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Abstract 

 

Nowadays, data represents an essential demand in a lot 
of domains including education, business and healthcare. 
Recently, these data are stored in databases and controlled, 
manipulated and updated by DBMS.  

 
Therefore, databases represent a great source of 

information. The number of databases as well as their size and 
complexity are increasing. To extract information from these 
databases, the user needs to write queries using database 
query languages, such as structured query language (SQL). 
This creates a barrier to use especially for non-experts, who 
must come to grips with the nature of the data, the way it has 
been represented in the database, and the specific query 
languages or user interfaces by which data is accessed. These 
difficulties worsen in research settings, where it is common to 
work with many different databases.  

 
From here our idea is born, what are the easiest ways to 

extract your data from databases? Of course, one of them is to 
ask for it with a simple question represented in your natural 
language. Our mission is to transform this simple question into 
a database query through an AI model and run this query on 
the database then retrieve and display the requested 
information to the user.  

 
For example, in health care. Medical staff can retrieve 

important info about their patients, compare different cases, 
and get all the important information instantly and easily. 
Scientists in pharmaceutical laboratories can manipulate and 
retrieve important data with just a few words represented in a 
simple natural language query. Thus, there are many scenarios 
that can be easily resolved without any difficulties.  
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Introduction 

 
1.1 Motivation 
​ Most of the media networks and organizations require a database to store 
the information and to retrieve the information from the database where 
structured query language (SQL) is utilized. Our project resolves problems 
faced by almost all domains in this field as most domains need to store their 
data and access this data at any time.  

 
The current solution to access your data from databases is to hire a 

software engineer to make a program for you with special filters that allow you 
to manipulate your data but this approach is not efficient enough as you 
probably want information with complex constraints which are not covered with 
only filters. Also our approach is more time efficient as you should only ask for 
the info you want with your simple natural language without the headache of 
filters. 
    
1.2 Problem Definition  

Nowadays, data represents an essential demand in a lot of domains. 
Recently, these data are stored in databases. The number of databases as well as 
their size and complexity increases, which makes the process of manipulating 
the data from them a more challenging task. So, we aim to translate natural 
language questions asked by non-experts to database queries, and then retrieve 
the answer from the database records. 
 
1.3 Objective 

Our aim is to develop a web application that: 
●​ Enables non-professional users to easily retrieve the data they need 

from the databases. 
 
●​ Accelerates the process of writing complex queries for professional 

users. 
 
●​ Supports multiple domains e.g Education, HealthCare, Business 

and more.  
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1.4 Time Plan 

 

 
1.5 Document Organization 

 
Chapter 2: Background 
 
This chapter contains a detailed description of the field of the project, all 
the scientific background related to the project, a survey of the work 
done in the field and description of existing similar systems. 
 
Chapter 3: Analysis and Design 
This chapter describes the system architecture and how it communicates 
with internal and external modules. 
 
Chapter 4: Implementation 
This chapter includes a detailed description of all the functions in the 
system, A detailed description of all the techniques and algorithms 
implemented, and Description of any new technologies used in 
implementation. 
 
Chapter 5: User Manual 
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This chapter describes in detail how to operate the project along with 
screen shots of the project representing all steps. 
 
Chapter 6: Conclusions and Future Work 
 
This chapter contains a complete summary of the project and how we 
would be able to improve the performance and what are new features 
that can be added in the future. 
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Background 

 

2.1 Neural Networks 

Neural networks are a set of algorithms, modeled loosely after the human brain, 
that is designed to recognize patterns. They interpret sensory data through a 
kind of machine perception, labeling, or clustering raw input. The patterns they 
recognize are numerical, contained in vectors, into which all real-world data, be 
it images, sound, text, or time series, must be translated. 
 
Neural networks help us cluster and classify. You can think of them as a 
clustering and classification layer on top of the data you store and manage. They 
help to group unlabeled data according to similarities among the example 
inputs, and they classify data when they have a labeled dataset to train on. 
 
The researchers considered the neural network as a black box strategy as shown 

in Figure 2.1, which is trainable.

 
 

The key aspect of black-box approaches is developing relationships between 
input and output. The researchers tried to ‘train’ the neural black-box to ‘learn’ 
the correct response output for each of the training samples[X]. 

