

Table Of Content

Acknowledgement​ 3

Abstract​ 4

List of Figures​ 5

List of Abbreviations​ 6

Introduction​ 1
1.1 Motivation​ 1
1.2 Problem Definition​ 1
1.3 Objective​ 1
1.4 Time Plan​ 1
1.5 Document Organization​ 2

Background​ 4

2.1 Neural Networks​ 4
2.1.1 Neural Network Elements​ 4
2.1.2 Problems Commonly Solved With Neural Networks​ 5
2.1.3 Main characteristics of Neural Network​ 6

2.2 Natural Language Processing “NLP”​ 6
2.2.1 How does NLP work?​ 6
2.2.2 Techniques and methods of NLP​ 8
2.2.3 Applications of NLP​ 10

2.3 Transformer​ 12
2.3.1 Model Architecture​ 13
2.3.2 Encoder and Decoder Stacks​ 14
2.3.3 Attention​ 14

2.3.3.1 Scaled Dot-Product Attention​ 15
2.3.3.2 Multi-Head Attention​ 16
2.3.3.3 Applications of Attention in our Model​ 16

2.4 Natural language Interface​ 17

2.5 Survey​ 17

2.5 Description of existing similar systems​ 19
2.5.1 Natural Language User Interface for SAP​ 19
2.5.2 CHATA​ 20

Analysis and Design​ 22

3.1 System Overview​ 22

1 | Page

3.1.1 System Architecture​ 22
3.1.2 System Users​ 23

3.2 System Analysis & Design​ 24
3.2.1 Use Case Diagram​ 24
3.2.2 Class Diagram​ 26
3.2.3 Sequence Diagram​ 26

Implementation and Testing​ 27
4.1 The flow of the model:​ 27
4.2 Dataset :​ 27
4.2 Model Architecture:​ 28
4.3 Training:​ 30
4.4 Results :​ 31
4.5 Used environments :​ 32
4.6 Used technologies :​ 33

5- User Manual​ 34
5.1 Overview :​ 34
5.2 Operating the web application :​ 34

5.2.1 Start page :​ 34
5.2.2 choose the database related to the domain of your question :​ 34
5.2.3 Enter your question in Natural language :​ 35
5.2.4 Click on “Translate to sql” button to start translation :​ 36
5.2.5 : Translation to SQL query is done :​ 36

6- Conclusion and Future Work​ 37
6.1 Conclusion​ 37
6.2 Future Work​ 37

References​ 38

2 | Page

Acknowledgement

All praise and thanks to ALLAH for being with us along this journey and giving
us the power to finish it and rewarding us for this hard work.

We would like to thank Dr. Dina Khattab, our project supervisor, for her patient
instruction, passionate support, and constructive criticisms of this project effort.

We would also like to thank T.A Marwah Helaly for her wonderful guidance
and her fervent assistance in keeping our development on the right track.

3 | Page

Abstract

Nowadays, data represents an essential demand in a lot
of domains including education, business and healthcare.
Recently, these data are stored in databases and controlled,
manipulated and updated by DBMS.

Therefore, databases represent a great source of

information. The number of databases as well as their size and
complexity are increasing. To extract information from these
databases, the user needs to write queries using database
query languages, such as structured query language (SQL).
This creates a barrier to use especially for non-experts, who
must come to grips with the nature of the data, the way it has
been represented in the database, and the specific query
languages or user interfaces by which data is accessed. These
difficulties worsen in research settings, where it is common to
work with many different databases.

From here our idea is born, what are the easiest ways to

extract your data from databases? Of course, one of them is to
ask for it with a simple question represented in your natural
language. Our mission is to transform this simple question into
a database query through an AI model and run this query on
the database then retrieve and display the requested
information to the user.

For example, in health care. Medical staff can retrieve

important info about their patients, compare different cases,
and get all the important information instantly and easily.
Scientists in pharmaceutical laboratories can manipulate and
retrieve important data with just a few words represented in a
simple natural language query. Thus, there are many scenarios
that can be easily resolved without any difficulties.

4 | Page

List of Figures

Figure 1.1. Time Plan​ ​ ​ ​ ​ ​ ​ ​ ​ 8

Figure 2.1. Neural Network Black-Box​ ​ ​ ​ ​ ​ 10

Figure 2.2. Diagram for one node​ ​ ​ ​ ​ ​ ​ 11

Figure 2.3. Neural Network​ ​ ​ ​ ​ ​ ​ ​ 12

Figure 2.4. The Transformer - model architecture​ ​ ​ ​ ​ 20

Figure 2.5. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
consists of several attention layers running in parallel​ ​ ​ ​ 21

Figure 2.6. NLSQL​ ​ ​ ​ ​ ​ ​ ​ ​ 27

Figure 2.7. CHATA​ ​ ​ ​ ​ ​ ​ ​ ​ 28

Figure 3.1. System Architecture​​ ​ ​ ​ ​ ​ ​ 29

Figure 3.2. Use Case Diagram​ ​ ​ ​ ​ ​ ​ ​ 31

Figure 3.3. Sequence Diagram​ ​ ​ ​ ​ ​ ​ ​ 33

Figure 4.1. Model Architecture​ ​ ​ ​ ​ ​ ​ ​ 37

Figure 4.2. Results​​ ​ ​ ​ ​ ​ ​ ​ ​ 39

Figure 5.1. Start Page​ ​ ​ ​ ​ ​ ​ ​ ​ 41

Figure 5.2. choose DB​ ​ ​ ​ ​ ​ ​ ​ ​ 42

Figure 5.3. Enter Question ​ ​ ​ ​ ​ ​ ​ ​ 42

Figure 5.3. Translate to SQL​ ​ ​ ​ ​ ​ ​ ​ 43

Figure 5.4. Translation To SQL Done​ ​ ​ ​ ​ ​ ​ 43

5 | Page

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

BERT Bidirectional Encoder Representations From Transformers

CPU Central Processing Unit

CNN Convolutional Neural Networks

ConvS2S Convolutional sequence to sequence

DB DataBase

e.g. example

GPU Graphics processing unit

GPT3 Generative Pre-trained Transformer 3

IDE Integrated Development Environment

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

NER Named Entity Recognition

NMT Neural Machine Translation

NL Natural Language

NLKBIDB Natural Language and keyword based interface to database

NLP Natural Language Processing

NLQ Natural Language Querying

NLTK Natural Language Toolkit

NN Neural Networks

RNN Recurrent Neural Network

SQL Structured Query Language

6 | Page

Introduction

1.1 Motivation
​ Most of the media networks and organizations require a database to store
the information and to retrieve the information from the database where
structured query language (SQL) is utilized. Our project resolves problems
faced by almost all domains in this field as most domains need to store their
data and access this data at any time.

