
Better Starlark analysis unit tests
Please read Bazel Code of Conduct before commenting.

Authors: hvd@google.com​
Status: Draft | In review | Approved | Rejected | In progress| Implemented​
Reviewers:​
Created: 2021-06-16​
Updated: 2021-06-18
Discussion thread: <link>

Abstract
As we move more code out of native Blaze into Starlark, it becomes increasingly important
to provide rule owners with a better experience writing the accompanying tests. This
proposal attempts to reduce boilerplate, improve readability and prevent duplicated code.

Current situation
The current documentation provides something like the following as a minimal example:

def _foo_test_assert(ctx):

 env = analysistest.begin(ctx)

 # asserts ...

 return analysistest.end(env)

foo_test = analysistest.make(_foo_test_assert)

def _test_foo_arrange():

 myrule(name = "target1")

 foo_test(name = "foo_test", target_under_test = "target1")

https://www.contributor-covenant.org/version/1/4/code-of-conduct

def myrules_test_suite(name):

 _test_foo_arrange()

 # ...

 native.test_suite(

 name = name,

 tests = [

 ":foo_test",

 # ...

],

)

The problems with this are:

●​ Boilerplate:
○​ The test name is repeated several times and structure will often be

copy/pasted with renaming and hence error prone
○​ The implementation function (assert section) always starts and ends with

analysistest.{begin,end}
●​ Poor readability: The arrange, act, assert phases do not follow linearly. Some

rearrangement is possible, but is not ideal.
●​ Missing utilities: Almost all analysis test suites would need to find artifacts, actions,

transitive closures, etc and the lack of these utility functions in the standard test
library leads to unnecessary duplication

Proposal
Without significant change, the same example can look as follows:

foo_test_suite = analysistest.new_test_suite()

def _foo_arrange():

 myrule(name = "target1")

 foo_test(name = "foo_test", target_under_test = "target1")

def _foo_assert(env):

 # asserts ...

foo_test_suite.make_test("test_name", _foo_arrange, _foo_assert,
"target1")

myrules_test_suite = foo_test_suite.generate

This is currently impossible since Starlark would require rule1 to be exported before it is
invoked and export occurs only post-assignment during a bzl file load. While this can be
worked around by returning rule1 from _make_test() and assigning it to an arbitrary,
unused variable, it would be nicer if this was not necessary. Therefore, we need a
mechanism to export rules without assignment (possibly restricted only to analysis tests).

The corresponding new code in analysistest is available in the appendix of this
document.

Compatibility
No incompatibility is expected with these changes.

Document History

Date Description

2021-06-14 First proposal

https://docs.google.com/document/d/1qBtUh7IjSJR8labkbvMI9bJT80YdJ8h5OUfxEwNf1ws/edit#heading=h.31eypm168sxl

Appendix

def create_test_suite():

 _arrange_list = []

 _test_list = []

 return struct(

 make_test = lambda *args: _make_test(_arrange_list,
_test_list, *args),

 generate = lambda name: _generate(name, _arrange_list,
_test_list),

)

def _make_test(_arrange_list, _test_list, name, arrange_impl,
assert_impl, target):

 _test_list.append(name)

 _arrange_list.append(arrange_impl)

 rule1 = analysistest.make(lambda ctx: _wrap(assert_impl, ctx))

 _arrange_list.append(lambda: rule1(name = name, target_under_test
= target))

 return rule1

def _wrap(impl, ctx):

 env = analysistest.begin(ctx)

 impl(env)

 return analysistest.end(env)

def _generate(name, _arrange_list, _test_list):

 for arrange in _arrange_list:

 arrange()

 native.test_suite(name = name, tests = _test_list)

	Better Starlark analysis unit tests
	Abstract
	Current situation
	Proposal
	Compatibility
	Document History
	
	Appendix