2.1.1 Neural Network Elements 
Deep learning is the name we use for “stacked neural networks”; that is, 
networks composed of several layers. 
The layers are made of nodes. A node is just a place where computation 
happens, loosely patterned on a neuron in the human brain, which fires when it 
encounters sufficient stimuli. A node combines input from the data with a set of 
coefficients, or weights, that either amplify or dampen that input, thereby 
assigning significance to inputs with regard to the task the algorithm is trying to 
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learn; e.g. which input is most helpful is classifying data without error? These 
input-weight products are summed. The sum is passed through a node’s 
so-called activation function, to determine whether and to what extent that 
signal should progress further. Say, an act of classification. If the signal passes 
through, the neuron has been “activated.” 

As shown in Figure 2.2 this is what one node might look like.

 
 
 

A node layer is a row of those neuron-like switches that turn on or off as the 
input is fed through the net. Each layer’s output is simultaneously the 
subsequent layer’s input, starting from an initial input layer receiving your data 
as shown in Figure 2.3. 
 

 
Pairing the model’s adjustable weights with input features is how we assign 
significance to those features with regard to how the neural network classifies 
and clusters input. 

11 | Page 
 



 

2.1.2 Problems Commonly Solved With Neural Networks 
There are many different problems that can be solved with a neural network. 
However, neural networks are commonly used to address particular types of 
problems. The following types of problem are frequently solved with neural 
networks:  

●​ Regression.   
●​ Classification.   
●​ Pattern recognition.   
●​ Prediction. 
●​ Optimization.  
●​ Clustering.  

2.1.3 Main characteristics of Neural Network  
1.​ Activation function: 

A function that produces an output based on the input values received by 
node  like: 

1.​ Sigmoid. 
2.​ ReLU. 
3.​ Hyperbolic Tangent. 

2.​ Architecture or structure: 
The connectivity of neurons (nodes) determines the neural network 
structure (architecture). 

3.​ The learning algorithm, or training method: 
Method for determining weights of the connections. The manner in which 
the neurons of neural networks are structured is intimately linked with the 
learning algorithm used to train the network. 

2.2 Natural Language Processing “NLP” 

Natural language processing (NLP) is the ability of a computer program to 
understand human language as it is spoken and written -- referred to as 
natural language. It is a component of artificial intelligence (AI). 

NLP has existed for more than 50 years and has roots in the field of 
linguistics. It has a variety of real-world applications in a number of fields, 
including medical research, search engines and business intelligence. 
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2.2.1 How does NLP work? 

NLP enables computers to understand natural language as humans do. 
Whether the language is spoken or written, natural language processing 
uses artificial intelligence to take real-world input, process it, and make 
sense of it in a way a computer can understand. Just as humans have 
different sensors -- such as ears to hear and eyes to see -- computers have 
programs to read and microphones to collect audio. And just as humans 
have a brain to process that input, computers have a program to process 
their respective inputs. At some point in processing, the input is converted 
to code that the computer can understand. 

There are two main phases to natural language processing: data 
preprocessing and algorithm development. 

Data preprocessing involves preparing and "cleaning" text data for 
machines to be able to analyze it. preprocessing puts data in workable form 
and highlights features in the text that an algorithm can work with. There 
are several ways this can be done, including: 

●​ Tokenization. This is when text is broken down into smaller units 
to work with. 

●​ Stop word removal. This is when common words are removed 
from text so unique words that offer the most information about 
the text remain. 

●​ Lemmatization and stemming. This is when words are reduced 
to their root forms to process. 

●​ Part-of-speech tagging. This is when words are marked based 
on the part-of-speech they are -- such as nouns, verbs and 
adjectives. 

Once the data has been preprocessed, an algorithm is developed to 
process it. There are many different natural language processing 
algorithms, but two main types are commonly used: 

●​ Rules-based system. This system uses carefully designed 
linguistic rules. This approach was used early on in the 
development of natural language processing, and is still used. 
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●​ Machine learning-based system. Machine learning algorithms 
use statistical methods. They learn to perform tasks based on 
training data they are fed, and adjust their methods as more data 
is processed. Using a combination of machine learning, deep 
learning and neural networks, natural language processing 
algorithms hone their own rules through repeated processing and 
learning. 