The current solution to access your data from databases is to hire a

software engineer to make a program for you with special filters that allow you
to manipulate your data but this approach is not efficient enough as you
probably want information with complex constraints which are not covered with
only filters. Also our approach is more time efficient as you should only ask for
the info you want with your simple natural language without the headache of
filters.

1.2 Problem Definition

Nowadays, data represents an essential demand in a lot of domains.
Recently, these data are stored in databases. The number of databases as well as
their size and complexity increases, which makes the process of manipulating
the data from them a more challenging task. So, we aim to translate natural
language questions asked by non-experts to database queries, and then retrieve
the answer from the database records.

1.3 Objective

Our aim is to develop a web application that:
●​ Enables non-professional users to easily retrieve the data they need

from the databases.

●​ Accelerates the process of writing complex queries for professional

users.

●​ Supports multiple domains e.g Education, HealthCare, Business

and more.

7 | Page

1.4 Time Plan

1.5 Document Organization

Chapter 2: Background

This chapter contains a detailed description of the field of the project, all
the scientific background related to the project, a survey of the work
done in the field and description of existing similar systems.

Chapter 3: Analysis and Design
This chapter describes the system architecture and how it communicates
with internal and external modules.

Chapter 4: Implementation
This chapter includes a detailed description of all the functions in the
system, A detailed description of all the techniques and algorithms
implemented, and Description of any new technologies used in
implementation.

Chapter 5: User Manual

8 | Page

This chapter describes in detail how to operate the project along with
screen shots of the project representing all steps.

Chapter 6: Conclusions and Future Work

This chapter contains a complete summary of the project and how we
would be able to improve the performance and what are new features
that can be added in the future.

9 | Page

Background

2.1 Neural Networks

Neural networks are a set of algorithms, modeled loosely after the human brain,
that is designed to recognize patterns. They interpret sensory data through a
kind of machine perception, labeling, or clustering raw input. The patterns they
recognize are numerical, contained in vectors, into which all real-world data, be
it images, sound, text, or time series, must be translated.

Neural networks help us cluster and classify. You can think of them as a
clustering and classification layer on top of the data you store and manage. They
help to group unlabeled data according to similarities among the example
inputs, and they classify data when they have a labeled dataset to train on.

The researchers considered the neural network as a black box strategy as shown

in Figure 2.1, which is trainable.

The key aspect of black-box approaches is developing relationships between
input and output. The researchers tried to ‘train’ the neural black-box to ‘learn’
the correct response output for each of the training samples[X].

2.1.1 Neural Network Elements
Deep learning is the name we use for “stacked neural networks”; that is,
networks composed of several layers.
The layers are made of nodes. A node is just a place where computation
happens, loosely patterned on a neuron in the human brain, which fires when it
encounters sufficient stimuli. A node combines input from the data with a set of
coefficients, or weights, that either amplify or dampen that input, thereby
assigning significance to inputs with regard to the task the algorithm is trying to

10 | Page

learn; e.g. which input is most helpful is classifying data without error? These
input-weight products are summed. The sum is passed through a node’s
so-called activation function, to determine whether and to what extent that
signal should progress further. Say, an act of classification. If the signal passes
through, the neuron has been “activated.”

As shown in Figure 2.2 this is what one node might look like.

A node layer is a row of those neuron-like switches that turn on or off as the
input is fed through the net. Each layer’s output is simultaneously the
subsequent layer’s input, starting from an initial input layer receiving your data
as shown in Figure 2.3.

Pairing the model’s adjustable weights with input features is how we assign
significance to those features with regard to how the neural network classifies
and clusters input.

11 | Page

2.1.2 Problems Commonly Solved With Neural Networks
There are many different problems that can be solved with a neural network.
However, neural networks are commonly used to address particular types of
problems. The following types of problem are frequently solved with neural
networks:

●​ Regression.
●​ Classification.
●​ Pattern recognition.
●​ Prediction.
●​ Optimization.
●​ Clustering.

2.1.3 Main characteristics of Neural Network
1.​ Activation function:

A function that produces an output based on the input values received by
node like:

1.​ Sigmoid.
2.​ ReLU.
3.​ Hyperbolic Tangent.

2.​ Architecture or structure:
The connectivity of neurons (nodes) determines the neural network
structure (architecture).

3.​ The learning algorithm, or training method:
Method for determining weights of the connections. The manner in which
the neurons of neural networks are structured is intimately linked with the
learning algorithm used to train the network.

2.2 Natural Language Processing “NLP”

Natural language processing (NLP) is the ability of a computer program to
understand human language as it is spoken and written -- referred to as
natural language. It is a component of artificial intelligence (AI).

NLP has existed for more than 50 years and has roots in the field of
linguistics. It has a variety of real-world applications in a number of fields,
including medical research, search engines and business intelligence.

12 | Page

https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence

2.2.1 How does NLP work?

NLP enables computers to understand natural language as humans do.
Whether the language is spoken or written, natural language processing
uses artificial intelligence to take real-world input, process it, and make
sense of it in a way a computer can understand. Just as humans have
different sensors -- such as ears to hear and eyes to see -- computers have
programs to read and microphones to collect audio. And just as humans
have a brain to process that input, computers have a program to process
their respective inputs. At some point in processing, the input is converted
to code that the computer can understand.

There are two main phases to natural language processing: data
preprocessing and algorithm development.

Data preprocessing involves preparing and "cleaning" text data for
machines to be able to analyze it. preprocessing puts data in workable form
and highlights features in the text that an algorithm can work with. There
are several ways this can be done, including:

●​ Tokenization. This is when text is broken down into smaller units
to work with.

●​ Stop word removal. This is when common words are removed
from text so unique words that offer the most information about
the text remain.

●​ Lemmatization and stemming. This is when words are reduced
to their root forms to process.

●​ Part-of-speech tagging. This is when words are marked based
on the part-of-speech they are -- such as nouns, verbs and
adjectives.

Once the data has been preprocessed, an algorithm is developed to
process it. There are many different natural language processing
algorithms, but two main types are commonly used:

●​ Rules-based system. This system uses carefully designed
linguistic rules. This approach was used early on in the
development of natural language processing, and is still used.

