¥ Bazel

Better Starlark analysis unit tests

Please read Bazel Code of Conduct before commenting.

([]
. Authors: hvd@google.com

. Status: Draft | In review | Approved | Rejected | In progress| Implemented
e Reviewers:

« Created: 2021-06-16

< Updated: 2021-06-18

< Discussion thread: <link>
[]

Abstract

As we move more code out of native Blaze into Starlark, it becomes increasingly important
to provide rule owners with a better experience writing the accompanying tests. This
proposal attempts to reduce boilerplate, improve readability and prevent duplicated code.

Current situation

The current documentation provides something like the following as a minimal example:

def foo test assert(ctx):
env = analysistest.begin (ctx)
asserts ...

return analysistest.end (env)
foo test = analysistest.make(foo test assert)
def test foo arrange():

myrule (name = "targetl")

foo test(name = "foo test", target under test = "targetl")

¢ Bazel

https://www.contributor-covenant.org/version/1/4/code-of-conduct

def myrules test suite (name):
_test foo arrange ()
#
native.test suite(
name = name,
tests = [
":foo test",

#

The problems with this are:

e Boilerplate:
o The test name is repeated several times and structure will often be
copy/pasted with renaming and hence error prone
o The implementation function (assert section) always starts and ends with
analysistest.{begin,end}
e Poor readability: The arrange, act, assert phases do not follow linearly. Some
rearrangement is possible, but is not ideal.
e Missing utilities: Aimost all analysis test suites would need to find artifacts, actions,
transitive closures, etc and the lack of these utility functions in the standard test
library leads to unnecessary duplication

Proposal

Without significant change, the same example can look as follows:

foo test suite = analysistest.new test suite()
def foo arrange():
myrule (name = "targetl")

foo test(name = "foo test", target under test = "targetl")

¢ Bazel

def foo assert(env):

asserts ...

foo test suite.make test("test name", foo arrange, foo assert,
"targetl")

myrules test suite = foo test suite.generate

This is currently impossible since Starlark would require rulel to be exported before it is
invoked and export occurs only post-assignment during a bzl file load. While this can be
worked around by returning rulel from make test () and assigning it to an arbitrary,
unused variable, it would be nicer if this was not necessary. Therefore, we need a
mechanism to export rules without assignment (possibly restricted only to analysis tests).

The corresponding new code in analysistest is available in the appendix of this
document.

Compatibility

No incompatibility is expected with these changes.

Document History

Date Description

2021-06-14 | First proposal

¢ Bazel

https://docs.google.com/document/d/1qBtUh7IjSJR8labkbvMI9bJT80YdJ8h5OUfxEwNf1ws/edit#heading=h.31eypm168sxl

Appendix

def create test suite():
_arrange list = []
_test list = []
return struct (

make test = lambda *args: make test(arrange list,
_test list, *args),

generate = lambda name: generate(name, arrange list,
_test 1list),

)

def make test(arrange list, test list, name, arrange impl,
assert impl, target):

_test list.append(name)

arrange list.append(arrange impl)

rulel = analysistest.make (lambda ctx: wrap(assert impl, ctx))
_arrange list.append(lambda: rulel (name = name, target under test
= target))

return rulel

def wrap(impl, ctx):
env = analysistest.begin (ctx)
impl (env)

return analysistest.end(env)

def generate(name, arrange list, test list):

for arrange in _arrange list:

¢ Bazel

arrange ()

native.test suite(name = name, tests = test list)

	Better Starlark analysis unit tests
	Abstract
	Current situation
	Proposal
	Compatibility
	Document History
	
	Appendix