2.2.2 Techniques and methods of NLP 

Syntax and semantic analysis are two main techniques used with natural 
language processing. 

Syntax is the arrangement of words in a sentence to make grammatical 
sense. NLP uses syntax to assess meaning from a language based on 
grammatical rules. Syntax techniques include: 

●​ Parsing. This is the grammatical analysis of a sentence. 
Example: A natural language processing algorithm is fed the 
sentence, "The dog barked." Parsing involves breaking this 
sentence into parts of speech -- i.e., dog = noun, barked = verb. 
This is useful for more complex downstream processing tasks. 

●​ Word segmentation. This is the act of taking a string of text and 
deriving word forms from it. Example: A person scans a 
handwritten document into a computer. The algorithm would be 
able to analyze the page and recognize that the words are divided 
by white spaces. 

●​ Sentence breaking. This places sentence boundaries in large 
texts. Example: A natural language processing algorithm is fed the 
text, "The dog barked. I woke up." The algorithm can recognize 
the period that splits up the sentences using sentence breaking. 

●​ Morphological segmentation. This divides words into smaller 
parts called morphemes. Example: The word untestably would be 
broken into [[un[[test]able]]ly], where the algorithm recognizes 
"un," "test," "able" and "ly" as morphemes. This is especially 
useful in machine translation and speech recognition. 

●​ Stemming. This divides words with inflection in them to root 
forms. Example: In the sentence, "The dog barked," the algorithm 
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would be able to recognize the root of the word "barked" is "bark." 
This would be useful if a user was analyzing a text for all 
instances of the word bark, as well as all of its conjugations. The 
algorithm can see that they are essentially the same word even 
though the letters are different. 

Semantics involves the use of and meaning behind words. Natural 
language processing applies algorithms to understand the meaning and 
structure of sentences. Semantics techniques include: 

●​ Word sense disambiguation. This derives the meaning of a 
word based on context. Example: Consider the sentence, "The pig 
is in the pen." The word pen has different meanings. An algorithm 
using this method can understand that the use of the word pen 
here refers to a fenced-in area, not a writing implement. 

●​ Named entity recognition. This determines words that can be 
categorized into groups. Example: An algorithm using this method 
could analyze a news article and identify all mentions of a certain 
company or product. Using the semantics of the text, it would be 
able to differentiate between entities that are visually the same. 
For instance, in the sentence, "Daniel McDonald's son went to 
McDonald's and ordered a Happy Meal," the algorithm could 
recognize the two instances of "McDonald's" as two separate 
entities -- one a restaurant and one a person. 

●​ Natural language generation. This uses a database to 
determine semantics behind words and generate new text. 
Example: An algorithm could automatically write a summary of 
findings from a business intelligence platform, mapping certain 
words and phrases to features of the data in the BI platform. 
Another example would be automatically generating news articles 
or tweets based on a certain body of text used for training. 

Current approaches to natural language processing are based on deep 
learning, a type of AI that examines and uses patterns in data to improve a 
program's understanding. Deep learning models require massive amounts 
of labeled data for the natural language processing algorithm to train on 
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and identify relevant correlations, and assembling this kind of big data set 
is one of the main hurdles to natural language processing. 

Earlier approaches to natural language processing involved a more 
rules-based approach, where simpler machine learning algorithms were 
told what words and phrases to look for in text and given specific 
responses when those phrases appeared. But deep learning is a more 
flexible, intuitive approach in which algorithms learn to identify speakers' 
intent from many examples -- almost like how a child would learn human 
language. 

Three tools used commonly for natural language processing include 
Natural Language Toolkit (NLTK), Gensim and Intel natural language 
processing Architect. NLTK is an open source Python module with data 
sets and tutorials. Gensim is a Python library for topic modeling and 
document indexing. Intel NLP Architect is another Python library for deep 
learning topologies and techniques. 

2.2.3 Applications of NLP 
Some of the main functions that natural language processing algorithms 
perform are: 

●​ Text classification. This involves assigning tags to texts to put 
them in categories. This can be useful for sentiment analysis, 
which helps the natural language processing algorithm determine 
the sentiment, or emotion behind a text. For example, when brand 
A is mentioned in X number of texts, the algorithm can determine 
how many of those mentions were positive and how many were 
negative. It can also be useful for intent detection, which helps 
predict what the speaker or writer may do based on the text they 
are producing. 