13 | Page

●​ Machine learning-based system. Machine learning algorithms
use statistical methods. They learn to perform tasks based on
training data they are fed, and adjust their methods as more data
is processed. Using a combination of machine learning, deep
learning and neural networks, natural language processing
algorithms hone their own rules through repeated processing and
learning.

2.2.2 Techniques and methods of NLP

Syntax and semantic analysis are two main techniques used with natural
language processing.

Syntax is the arrangement of words in a sentence to make grammatical
sense. NLP uses syntax to assess meaning from a language based on
grammatical rules. Syntax techniques include:

●​ Parsing. This is the grammatical analysis of a sentence.
Example: A natural language processing algorithm is fed the
sentence, "The dog barked." Parsing involves breaking this
sentence into parts of speech -- i.e., dog = noun, barked = verb.
This is useful for more complex downstream processing tasks.

●​ Word segmentation. This is the act of taking a string of text and
deriving word forms from it. Example: A person scans a
handwritten document into a computer. The algorithm would be
able to analyze the page and recognize that the words are divided
by white spaces.

●​ Sentence breaking. This places sentence boundaries in large
texts. Example: A natural language processing algorithm is fed the
text, "The dog barked. I woke up." The algorithm can recognize
the period that splits up the sentences using sentence breaking.

●​ Morphological segmentation. This divides words into smaller
parts called morphemes. Example: The word untestably would be
broken into [[un[[test]able]]ly], where the algorithm recognizes
"un," "test," "able" and "ly" as morphemes. This is especially
useful in machine translation and speech recognition.

●​ Stemming. This divides words with inflection in them to root
forms. Example: In the sentence, "The dog barked," the algorithm

14 | Page

would be able to recognize the root of the word "barked" is "bark."
This would be useful if a user was analyzing a text for all
instances of the word bark, as well as all of its conjugations. The
algorithm can see that they are essentially the same word even
though the letters are different.

Semantics involves the use of and meaning behind words. Natural
language processing applies algorithms to understand the meaning and
structure of sentences. Semantics techniques include:

●​ Word sense disambiguation. This derives the meaning of a
word based on context. Example: Consider the sentence, "The pig
is in the pen." The word pen has different meanings. An algorithm
using this method can understand that the use of the word pen
here refers to a fenced-in area, not a writing implement.

●​ Named entity recognition. This determines words that can be
categorized into groups. Example: An algorithm using this method
could analyze a news article and identify all mentions of a certain
company or product. Using the semantics of the text, it would be
able to differentiate between entities that are visually the same.
For instance, in the sentence, "Daniel McDonald's son went to
McDonald's and ordered a Happy Meal," the algorithm could
recognize the two instances of "McDonald's" as two separate
entities -- one a restaurant and one a person.

●​ Natural language generation. This uses a database to
determine semantics behind words and generate new text.
Example: An algorithm could automatically write a summary of
findings from a business intelligence platform, mapping certain
words and phrases to features of the data in the BI platform.
Another example would be automatically generating news articles
or tweets based on a certain body of text used for training.

Current approaches to natural language processing are based on deep
learning, a type of AI that examines and uses patterns in data to improve a
program's understanding. Deep learning models require massive amounts
of labeled data for the natural language processing algorithm to train on

15 | Page

and identify relevant correlations, and assembling this kind of big data set
is one of the main hurdles to natural language processing.

Earlier approaches to natural language processing involved a more
rules-based approach, where simpler machine learning algorithms were
told what words and phrases to look for in text and given specific
responses when those phrases appeared. But deep learning is a more
flexible, intuitive approach in which algorithms learn to identify speakers'
intent from many examples -- almost like how a child would learn human
language.

Three tools used commonly for natural language processing include
Natural Language Toolkit (NLTK), Gensim and Intel natural language
processing Architect. NLTK is an open source Python module with data
sets and tutorials. Gensim is a Python library for topic modeling and
document indexing. Intel NLP Architect is another Python library for deep
learning topologies and techniques.

2.2.3 Applications of NLP
Some of the main functions that natural language processing algorithms
perform are:

●​ Text classification. This involves assigning tags to texts to put
them in categories. This can be useful for sentiment analysis,
which helps the natural language processing algorithm determine
the sentiment, or emotion behind a text. For example, when brand
A is mentioned in X number of texts, the algorithm can determine
how many of those mentions were positive and how many were
negative. It can also be useful for intent detection, which helps
predict what the speaker or writer may do based on the text they
are producing.

●​ Text extraction. This involves automatically summarizing text and
finding important pieces of data. One example of this is keyword
extraction, which pulls the most important words from the text,
which can be useful for search engine optimization. Doing this
with natural language processing requires some programming -- it
is not completely automated. However, there are plenty of simple
keyword extraction tools that automate most of the process -- the

16 | Page

https://www.techtarget.com/searchdatamanagement/definition/big-data

user just has to set parameters within the program. For example,
a tool might pull out the most frequently used words in the text.
Another example is named entity recognition, which extracts the
names of people, places and other entities from text.

●​ Machine translation. This is the process by which a computer
translates text from one language, such as English, to another
language, such as French, without human intervention.

●​ Natural language generation. This involves using natural
language processing algorithms to analyze unstructured data and
automatically produce content based on that data. One example
of this is in language models such as GPT3, which are able to
analyze an unstructured text and then generate believable articles
based on the text.

The functions listed above are used in a variety of real-world applications,
including:

●​ customer feedback analysis -- where AI analyzes social media
reviews;

●​ customer service automation -- where voice assistants on the
other end of a customer service phone line are able to use speech
recognition to understand what the customer is saying, so that it
can direct the call correctly;

●​ automatic translation -- using tools such as Google Translate,
Bing Translator and Translate Me;

●​ academic research and analysis -- where AI is able to analyze
huge amounts of academic material and research papers not just
based on the metadata of the text, but the text itself;

●​ analysis and categorization of medical records -- where AI uses
insights to predict, and ideally prevent, disease;

●​ word processors used for plagiarism and proofreading -- using
tools such as Grammarly and Microsoft Word;

●​ stock forecasting and insights into financial trading -- using AI to
analyze market history and 10-K documents, which contain
comprehensive summaries about a company's financial
performance;

●​ talent recruitment in human resources; and

17 | Page

●​ automation of routine litigation tasks -- one example is the
artificially intelligent attorney.

Research being done on natural language processing revolves around
search, especially Enterprise search. This involves having users query data
sets in the form of a question that they might pose to another person. The
machine interprets the important elements of the human language
sentence, which correspond to specific features in a data set, and returns
an answer.

