Contributors:

Menelaos Kokolios

1. (a) What were the heunistics applied in System-R's optimiser and why were
they applied? In particular, explain why the optimiser chose a specific type
of plan.

(b) Consider the following algorithm for join processing of integer keys,

.
1l

(@)

Assume there are two mmputs H and 5. Let H be the smaller input. Let
the join predicate be H.r = S..
Let the domain of the join key be [0, I}).
Generate k partitions for . To decide the partition p of a record r £ R
apply the following function: p= |52 |.
Generate k partitions for S. To decide the partition p of a record s £ §
apply the following function: p= |52
Process H and 5 partition by partition. For each of the 2k partitions
(k partitions for each input) R;, 5;,i € [0, k):

— load H; m memory,

— build a hash table for it.

— scan 5; and probe H; for matches,

— for all matching records, output them.

. Devise an [/ cost expression for this algorithm, explaining its varous

factors. What special properties does the output have in terms of the
order of the values of the join output? Explain whether or not a System-
R style query optimiser could take advantage of them.

When will this algorithm perform well and when will it behave badly?
How can vou improve the performance of this algorithm?

['."r‘ marks |

|5 marks |
[.:T marks |
[E' marks |

Is this maybe to do with the whole “cheapest acces method overall” plus the cheapest of each
access method in an interesting order? Not sure how to spin that out for 7 marks though...
Actually, | believe this should be related to dynamic programming.
I would have mentioned how it pushes selections and projections down, and tries to delay
cartesian joins for as long as possible (ie, reduces the number of relations first, if it can). It's
limited to nested loops and sort-merge and left-deep plans though.

It uses equivalence rules to push down selections and projections. It delays cartesian products.
It does so in order to minimise the input cardinality and the memory requirements of the join.

Finally the optimiser uses a cardinality based cost model to pick, not always the cheapest plan
overall, but usually one of comparable cost.

(b)
(i)

In fact, this is the Grace hash join algorithm. Let the number of pages for R is Pr and the
number of pages S is Ps. Then in the buliding phase, we should read and write R and s once
respectively: 2Pr + 2Ps. In the probe phase, we have to scan R and S once again. So the total
cost is 3(Pr + Ps). Basically, the special property we us have hash join is the tuples with the
same values on the join attributes are together. Yes, A System R style query optimiser could
take advantage of it. For example, if we need to project the join attributes (select distinct), due to
the tuples with the same values on the join attributes are together, System R query optimiser
know it can eliminate the duplicates easily if it uses hash join, rather than select nested loop
join.

As the output is a list of partitions, it may be posible to use pipelining. Send partitions as
generated instead of wait for the hole input to be processed.

(ii)
After the partion phase,

| agree with the skew-data answer, but | would add up to that that we need at least m pages on
the buffer pool (m is the number of partitions) and that B > sqrt(f * Pr). In case we dont have that
memory grace join will behave badly as well.

Assuming that we want the algorithm to produce m partitions and that each partition is of approximately equal size,
the only way that this hash function could possibly do this is by having D = k"2 and by having r.x and s.y uniformly
distributed in that range. This is because we have that:

p = floor(a’k) = 0
p = floor(b/k) = k
=>a =[0, k) and b = [k(k-1), k*2)

If D is small, for instance D = k, then this would mean that all the keys would fall into the Oth bucket, therefore, the
problem wouldn’t even be reduced. Also, if D is too large, i.e. D>k"2, this means that keys would fall into buckets that
would be greater than k => which is not what we want either.

(iii) Choose an appropriate hash function to make each bucket have proper and well-distributed
data.

(How can it be worth 8 marks?)

Use the hybrid hash join? So you keep partition R1 in memory at all times, slightly reducing
number of writes necessary +1

But hybrid hash join requires extra memory.

| agree with hybrid to improve performance in the generic situation (no skew data), but | don’t
see how it solves the skew data problem.

2. (a) Give three methods to partition data in a parallel database system. Explain
the advantages and disadvantages of each method. [4 marks |

(b) Consider a parallel database system that can use any of the three methods

vou identified above. Assume that the system needs to sort a partitioned

table on the partitioning attribute. For each method give a sorting algorithm

which performs no more than two full passes over the data. |6 marks |
[¢) Consider external sorting with replacement selection, as it was discussed

during the lectures. In contrast to standard external sorting, replacement

selection will create runs of (potentially vastly) different sizes on disk. As-

sume that the number of buffer pool pages 1= much smaller than the number

of runs, so multiple merging phases will be necessary. How would vou opti-

mize the order in which you merge the runs and why? |8 marks |
(d) Consider two mputs & and S that will be joined using sort-merge-join.

Assume that there are B pages available for the computation and multiple

merging phases will be necessary (ie., the sizes of both mputs 13 much

greater than B pages). During the lectures, it was mentioned that the final

merging phase of external sorting can be combined with the merge join phase

of sort-merge-join. Describe such an approach. |7 marks |

(a)

Range partition

Range partition is good for equi-join and range-queries. as well as aggregation. But range
partition is problematic with skew.

Hash partition

Similarly, Hash partition is good for equi-join as well.

It is also problematic with skew.

Round-robin partition

Round-robin partition is good for situations where you need to retrieve all the tuples of a given
relation.