●​ Text extraction. This involves automatically summarizing text and 
finding important pieces of data. One example of this is keyword 
extraction, which pulls the most important words from the text, 
which can be useful for search engine optimization. Doing this 
with natural language processing requires some programming -- it 
is not completely automated. However, there are plenty of simple 
keyword extraction tools that automate most of the process -- the 
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user just has to set parameters within the program. For example, 
a tool might pull out the most frequently used words in the text. 
Another example is named entity recognition, which extracts the 
names of people, places and other entities from text. 

●​ Machine translation. This is the process by which a computer 
translates text from one language, such as English, to another 
language, such as French, without human intervention. 

●​ Natural language generation. This involves using natural 
language processing algorithms to analyze unstructured data and 
automatically produce content based on that data. One example 
of this is in language models such as GPT3, which are able to 
analyze an unstructured text and then generate believable articles 
based on the text. 

The functions listed above are used in a variety of real-world applications, 
including: 

●​ customer feedback analysis -- where AI analyzes social media 
reviews; 

●​ customer service automation -- where voice assistants on the 
other end of a customer service phone line are able to use speech 
recognition to understand what the customer is saying, so that it 
can direct the call correctly; 

●​ automatic translation -- using tools such as Google Translate, 
Bing Translator and Translate Me; 

●​ academic research and analysis -- where AI is able to analyze 
huge amounts of academic material and research papers not just 
based on the metadata of the text, but the text itself; 

●​ analysis and categorization of medical records -- where AI uses 
insights to predict, and ideally prevent, disease; 

●​ word processors used for plagiarism and proofreading -- using 
tools such as Grammarly and Microsoft Word; 

●​ stock forecasting and insights into financial trading -- using AI to 
analyze market history and 10-K documents, which contain 
comprehensive summaries about a company's financial 
performance; 

●​ talent recruitment in human resources; and 
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●​ automation of routine litigation tasks -- one example is the 
artificially intelligent attorney. 

Research being done on natural language processing revolves around 
search, especially Enterprise search. This involves having users query data 
sets in the form of a question that they might pose to another person. The 
machine interprets the important elements of the human language 
sentence, which correspond to specific features in a data set, and returns 
an answer. 

NLP can be used to interpret free, unstructured text and make it 
analyzable. There is a tremendous amount of information stored in free text 
files, such as patients' medical records. Before deep learning-based NLP 
models, this information was inaccessible to computer-assisted analysis 
and could not be analyzed in any systematic way. With NLP analysts can 
sift through massive amounts of free text to find relevant information. 

Sentiment analysis is another primary use case for NLP. Using sentiment 
analysis, data scientists can assess comments on social media to see how 
their business's brand is performing, or review notes from customer service 
teams to identify areas where people want the business to perform better. 

2.3 Transformer  

The goal of reducing sequential computation also forms the 
foundation of the Extended Neural GPU, ByteNet and ConvS2S , all of 
which use convolutional neural networks as basic building block, computing 
hidden representations in parallel for all input and output positions. In these 
models, the number of operations required to relate signals from two 
arbitrary input or output positions grows in the distance between positions, 
linearly for ConvS2S and logarithmically for ByteNet. This makes it more 
difficult to learn dependencies between distant positions. In the 
Transformer this is reduced to a constant number of operations, albeit at 
the cost of reduced effective resolution due to averaging attention-weighted 
positions, an effect we counteract with Multi-Head Attention, Self-attention, 
sometimes called intra-attention is an attention mechanism relating 
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different positions of a single sequence in order to compute a 
representation of the sequence. Self-attention has been used successfully 
in a variety of tasks including reading comprehension, abstractive 
summarization, textual entailment and learning task-independent sentence 
representations. End-to-end memory networks are based on a recurrent 
attention mechanism instead of sequence aligned recurrence and have 
been shown to perform well on simple-language question answering and 
language modeling tasks. To the best of our knowledge, however, the 
Transformer is the first transduction model relying entirely on self-attention 
to compute representations of its input and output without using sequence 
aligned RNNs or convolution. 