NLP can be used to interpret free, unstructured text and make it
analyzable. There is a tremendous amount of information stored in free text
files, such as patients' medical records. Before deep learning-based NLP
models, this information was inaccessible to computer-assisted analysis
and could not be analyzed in any systematic way. With NLP analysts can
sift through massive amounts of free text to find relevant information.

Sentiment analysis is another primary use case for NLP. Using sentiment
analysis, data scientists can assess comments on social media to see how
their business's brand is performing, or review notes from customer service
teams to identify areas where people want the business to perform better.

2.3 Transformer

The goal of reducing sequential computation also forms the
foundation of the Extended Neural GPU, ByteNet and ConvS2S , all of
which use convolutional neural networks as basic building block, computing
hidden representations in parallel for all input and output positions. In these
models, the number of operations required to relate signals from two
arbitrary input or output positions grows in the distance between positions,
linearly for ConvS2S and logarithmically for ByteNet. This makes it more
difficult to learn dependencies between distant positions. In the
Transformer this is reduced to a constant number of operations, albeit at
the cost of reduced effective resolution due to averaging attention-weighted
positions, an effect we counteract with Multi-Head Attention, Self-attention,
sometimes called intra-attention is an attention mechanism relating

18 | Page

different positions of a single sequence in order to compute a
representation of the sequence. Self-attention has been used successfully
in a variety of tasks including reading comprehension, abstractive
summarization, textual entailment and learning task-independent sentence
representations. End-to-end memory networks are based on a recurrent
attention mechanism instead of sequence aligned recurrence and have
been shown to perform well on simple-language question answering and
language modeling tasks. To the best of our knowledge, however, the
Transformer is the first transduction model relying entirely on self-attention
to compute representations of its input and output without using sequence
aligned RNNs or convolution.

2.3.1 Model Architecture

Most competitive neural sequence transduction models have an
encoder-decoder structure. Here, the encoder maps an input sequence of
symbol representations (x1, ..., xn) to a sequence of continuous
representations z = (z1, ..., zn). Given z, the decoder then generates an
output sequence (y1, ..., ym) of symbols one element at a time. At each
step the model is auto-regressive, consuming the previously generated
symbols as additional input when generating the next. The Transformer
follows this overall architecture using stacked self-attention and point-wise,
fully connected layers for both the encoder and decoder, shown in the left
and right halves of Figure 1, respectively.

19 | Page

2.3.2 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers.
Each layer has two sub-layers. The first is a multi-head self-attention
mechanism, and the second is a simple, positionwise fully connected
feed-forward network. We employ a residual connection [11] around each
of the two sub-layers, followed by layer normalization [1]. That is, the output
of each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the
function implemented by the sub-layer itself. To facilitate these residual
connections, all sub-layers in the model, as well as the embedding layers,
produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical
layers. In addition to the two sub-layers in each encoder layer, the decoder

20 | Page

inserts a third sub-layer, which performs multi-head attention over the
output of the encoder stack. Similar to the encoder, we employ residual
connections around each of the sub-layers, followed by layer normalization.
We also modify the self-attention sub-layer in the decoder stack to prevent
positions from attending to subsequent positions. This masking, combined
with fact that the output embeddings are offset by one position, ensures
that the predictions for position i can depend only on the known outputs at
positions less than i.

2.3.3 Attention

An attention function can be described as mapping a query and a set of
key-value pairs to an output, where the query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function
of the query with the corresponding key.

2.3.3.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2).
The input consists of queries and keys of dimension dk, and values of
dimension dv. We compute the dot products of the query with all keys,
divide each by √ dk, and apply a softmax function to obtain the weights on
the values. In practice, we compute the attention function on a set of
queries simultaneously, packed together into a matrix Q. The keys and

21 | Page

values are also packed together into matrices K and V . We compute the
matrix of outputs as:

​ ​ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
𝑑𝑘

)𝑉 (1)

The two most commonly used attention functions are additive attention [2],
and dot-product (multiplicative) attention. Dot-product attention is identical
to our algorithm, except for the scaling factor of . Additive attention 1

𝑑𝑘

computes the compatibility function using a feed-forward network with a
single hidden layer. While the two are similar in theoretical complexity,
dot-product attention is much faster and more space-efficient in practice,
since it can be implemented using highly optimized matrix multiplication
code. While for small values of dk the two mechanisms perform similarly,
additive attention outperforms dot product attention without scaling for
larger values of dk [3]. We suspect that for large values of dk, the dot
products grow large in magnitude, pushing the softmax function into
regions where it has extremely small gradients 4 . To counteract this effect,
we scale the dot products by . 1

𝑑𝑘

2.3.3.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional
keys, values and queries, we found it beneficial to linearly project the
queries, keys and values h times with different, learned linear projections to
dk, dk and dv dimensions, respectively. On each of these projected
versions of queries, keys and values we then perform the attention function
in parallel, yielding dv-dimensional output values. These are concatenated
and once again projected, resulting in the final values, as depicted in Figure
2. Multi-head attention allows the model to jointly attend to information from
different representation subspaces at different positions. With a single
attention head, averaging inhibits this.

22 | Page

2.3.3.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

●​ In "encoder-decoder attention" layers, the queries come from the
previous decoder layer, and the memory keys and values come
from the output of the encoder. This allows every position in the
decoder to attend over all positions in the input sequence. This
mimics the typical encoder-decoder attention mechanisms in
sequence-to-sequence models such as [38, 2, 9].

●​ The encoder contains self-attention layers. In a self-attention layer
all of the keys, values and queries come from the same place, in
this case, the output of the previous layer in the encoder. Each
position in the encoder can attend to all positions in the previous
layer of the encoder.

●​ Similarly, self-attention layers in the decoder allow each position in
the decoder to attend to all positions in the decoder up to and
including that position. We need to prevent leftward information
flow in the decoder to preserve the auto-regressive property. We
implement this inside of scaled dot-product attention by masking
out (setting to −∞) all values in the input of the softmax which
correspond to illegal connections. See Figure 2.

2.4 Natural language Interface

Natural language interfaces aim at integrating natural language processing and
human-computer interactions. It seeks to provide means for humans to interact
with computers through the use of natural language. We explore a specific aspect
of the research which applies to relational databases which can be essentially

23 | Page

summarized as translation of natural language questions asked by the user to
corresponding SQL queries. Neural machine translation (NMT) is an approach to
machine translation that uses an artificial neural network to predict the likelihood
of a sequence of words, typically modeling entire sentences in a single integrated
model. Deep learning applications appeared first in speech recognition in the
1990s. The research on using neural networks for machine translation started
gaining momentum in 2014, when Sutskever et al. (2014) published a paper on
sequence to sequence learning with neural networks. Other work using
encoder-decoder networks include Cho et al. (2014), Bahdanau et al. (2014), Wu et
al. (2016). Variants of seq2seq were used by Vinyals et al. (2015) and Dong and
Lapata (2016) to predict next characters in the sequence.

