 
Assuming that we want the algorithm to produce m partitions and that each partition is of approximately equal size, 
the only way that this hash function could possibly do this is by having D = k^2 and by having r.x and s.y uniformly 
distributed in that range. This is because we have that: 
 
​ p = floor(a/k) = 0 
​ p = floor(b/k) = k 
=> a = [0, k) and b = [k(k-1), k^2) 
 
If D is small, for instance D = k, then this would mean that all the keys would fall into the 0th bucket, therefore, the 
problem wouldn’t even be reduced. Also, if D is too large, i.e. D>k^2, this means that keys would fall into buckets that 
would be greater than k => which is not what we want either.  
  
(iii) Choose an appropriate hash function to make each bucket have proper and well-distributed 
data. 
(How can it be worth 8 marks?) 
Use the hybrid hash join? So you keep partition R1 in memory at all times, slightly reducing 
number of writes necessary +1 
But hybrid hash join requires extra memory. 
I agree with hybrid to improve performance in the generic situation (no skew data), but I don’t 
see how it solves the skew data problem. 



 
 

 
(a) 
Range partition 
Range partition is good for equi-join and range-queries. as well as aggregation. But range 
partition is problematic with skew. 
Hash partition 
Similarly, Hash partition is good for equi-join as well. 
It is also problematic with skew. 
Round-robin partition 
Round-robin partition is good for situations where you need to retrieve all the tuples of a given 
relation. 
 
(b) 
For range partition, the partitioned table has been sorted on the partitioning attribute after 
partitioning. For Hash partition,  
Range Partition; External merge-sort- range-partitioning sorts the relations, so only the merging 
phase left 
Hash Function;  
 
Range Partition: We just need to sort locally -> 1 pass over the data 
Hash Partition: First we range partition and then we sort locally -> 2 passes over the data 
Round Robin: The same as hash partition 
 



(c)Loser tree? 
In every pass merge the k biggest ( k max number of merges) until nothing left. Repeat all 
merged . Why? The bigger the runs the lower height of the merge tree 
 
I would merge the runs going from the smallest to the biggest. This way I make sure I dont read 
the big runs many times. Example with B = 3 (2 to merge, 1 for output): 
I have 4 runs 
A: 8 pages, B: 8 pages, C: 2 pages, D: 2 pages 
 
By merging the big first 
 
I merge A and B => 32 I/Os 
AB = 16 pages 
I merge AB with C => 36 I/Os 
ABC = 18 pages 
I merge ABC with D => 40 I/Os 
Total = 108 I/Os 
 
Or by merging the small first: 
 
I merge C with D => 8 I/Os 
CD = 4 pages 
I merge CD with B => 24 I/Os 
BCD = 12 pages 
I merge BCD with A => 40 I/Os 
Total = 72 I/Os 
 
I think that actually you should merge at every step the two that are most similar in size.  
 
Example: 
 
Imagine we have 1 file that is of size N and 8 of size n (where N >> n e.g. N=1000n). Assume we always only merge 
two files for simplicity but wlog.  
Lets try three different ways: 
 
Case A: Merge largest always: 
Here, the amount of work done (just in terms of pages accessed not in terms of IOs) is: 

N + n 
(N + n) + n 
… 
(N+7n) + n 
 

which gives a grand total of: 
\sum_{i=1}^8 (N+in) =  8N+36n 
 
Case B: Merge smallest first: 



Amount of work done: 
n+n 
2n+n 
… 
7n+n 
8n+N 

 
Giving a total of: 
 

N +\sum_{i=1}^7 n(i+1) = N + 28n + 7n = N + 35n 
 

Case C: Always merge smallest of similar size 
Here we try to always maintain the smallest of similar size to each other => We do: 

4 times: n + n to get 4 2n files 
2 times: 2n + 2n to get 2 4n files 
1 times: 4n + 4n to get 1 8n file 
then: 8n + N => 

 
This gives a total of: 8n + 8n + 8n + 8n + N = 32n + N 
 
Which is the smallest. 
​  
 
(d)The join is evaluated in two phases 
First, the two input relations are sorted on the join attribute 
Then, they are merged and join results are propagated 
 
 



 
 (a) 
The phantom problem is a situation where a transaction retrieving a collection of objects but get 
different result values, even though it does not modify any of these objects itself and follow the 
strict 2PL protocol. This problem arises  where a transaction cannot assume it has locked all 
objects of a given type. 
 
for example: 
All sailors with rating 1, new sailors of rating 1 can be added by a second transaction after one 
transaction has locked all of the original ones. 
 
(b) 
Index locking 
 
Predicate locking 
 
The mechanism databases use to deal with the phantom issue is predicate locking. Index 
locking is a special case of predicate locking for which an index suppotrs efficient 
implementation of the predicate locking. 
Index locking produces serialisable schedules (transaction isolation level = serialisable) even 
though it doesn’t conform with  2PL. 



 
(c)   
i) I believe that multiple granularity locking is the answer here and a good combination of IS, IX, 
SIX, S and X locks. I would require IS locks for the S tables since they are not necessarily read 
completely and upgrade to an S lock for the tuples I want to read. This way I achieve some 
interleaving even in cases that other transaction regard my S tables as T tables and want to 
update them. 
After finished reading S, and without releasing any lock (to ensure strict 2PL), for my T table I 
would require IX locks all the way down to the tuple I want to modify where I would upgrade to 
an X lock. 
The use of IS and IX locks in the top level of my hierarchy allow interleaving of transactions and 
therefore increase efficiency 
 
ii) The fact that S tables need to be scanned on their entirety leads us to drop the IS locks 
solution and use S locks even for the highest level of our hierarchy. Our policy regarding T 
tables doesn’t need to change (I think) since we can have IX locks and upgrade to X whenever 
we want to perform an update. 
In terms of efficiency the new policy is worse, cause it uses S locks on the S tables, which 
doesn’t allow other transactions to require IX locks in these tables (since a transaction S table 
migh be the T table of another transaction). The reverse problem also exists, since a transaction 
holding an IX lock on a T table will not allow another transaction to require an S lock on that 
table.. 