2.3.1 Model Architecture 

Most competitive neural sequence transduction models have an 
encoder-decoder structure. Here, the encoder maps an input sequence of 
symbol representations (x1, ..., xn) to a sequence of continuous 
representations z = (z1, ..., zn). Given z, the decoder then generates an 
output sequence (y1, ..., ym) of symbols one element at a time. At each 
step the model is auto-regressive, consuming the previously generated 
symbols as additional input when generating the next. The Transformer 
follows this overall architecture using stacked self-attention and point-wise, 
fully connected layers for both the encoder and decoder, shown in the left 
and right halves of Figure 1, respectively. 
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2.3.2 Encoder and Decoder Stacks 

Encoder: The encoder is composed of a stack of N = 6 identical layers. 
Each layer has two sub-layers. The first is a multi-head self-attention 
mechanism, and the second is a simple, positionwise fully connected 
feed-forward network. We employ a residual connection [11] around each 
of the two sub-layers, followed by layer normalization [1]. That is, the output 
of each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the 
function implemented by the sub-layer itself. To facilitate these residual 
connections, all sub-layers in the model, as well as the embedding layers, 
produce outputs of dimension dmodel = 512. 

Decoder: The decoder is also composed of a stack of N = 6 identical 
layers. In addition to the two sub-layers in each encoder layer, the decoder 
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inserts a third sub-layer, which performs multi-head attention over the 
output of the encoder stack. Similar to the encoder, we employ residual 
connections around each of the sub-layers, followed by layer normalization. 
We also modify the self-attention sub-layer in the decoder stack to prevent 
positions from attending to subsequent positions. This masking, combined 
with fact that the output embeddings are offset by one position, ensures 
that the predictions for position i can depend only on the known outputs at 
positions less than i.  

2.3.3 Attention 

An attention function can be described as mapping a query and a set of 
key-value pairs to an output, where the query, keys, values, and output are 
all vectors. The output is computed as a weighted sum of the values, where 
the weight assigned to each value is computed by a compatibility function 
of the query with the corresponding key. 

 

2.3.3.1 Scaled Dot-Product Attention  

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). 
The input consists of queries and keys of dimension dk, and values of 
dimension dv. We compute the dot products of the query with all keys, 
divide each by √ dk, and apply a softmax function to obtain the weights on 
the values. In practice, we compute the attention function on a set of 
queries simultaneously, packed together into a matrix Q. The keys and 
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values are also packed together into matrices K and V . We compute the 
matrix of outputs as: 

​ ​  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,  𝐾,  𝑉 ) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝑄𝐾𝑇
𝑑𝑘

 )𝑉 (1)

The two most commonly used attention functions are additive attention [2], 
and dot-product (multiplicative) attention. Dot-product attention is identical 
to our algorithm, except for the scaling factor of  . Additive attention 1

𝑑𝑘

computes the compatibility function using a feed-forward network with a 
single hidden layer. While the two are similar in theoretical complexity, 
dot-product attention is much faster and more space-efficient in practice, 
since it can be implemented using highly optimized matrix multiplication 
code. While for small values of dk the two mechanisms perform similarly, 
additive attention outperforms dot product attention without scaling for 
larger values of dk [3]. We suspect that for large values of dk, the dot 
products grow large in magnitude, pushing the softmax function into 
regions where it has extremely small gradients 4 . To counteract this effect, 
we scale the dot products by  .  1

𝑑𝑘

2.3.3.2 Multi-Head Attention  

Instead of performing a single attention function with dmodel-dimensional 
keys, values and queries, we found it beneficial to linearly project the 
queries, keys and values h times with different, learned linear projections to 
dk, dk and dv dimensions, respectively. On each of these projected 
versions of queries, keys and values we then perform the attention function 
in parallel, yielding dv-dimensional output values. These are concatenated 
and once again projected, resulting in the final values, as depicted in Figure 
2. Multi-head attention allows the model to jointly attend to information from 
different representation subspaces at different positions. With a single 
attention head, averaging inhibits this. 
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2.3.3.3 Applications of Attention in our Model 

The Transformer uses multi-head attention in three different ways: 
 

●​  In "encoder-decoder attention" layers, the queries come from the 
previous decoder layer, and the memory keys and values come 
from the output of the encoder. This allows every position in the 
decoder to attend over all positions in the input sequence. This 
mimics the typical encoder-decoder attention mechanisms in 
sequence-to-sequence models such as [38, 2, 9].  