2.5 Survey

Natural language querying (NLQ) is a known problem in information
retrieval. It allows questions to be formed without knowledge of
database-specific logical languages such as SQL or Cypher. In principle this
can ease data access for non-expert users. To this end, several approaches
to build NLQ systems have been proposed. Recent surveys, segmented
them into five approaches: keyword-based, pattern-based, syntax-based,
grammar-based, and, more recently, connectionist-based.

In keyword-based systems, the approach has two stages, a first
stage where keywords present in an input query are extracted, and a
second stage where keywords are matched against metadata available in
the underlying database. For instance, Blunschi et al. described Search over
DAta Warehouse (SODA), which generates SQL queries from natural
language (NL) queries over a business-related database. The system
processes an input NL query through a series of steps. First, the keywords
in the query are matched against all the possible entries in the database
metadata. Second, by means of a heuristic, each result is scored and the
process continues with the top N results. A third step identifies the tables
used by each result and their relationships before being passed to the
fourth step, which is responsible for finding, from the original query, the
needed filters over the tables and columns. Last, the gathered information
from the previous steps is combined to generate a SQL query that takes
into account possible join patterns by looking at foreign keys and
inheritance patterns in the schema. A drawback of this approach is it

24 | Page

requires hand-crafting the patterns that are used to translate from a
keyword-based input to a SQL query for the specific modelling of the target
database, which becomes a bottleneck when trying to use it across a
variety of databases.

In pattern-based systems, the capabilities of keyword-based
approaches are extended by including NL patterns for processing queries,
alleviating issues such as aggregation operations. For instance, Shah et al
described NLKBIDB, a NL to SQL query interface that uses NL patterns to
fix syntactically incorrect queries, and a keyword-based approach to obtain
the corresponding facts from the schema before carrying out the
conversion. The system uses lexical analysis to tokenize the NL query and
syntax analysis to parse the lexicons. If the input query is syntactically
valid, then the lexicons are analyzed by a semantic analyzer using a domain
ontology before generating a SQL query. Invalid queries are converted into
SQL by applying a set of rules. An issue that arises from this approach is
the need for a knowledge expert to refine the rules used to convert
syntactically invalid queries into SQL sentences, as well as the need to use
hand-crafted natural language rules for generating the SQL queries for
syntactically valid queries. This makes it difficult to adapt for new use
cases. In ATHENA++ is presented to cope with nested SQL queries. In this
approach linguistic patterns from NL queries are combined with domain
reasoning using ontologies to enable nested query detection and
generation. In addition, a new benchmark dataset (FIBEN) is introduced,
containing 237 distinct complex SQL queries on a database with 152
tables. This approach tries to translate a NL query to OQL using the domain
ontology, and then the OQL query is translated to SQL by using the
mappings between the ontology and the database. It appears that one
potential limitation of such an approach is the requirement to have both a
domain ontology and a defined mapping of that ontology to the database.

Syntax-based and grammar-based systems7 share similar
methodologies. In both approaches, the NL query is parsed using linguistic
rules to produce a syntax tree. Then, for syntax-based systems, the
concepts in the tree are mapped to a query in the target query language
(e.g. SQL). This has a variety of issues. First, a given query may have
different parse trees, which after mapping may produce different queries.

25 | Page

https://www.nature.com/articles/s41598-021-98019-3#ref-CR7

Another issue is deciding which concepts from the query to map and which
ones not. To alleviate this, grammar-based systems exploit domain
knowledge captured by the grammar with the aim of reducing ambiguity
when mapping queries. However, this method requires knowledge of the
domain to build an effective parsing grammar, making it hard to adapt to
new domains.

In contrast to approaches treating items in a language as symbols
(symbolic approaches), relying on theoretical foundations in linguistics,
connectionist approaches, also known as computational intelligence-based
approaches, try to learn statistical patterns in the data and/or distributed
representations of it, allowing for a richer linguistic variability. These
methods can be divided into traditional machine learning and more recent
deep learning techniques. The latter have become widely used in natural
language processing (NLP) tasks, achieving state-of-the-art results. The
main difference between these methods and traditional machine learning is
that their objective is to learn a distributed representation (in the form of
real-valued vectors) of the data, without the need for the feature
engineering stage that earlier approaches required.

2.5 Description of existing similar systems

2.5.1 Natural Language User Interface for SAP
NLSQL converts Natural Language request to SQL queries and get's back

with text response and SQL script via API web service. It helps SAP administrators
to provide SAP users with Natural Language Interface for SAP. Natural Language
User Interface for SQL API provides the possibility for End Users to request
information from SAP database using the only Natural Language. for more info you
can visit : store.sap.com

26 | Page

https://store.sap.com/dcp/en/product/display-0000043361_live_v1#!overview

2.5.2 CHATA
​ Chata embeds an intelligent, conversational interface that allows users
to access and analyze data simply by typing requests in everyday language.
for more info you can visit : chata.ai

27 | Page

28 | Page

1-​ Analysis and Design

3.1 System Overview

3.1.1 System Architecture

1.​ Selecting Dataset: We selected Spider dataset as it is a large-scale

complex and cross-domain text-to-SQL dataset annotated by Yale
University students.

2.​ Preprocessing Dataset: The process of cleaning and preparing the raw

data to enable feature extraction.

3.​ Feature Extraction: Preparing the features of the data for the ML model

4.​ Splitting dataset: Dividing the data into two (or more) subsets. The first
part is used to train the model and the other is used to evaluate the model.

5.​ Model building & training: Creating a model, training and evaluating it,
and repeating the previous steps till we build a model that achieve good
accuracy

29 | Page

6.​ Preprocessing user Input: Preparing the user input for the ML model so

that the model is able to easily interpret the input data features.

7.​ Predicting query: Running the trained model on the input data and
returning the output database query.

A.​Functional Requirements
●​ The system should take an English input text from the user.
●​ The system should be able to generate SQL query from the input.
●​ The system should be able to notify the user with the progress

while generating the SQL query.
●​ The user should be able to choose the desired database.