(b)

For range partition, the partitioned table has been sorted on the partitioning attribute after
partitioning. For Hash partition,

Range Partition; External merge-sort- range-partitioning sorts the relations, so only the merging
phase left

Hash Function;

Range Partition: We just need to sort locally -> 1 pass over the data
Hash Partition: First we range partition and then we sort locally -> 2 passes over the data
Round Robin: The same as hash partition

(c)Loser tree?
In every pass merge the k biggest (k max number of merges) until nothing left. Repeat all
merged . Why? The bigger the runs the lower height of the merge tree

I would merge the runs going from the smallest to the biggest. This way | make sure | dont read
the big runs many times. Example with B = 3 (2 to merge, 1 for output):

| have 4 runs

A: 8 pages, B: 8 pages, C: 2 pages, D: 2 pages

By merging the big first

| merge A and B => 32 1/Os
AB = 16 pages

| merge AB with C => 36 I/Os
ABC = 18 pages

I merge ABC with D => 40 I/Os
Total = 108 1/0s

Or by merging the small first:

I merge C with D => 8 I/Os

CD =4 pages

I merge CD with B => 24 1/Os
BCD = 12 pages

I merge BCD with A =>401/0s
Total =72 1/Os

| think that actually you should merge at every step the two that are most similar in size.
Example:
Imagine we have 1 file that is of size N and 8 of size n (where N >> n e.g. N=1000n). Assume we always only merge
two files for simplicity but wlog.
Lets try three different ways:
Case A: Merge largest always:
Here, the amount of work done (just in terms of pages accessed not in terms of 10s) is:
N+n
(N+n)+n

(N+7n) + n

which gives a grand total of:
\sum_{i=1}"8 (N+in) = 8N+36n

Case B: Merge smallest first:

Amount of work done:
n+n
2n+n

n+n
8n+N
Giving a total of:

N +\sum_{i=1}A7 n(i+1) = N + 28n + 7n = N + 35n

Case C: Always merge smallest of similar size
Here we try to always maintain the smallest of similar size to each other => We do:
4 times: n + n to get 4 2n files
2 times: 2n + 2n to get 2 4n files
1 times: 4n + 4n to get 1 8n file
then: 8n + N =>

This gives a total of: 8n +8n +8n+8n+N=32n+N

Which is the smallest.

(d)The join is evaluated in two phases
First, the two input relations are sorted on the join attribute
Then, they are merged and join results are propagated

3. (a) Give the definition of a phantom in transaction processing and an example
of when phantoms arise. [5 marks |
(b) Explain briefly the mechanism database systems employ to deal with phan-

toms. What transaction scolation level does this mechanism result in? [5 marks

[¢) Consider a database server that only deals with transactions of the following
kind: there are three tables X, ¥, and & in the database and any two tables
can act as an index to the third. Transactions will read two of these tables,
say 51 and Sa, to identify a record of the third one, say, T that they will
then modify; (51, 52, T) can be any permutation of (X, Y, Z) and the system
has multiple such transactions running concurrently (i.e., transactions are
not run serially, though the resulting schedule should be serialisable). The
read tables, 51 and S, are read in a random fashion and not necessarily
completely. The record that will be modified in T can be any record and
the transaction will identify 1t after it 15 done accessing 51 and Sa.

1. Devize an efficient locking protocol for this type of system. FExplain why
your protocol is efficient. [8 marks |

1. Assume that the requirements change: both 5; and 53 are completely
and sequentially scanned, while more than one record of T will be modi-
fied, and at arbitrary points in time. Should your protocol change? If 1t
should change, give the new protocol and explain why it 1s better than
the original one. If it should not, explain why 1t still works. |7 marks |

(a)

The phantom problem is a situation where a transaction retrieving a collection of objects but get
different result values, even though it does not modify any of these objects itself and follow the
strict 2PL protocol. This problem arises where a transaction cannot assume it has locked all
objects of a given type.

for example:
All sailors with rating 1, new sailors of rating 1 can be added by a second transaction after one
transaction has locked all of the original ones.

(b)

Index locking
Predicate locking

The mechanism databases use to deal with the phantom issue is predicate locking. Index
locking is a special case of predicate locking for which an index suppotrs efficient
implementation of the predicate locking.

Index locking produces serialisable schedules (transaction isolation level = serialisable) even
though it doesn’t conform with 2PL.

(c)

i) | believe that multiple granularity locking is the answer here and a good combination of IS, IX,
SIX, S and X locks. | would require IS locks for the S tables since they are not necessarily read
completely and upgrade to an S lock for the tuples | want to read. This way | achieve some
interleaving even in cases that other transaction regard my S tables as T tables and want to
update them.

After finished reading S, and without releasing any lock (to ensure strict 2PL), for my T table |
would require IX locks all the way down to the tuple | want to modify where | would upgrade to
an X lock.

The use of IS and IX locks in the top level of my hierarchy allow interleaving of transactions and
therefore increase efficiency

ii) The fact that S tables need to be scanned on their entirety leads us to drop the IS locks
solution and use S locks even for the highest level of our hierarchy. Our policy regarding T
tables doesn’t need to change (I think) since we can have IX locks and upgrade to X whenever
we want to perform an update.

In terms of efficiency the new policy is worse, cause it uses S locks on the S tables, which
doesn’t allow other transactions to require IX locks in these tables (since a transaction S table
migh be the T table of another transaction). The reverse problem also exists, since a transaction
holding an IX lock on a T table will not allow another transaction to require an S lock on that
table..

