Dr Heffernan read that Steenbergen-Hu & Cooper (2013) research suggests that many "smarter" EdTech products for K–12 might actually **exacerbate** the gaps between the lower achieving youth and the general population. So Dr Heffernan and Kim Kelly wanted to check to see if ASSISTments "closed gaps", so we looked to see if the low knowledge students learned more or less than average. The hedge's corrected effect size reported in the paper was .56. We wanted to see if lower knowledge students had a higher effect size showing they were helped more. We luckily had archived out data for the paper at http://www.webcitation.org/6E03PhjrP

To determine low versue high we used the pretest scores. We wanted to do a median split but 46 students had a pretest of zero so we used zero versue above zero for the split. So 46 of 63 had scores of zero and were labeled "low" while the other 17 had scores greater than zero and were label "high".

Here are some means for the whole sample.

Post - Pre * Condition

Post - Pre

Condition	Mean	N	Std. Deviation			
Control	.58	33	.252			
Experiemental	.74	30	.288			
Total	.66	63	.279			

Post - Pre * Knowledge Level

Post - Pre

Knowledge Level	Mean	N	Std. Deviation				
High	.47	17	.223				
Low	.73	46	.268				
Total	.66	63	.279				

First we did an analysis and kept them together and looked to see if we had an interaction.

Variable 2 is condition
Variable 3 is high/low prior knowledge

→ Univariate Analysis of Variance

[DataSet0]

Between-Subjects Factors

		Ν
Condition	Control	33
	Experiemental	30
Knowledge Level	High	17
	Low	46

Tests of Between-Subjects Effects

Dependent Variable: Post - Pre

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1.418 ^a	3	.473	8.159	.000
Intercept	17.835	1	17.835	307.971	.000
VAR00002 * VAR00003	.222	1	.222	3.828	.055
VAR00002	.112	1	.112	1.926	.170
VAR00003	.847	1	.847	14.626	.000
Error	3.417	59	.058		
Total	32.040	63			
Corrected Total	4.834	62			

a. R Squared = .293 (Adjusted R Squared = .257)

We interpret this above table to show not a reliable gain once you throw in high versue low knowledge kids but an interaction that is starting to appear (p=.055)

So we split the same data into two parts.

For the high kids we found:

Univariate Analysis of Variance

[DataSet0]

Between-Subjects Factors

		N
Condition	Control	9
	Experiemental	8

Tests of Between-Subjects Effects

Dependent Variable: Post - Pre

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	
Corrected Model	.006ª	1	.006	.122	.732	
Intercept	3.733	1	3.733	70.988	.000	
VAR00002	.006	1	.006	.122	.732	
Error	.789	15	.053			
Total	4.560	17				
Corrected Total	.795	16				

a. R Squared = .008 (Adjusted R Squared = -.058)

The table above shows that for the 17 "high" kids there is no reliable effect of condition.

Univariate Analysis of Variance

[DataSet0]

Between-Subjects Factors

		N
Condition	Control	24
	Experiemental	22

Tests of Between-Subjects Effects

Dependent Variable: Post - Pre

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	.601ª	1	.601	10.060	.003
Intercept	24.538	1	24.538	410.857	.000
VAR00002	.601	1	.601	10.060	.003
Error	2.628	44	.060		
Total	27.480	46			
Corrected Total	3.229	45			

a. R Squared = .186 (Adjusted R Squared = .168)

The table above shows that for the 46 low students there is reliable difference between condition.

To compute the hedge corrected effect sizes we used the same sheet we had archived as well.

http://www.webcitation.org/6E03PhirP

1 A	В	C	D	E	F	G	H	I I	J	K	L	M	N	0	P	Q	R	S	Т
	D	ATA E	NTRY				RAW DIFFERENCE						ST						
Outcome measure	Treat	ment ç	group	Cor	ntrol gr	roup	pooled standard deviation	p-value for difference in SDs	Mean Difference	p-value for mean diff (2-tailed T-test)	Inter	dence val for rence	Effect Size	Bias corrected (Hedges)	Standard Error of E.S. estimate	Inter	dence val for at Size	Effect Size based on control gp SD	
	mean	n	SD	mean	n	SD					lower	upper				lower	upper		
Post-Pre	0.74	30	0.29	0.58	33	0.25	0.27	0.24	0.16	0.02	0.02	0.30	0.59	0.59	0.26	0.08	1.09	0.63	
High/Low	0.47	17	0.22	0.73	46	0.27	0.26		-0.26		-0.41	-0.11		-1.00	0.30		-0.42	-0.97	
ļ							0.00		0.00	####		"####	####	####	####			####	
Low	0.85	22	0.22	0.62	24	0.26	0.24		0.23	0.00	0.09	0.37	0.95	0.94	0.31	0.33	1.54	0.88	
High	0.45	8	0.26	0.49	9	0.2	0.23		-0.04	******	-0.28	0.20		-0.17	0.49	-1.12		-0.20	
							0.00		0.00	******	*******	*****	####	####	####		####	####	
							0.00		0.00	####		####	####	####	####	####	####	####	
							0.00		0.00	####	*****	####	####	####	####	####	####	####	
							0.00		0.00	####		******	####	####	####	####	####	####	
							0.00	####	0.00	####	####	####	####	####	####	####	####	####	

CMS spreadsheet to computer the Hedged Corrected effect sizes and 95% confidence intervals

It shows that effect size for the low kids is .94.

We concluded that ASSIStments closed gaps be helping the low students.

References

Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on K–12 students' mathematical learning. *Journal of Educational Psychology*, *105*(4), 970-987. doi:10.1037/a0032447

Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students' academic learning. *Journal of Educational Psychology*, 106(2), 331-347. doi:10.1037/a0034752