B.​non-Functional Requirements
●​ The system should be efficient in using computer resources.
●​ Users with no training shall be able to use the system.
●​ The system shall be self‐explanatory and intuitive.
●​ The user interface should be efficient and easy to use.
●​ The translated SQL query should be close enough to the meaning

text input said by the user.

3.1.2 System Users

A.​ Intended Users:

1.​ Database Engineers:

●​ Their main job is to write SQL queries to retrieve data from

the database.

●​ The system will make their jobs easier by using an

automated tool to generate the SQL query for them.

2.​ Regular Users:

●​ The system will help them to get the SQL query to execute it

on the database.

B.​ User Characteristics
●​ Knowledge of computers (any person who can use computers).
●​ Understanding how to run the SQL query on the database

management tool.

30 | Page

3.2 System Analysis & Design

3.2.1 Use Case Diagram

Figure 3.2.: Use Case Diagram

Use Case Choose Database

Description The user should be able to choose a
database from the list of databases

Precondition valid schemas of databases

Post Condition The chosen database

Flow of Events Primary Flow
●​ The user choose database from

checkbox

31 | Page

Use Case Input Question

Description The user should be able to type the
requested question

Precondition chosen database

Post Condition The question and the database are
sent to the server

Flow of Events Primary Flow
●​ The user enters the desired

question
●​ The user clicks on Translate to

SQL button
Error Flow

●​ The user types in a language
other than English

●​ The user types nothing

Use Case Get generated SQL query

Description The user should be able to get the
generated query

Precondition The Model finishes its processing with
input

Post Condition -

Flow of Events Primary Flow
●​ The user gets the generated

SQL query
Error Flow

●​ If The user typed in a language
other than English or he typed
nothing he will get an
UnTranslatable Error

32 | Page

3.2.2 Class Diagram

3.2.3 Sequence Diagram

Figure 3.3.: Sequence Diagram

33 | Page

 ​ Implementation and Testing

In this chapter, we will explain the application’s different modules and the role
of each of them in the project.

Our modules are developed using Python, which is an interpreted, object-
oriented, high-level programming language with dynamic semantics.

Specially used for web development as a back-end tool and machine learning
applications.

The system enables the user to enter a question in English language and to
choose the database of the domain that the question belongs to, then our model
translates this statement to a SQL statement which could be used by the end
user to retrieve any data from the databases related to his field.

4.1 The flow of the model:

-​ Question Input: The user inputs a question in Natural language and

chooses a database name which is the most relatable to his question.

-​ Translation: the generated sequence (hybrid of the schema and the input)
is passed to our translation model which outputs raw program sequences
with probability scores using a beam search algorithm.

​ To create the translation model, we used Pytorch machine learning
 framework which is a free and open-source software framework
 based on a library called Torch.

 It is used for applications related to Artificial intelligence such as
 Computer vision and Natural language processing.

-​ Post Processing : the raw program sequences are passed through a SQL
checker, which verifies its syntactical correctness where sequences that
failed to pass the checker are discarded from the output.

4.2 Dataset :

-​ Spider dataset :

34 | Page

Spider is a large-scale complex and cross-domain semantic
parsing and text-to-SQL dataset annotated by 11 Yale students.
The goal of the Spider challenge is to develop natural language
interfaces to cross-domain databases. It consists of 10,181
questions and 5,693 unique complex SQL queries on 200
databases with multiple tables covering 138 different domains.

 The preprocessing also included data cleaning and completing
 missing meta-data.
4.2 Model Architecture:

Main model network consists of the following components :

[1] Question-Schema encoding :

 As shown in the following figure, we represent each table with its table
 name followed by its fields, before each table name we write symbol [T] to
 identify table names in the statement and symbol [C] to identify field names.

 In case of a question that requires multiple tables (join queries), they are
 concatenated to form a serialization of the schema. The start and the end of
 tables and fields names are surrounded by the symbol [SEP] and the
 question is preceded by the symbol [CLS] to form the hybrid question -
 schema sequence.

 Finally, The hybrid Sequence X (Shown in the previous figure) is passed to
 be encoded through BERT, Followed by bi-directional LSTM.

[2] Bridging :

Modeling only the table/field names and their relations is not always enough to
capture the semantics of the schema and its dependencies with the question.

The solution to this problem is the Fuzzy string matching algorithm.

We perform a fuzzy string match between the question and the picklist of each
field in the database. The matched field values are inserted into the

35 | Page

https://medium.com/@tao.yu/spider-one-more-step-towards-natural-language-interfaces-to-databases-62298dc6df3c

question-schema representation X, succeeding the corresponding field names
and separated by the special token [V]. If multiple values were matched for one
field, we concatenate all of them in matching order. If a question is matched
with values in multiple fields. We add all matches and let the model (BERT)
learn to resolve ambiguity.

[3] Decoder :

An LSTM with multihead attention is used as a decoder, where the decoder is
initiated with the final state of the encoder.

At each step, the decoder performs one of the following actions :

-​ Generating a token from the vocabulary.

-​ Copying a token from the question.

-​ Copying a schema component from our current schema.

Mathematically, at each step t, given the decoder state st and the encoder
representation [hQ; hS] ∈ R (|Q|+|S|)×n , we compute the multi-head attention
through the following equations :

where h ∈ [1, . . . , H] is the head number and H is the total number of heads.

The probability of generating from V and the output distribution is defined as
the following equation :

36 | Page

Figure 4.1.: Model Architecture

4.3 Training:

- The number of examples used for the training was 8695 examples trained for
25
 epochs and mini batch size of 32.

- We train our model used the BERT large model and LSTM with 8-head
attention
 between the encoder and the decoder.

37 | Page

- We use cross-entropy as a loss function along with Adam-SGD with default
 parameters as an optimizer.

- LSTM hidden layer dimension is set to 400.

- Learning rate is set to 0.0005.

- We fine tune BERT model with a fine-tuning rate linearly increasing from
0.00003
 to 0.00006. and shrinks at the end of the training process to 0.

4.4 Results :

- To validate the translation model, we use the Exact Match (EM) metrics
which is
 widely used in Question answering and machine translation tasks.

- The Exact Match (EM) metrics evaluates the structural correctness of the
predicted
 SQL by checking the orderless set match of each SQL clause in the predicted
query.

- The best accuracies are shown in the following figure :

 - Top-1 exact match : 0.695.

 - Top-2 exact math : 0.741.

 - Top-3 exact match : 0.765

 - Top-5 exact match : 0.784

 - Top-10 exact match : 0.800

38 | Page

Figure 4.2. Results

4.5 Used environments :

- Our project is built as a web application using the following environments :

(1)​ Google colaboratory :

Colaboratory is a Google research project created to help disseminate
machine learning education and research. It's a Jupyter notebook
environment that requires no setup to use and runs entirely in the cloud.
We used google colab notebooks for our trails and models training. It
provides an environment for developing and training models with the
following specifications:

- 3.9 GB RAM

- 78.5 GB HARD DISK

(2)​ PyCharm :

 PyCharm is an IDE used in computer programming, specifically for the
 Python language. It is developed by the Czech company JetBrains.

39 | Page

https://www.jetbrains.com/pycharm/

(3)​ NLTK :

NLTK is a leading platform for building Python programs to work with
human language data. It provides easy-to-use interfaces to over 50
corpora and lexical resources such as WordNet, along with a suite of text
processing libraries for classification, tokenization, stemming, tagging,
parsing, and semantic reasoning, wrappers for industrial-strength NLP
libraries, and an active discussion forum.

(4)​ Pandas :

Pandas is a high-level data manipulation tool developed by Wes
McKinney. It is built on the Numpy package and its key data structure
is called the DataFrame. DataFrames allow you to store and manipulate
tabular data in rows of observations and columns of variables.

 (6) PyTorch :

 PyTorch is an open source machine learning framework for Python
programs
 that facilitates building deep learning projects.

4.6 Used technologies :

(1)​ HTML, css and bootstrap for the front-end part.

(2)​ Flask :

- Flask is a web framework for Python, meaning that it provides
functionality for building web applications, including managing HTTP
requests and rendering templates.

(3)​ Ngrok :

​ - A global distributed service for deploying web applications running in
any
 cloud, private network or local host.

40 | Page

https://pytorch.org/

 5- User Manual

5.1 Overview :

- Our product is a web application where its main purpose is to query different
database domains without prior knowledge of any programming language, This
is done by translating the question of user asked in natural language (English
language)
to SQL-form one, then this query could be used to get answers to the user’s
question.

5.2 Operating the web application :

5.2.1 Start page :

5.2.2 choose the database related to the domain of your question :

41 | Page

5.2.3 Enter your question in Natural language :

42 | Page

5.2.4 Click on “Translate to sql” button to start translation :

5.2.5 : Translation to SQL query is done :

43 | Page

 6- Conclusion and Future Work

6.1 Conclusion

We present a powerful sequential architecture for modeling dependencies
between natural language question and relational DBs in cross-DB
semantic parsing. Our Model serializes the question and DB schema into a
tagged sequence and maximally utilizes pre-trained LMs such as BERT to
capture the linking between text mentions and the DB schema
components. It uses anchor texts to further improve the alignment between
the two crossmodal inputs. Combined with a simple sequential decoder
with schema-consistency driven search space pruning, Our Model attained
state-of-the-art performance on the widely used Spider text-to-SQL
benchmarks.Our analysis shows that our model is effective at generalizing
over natural language variations and memorizing structural patterns. It
significantly outperforms previous work in the easy category of Spider.
However, it struggles in compositional generalization and sometimes
makes unexplainable mistakes. This indicates that when data is ample and
the target logic form is shallow, sequence-to sequence models are good
choices for cross-DB semantic parsing, especially given the implementation
is easier and decoding is efficient. For solving the general text-to-SQL
problem and moving towards production, we plan to further improve
compositional generalization and interpretability of the model. We also plan
to study the application of our model and its extensions to other tasks that
require joint textual and tabular understanding such as weakly supervised
semantic parsing and fact checking.

6.2 Future Work

●​ We plan to enhance our system to be language independent so it can

support multiple languages (E.g : Arabic) where everyone around the
world can benefit from our application.

●​ Also planning to support voice commands where users can easily request
their information.

44 | Page

References

[1]​ Lin, Xi Victoria, Richard Socher, and Caiming Xiong. "Bridging
textual and tabular data for cross-domain text-to-sql semantic
parsing." arXiv preprint arXiv:2012.12627 (2020).

[2]​ salesforce/TabularSemanticParsing: Translating natural language
questions to a structured query language (github.com)

[3]​ Spider: Yale Semantic Parsing and Text-to-SQL Challenge
(yale-lily.github.io)

[4]​ mozilla/moz-sql-parser: DEPRECATED - Let's make a SQL parser so

we can provide a familiar interface to non-sql datastores! (github.com)

[5]​ Bazaga, Adrián, Nupur Gunwant, and Gos Micklem.
"Translating synthetic natural language to database queries with a
polyglot deep learning framework." Scientific Reports 11.1 (2021):
1-11.

[6]​ Yeo, Hangu. "A machine learning based natural language
question and answering system for healthcare data search using
complex queries." 2018 IEEE International Conference on Big
Data (Big Data). IEEE, 2018.

[7]​ Xu, Boyan, et al. "NADAQ: natural language database querying
based on deep learning." IEEE Access 7 (2019): 35012-35017.

[8]​ Ning, Zenan, et al. "Review of question answering technology
based on Text to SQL." 2021 IEEE International Conference on
Power Electronics, Computer Applications (ICPECA). IEEE, 2021.

[9]​ Wang, Ping, Tian Shi, and Chandan K. Reddy. "Text-to-SQL
generation for question answering on electronic medical records."
Proceedings of The Web Conference 2020. 2020.

[10]​ Ahkouk, Karam, and Mustapha Machkour. "Towards an
interface for translating natural language questions to SQL: a
conceptual framework from a systematic review." Int. J. Reason.
based Intell. Syst. 12.4 (2020): 264-275.

45 | Page

https://arxiv.org/abs/2012.12627
https://arxiv.org/abs/2012.12627
https://arxiv.org/abs/2012.12627
https://github.com/salesforce/TabularSemanticParsing
https://github.com/salesforce/TabularSemanticParsing
https://yale-lily.github.io/spider
https://yale-lily.github.io/spider
https://github.com/mozilla/moz-sql-parser
https://github.com/mozilla/moz-sql-parser
https://www.nature.com/articles/s41598-021-98019-3
https://www.nature.com/articles/s41598-021-98019-3
https://www.nature.com/articles/s41598-021-98019-3
https://www.nature.com/articles/s41598-021-98019-3
https://ieeexplore.ieee.org/abstract/document/8622448
https://ieeexplore.ieee.org/abstract/document/8622448
https://ieeexplore.ieee.org/abstract/document/8622448
https://ieeexplore.ieee.org/abstract/document/8622448
https://ieeexplore.ieee.org/abstract/document/8666722
https://ieeexplore.ieee.org/abstract/document/8666722
https://ieeexplore.ieee.org/abstract/document/9362554
https://ieeexplore.ieee.org/abstract/document/9362554
https://ieeexplore.ieee.org/abstract/document/9362554
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://dl.acm.org/doi/abs/10.1145/3366423.3380120
https://www.researchgate.net/profile/Karam-Ahkouk/publication/347240770_Towards_an_interface_for_translating_natural_language_questions_to_SQL_a_conceptual_framework_from_a_systematic_review/links/5fd8c7af299bf1408810c20f/Towards-an-interface-for-translating-natural-language-questions-to-SQL-a-conceptual-framework-from-a-systematic-review.pdf
https://www.researchgate.net/profile/Karam-Ahkouk/publication/347240770_Towards_an_interface_for_translating_natural_language_questions_to_SQL_a_conceptual_framework_from_a_systematic_review/links/5fd8c7af299bf1408810c20f/Towards-an-interface-for-translating-natural-language-questions-to-SQL-a-conceptual-framework-from-a-systematic-review.pdf
https://www.researchgate.net/profile/Karam-Ahkouk/publication/347240770_Towards_an_interface_for_translating_natural_language_questions_to_SQL_a_conceptual_framework_from_a_systematic_review/links/5fd8c7af299bf1408810c20f/Towards-an-interface-for-translating-natural-language-questions-to-SQL-a-conceptual-framework-from-a-systematic-review.pdf
https://www.researchgate.net/profile/Karam-Ahkouk/publication/347240770_Towards_an_interface_for_translating_natural_language_questions_to_SQL_a_conceptual_framework_from_a_systematic_review/links/5fd8c7af299bf1408810c20f/Towards-an-interface-for-translating-natural-language-questions-to-SQL-a-conceptual-framework-from-a-systematic-review.pdf

[11]​ Yeo H. A machine learning based natural language question

and answering system or healthcare data search using complex
queries. In2018 IEEE International Conference on Big Data (Big
Data) 2018 Dec 10 .WikiSQL Dataset | Papers With Code

 [12] Vaswani, Ashish, et al. "Attention is all you need."Advances in
neural
 information processing systems 30 (2017).

 [13] Welcome To Colaboratory - Colaboratory (google.com)

 [14] ngrok - Online in One Line

 [15] Kaliyar, Rohit Kumar. "A multi-layer bidirectional transformer
 encoder for pre-trained word embedding : a survey of bert." 2020
10th
 International Conference on Cloud Computing, Data Science &
 Engineering (Confluence). IEEE, 2020.

 [16] Palasundram, Kulothunkan, et al. "SEQ2SEQ++ A Multitasking-
 Based Seq2seq Model to Generate Meaningful and Relevant
 Answers " IEEE Access 9 (2021): 164949-164975.

 [17] Ma, Zeyu, et al. "Network Traffic Prediction based on Seq2seq
Model."
 2021 16th International Conference on Computer Science
 & Education (ICCSE). IEEE, 2021.

 [18] Saini, Sandeep, and Vineet Sahula."A survey of machine
translation
 techniques and systems for Indian languages."
 2015 IEEE International Conference on Computational
Intelligence
 & Communication Technology. IEEE, 2015.

 [19] Lauzon, Francis Quintal. "An introduction to deep learning."
 2012 11th International Conference on Information Science.

46 | Page

https://paperswithcode.com/dataset/wikisql
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://colab.research.google.com/?utm_source=scs-index
https://ngrok.com/
https://ieeexplore.ieee.org/document/9058044
https://ieeexplore.ieee.org/document/9058044
https://ieeexplore.ieee.org/document/9058044
https://ieeexplore.ieee.org/document/9058044
https://ieeexplore.ieee.org/document/9058044
https://ieeexplore.ieee.org/abstract/document/9638628
https://ieeexplore.ieee.org/abstract/document/9638628
https://ieeexplore.ieee.org/abstract/document/9638628
https://ieeexplore.ieee.org/abstract/document/9569477
https://ieeexplore.ieee.org/abstract/document/9569477
https://ieeexplore.ieee.org/abstract/document/9569477
https://ieeexplore.ieee.org/abstract/document/9569477
https://ieeexplore.ieee.org/document/7078789
https://ieeexplore.ieee.org/document/7078789
https://ieeexplore.ieee.org/document/7078789
https://ieeexplore.ieee.org/document/7078789
https://ieeexplore.ieee.org/document/7078789
https://ieeexplore.ieee.org/document/7078789
https://ieeexplore.ieee.org/abstract/document/6310529
https://ieeexplore.ieee.org/abstract/document/6310529

	Table Of Content
	
	Acknowledgement
	Abstract
	List of Figures
	
	List of Abbreviations
	Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Objective
	1.4 Time Plan
	1.5 Document Organization

	
	
	Background
	2.1 Neural Networks
	2.1.1 Neural Network Elements
	2.1.2 Problems Commonly Solved With Neural Networks
	2.1.3 Main characteristics of Neural Network

	2.2 Natural Language Processing “NLP”
	2.2.1 How does NLP work?
	2.2.2 Techniques and methods of NLP
	2.2.3 Applications of NLP

	2.3 Transformer
	2.3.1 Model Architecture
	2.3.2 Encoder and Decoder Stacks
	2.3.3 Attention
	2.3.3.1 Scaled Dot-Product Attention
	2.3.3.2 Multi-Head Attention
	2.3.3.3 Applications of Attention in our Model

	2.4 Natural language Interface
	2.5 Survey
	2.5 Description of existing similar systems
	2.5.1 Natural Language User Interface for SAP
	2.5.2 CHATA

	1-​Analysis and Design
	3.1 System Overview
	3.1.1 System Architecture
	3.1.2 System Users

	3.2 System Analysis & Design
	3.2.1 Use Case Diagram
	3.2.2 Class Diagram
	3.2.3 Sequence Diagram

	
	 ​Implementation and Testing
	
	4.1 The flow of the model:
	4.2 Dataset :
	4.2 Model Architecture:
	4.3 Training:
	4.4 Results :
	4.5 Used environments :
	4.6 Used technologies :

	 5- User Manual
	5.1 Overview :
	5.2 Operating the web application :
	5.2.1 Start page :

	5.2.2 choose the database related to the domain of your question :
	5.2.3 Enter your question in Natural language :
	5.2.4 Click on “Translate to sql” button to start translation :
	5.2.5 : Translation to SQL query is done :

	
	
	 6- Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