●​  The encoder contains self-attention layers. In a self-attention layer 
all of the keys, values and queries come from the same place, in 
this case, the output of the previous layer in the encoder. Each 
position in the encoder can attend to all positions in the previous 
layer of the encoder. 

●​  Similarly, self-attention layers in the decoder allow each position in 
the decoder to attend to all positions in the decoder up to and 
including that position. We need to prevent leftward information 
flow in the decoder to preserve the auto-regressive property. We 
implement this inside of scaled dot-product attention by masking 
out (setting to −∞) all values in the input of the softmax which 
correspond to illegal connections. See Figure 2. 

2.4 Natural language Interface 

Natural language interfaces aim at integrating natural language processing and 
human-computer interactions. It seeks to provide means for humans to interact 
with computers through the use of natural language. We explore a specific aspect 
of the research which applies to relational databases which can be essentially 
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summarized as translation of natural language questions asked by the user to 
corresponding SQL queries. Neural machine translation (NMT) is an approach to 
machine translation that uses an artificial neural network to predict the likelihood 
of a sequence of words, typically modeling entire sentences in a single integrated 
model. Deep learning applications appeared first in speech recognition in the 
1990s. The research on using neural networks for machine translation started 
gaining momentum in 2014, when Sutskever et al. (2014) published a paper on 
sequence to sequence learning with neural networks. Other work using 
encoder-decoder networks include Cho et al. (2014), Bahdanau et al. (2014), Wu et 
al. (2016). Variants of seq2seq were used by Vinyals et al. (2015) and Dong and 
Lapata (2016) to predict next characters in the sequence. 

2.5 Survey 

Natural language querying (NLQ) is a known problem in information 
retrieval. It allows questions to be formed without knowledge of 
database-specific logical languages such as SQL or Cypher. In principle this 
can ease data access for non-expert users. To this end, several approaches 
to build NLQ systems have been proposed. Recent surveys, segmented 
them into five approaches: keyword-based, pattern-based, syntax-based, 
grammar-based, and, more recently, connectionist-based. 

In keyword-based systems, the approach has two stages, a first 
stage where keywords present in an input query are extracted, and a 
second stage where keywords are matched against metadata available in 
the underlying database. For instance, Blunschi et al. described Search over 
DAta Warehouse (SODA), which generates SQL queries from natural 
language (NL) queries over a business-related database. The system 
processes an input NL query through a series of steps. First, the keywords 
in the query are matched against all the possible entries in the database 
metadata. Second, by means of a heuristic, each result is scored and the 
process continues with the top N results. A third step identifies the tables 
used by each result and their relationships before being passed to the 
fourth step, which is responsible for finding, from the original query, the 
needed filters over the tables and columns. Last, the gathered information 
from the previous steps is combined to generate a SQL query that takes 
into account possible join patterns by looking at foreign keys and 
inheritance patterns in the schema. A drawback of this approach is it 
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requires hand-crafting the patterns that are used to translate from a 
keyword-based input to a SQL query for the specific modelling of the target 
database, which becomes a bottleneck when trying to use it across a 
variety of databases. 

In pattern-based systems, the capabilities of keyword-based 
approaches are extended by including NL patterns for processing queries, 
alleviating issues such as aggregation operations. For instance, Shah et al 
described NLKBIDB, a NL to SQL query interface that uses NL patterns to 
fix syntactically incorrect queries, and a keyword-based approach to obtain 
the corresponding facts from the schema before carrying out the 
conversion. The system uses lexical analysis to tokenize the NL query and 
syntax analysis to parse the lexicons. If the input query is syntactically 
valid, then the lexicons are analyzed by a semantic analyzer using a domain 
ontology before generating a SQL query. Invalid queries are converted into 
SQL by applying a set of rules. An issue that arises from this approach is 
the need for a knowledge expert to refine the rules used to convert 
syntactically invalid queries into SQL sentences, as well as the need to use 
hand-crafted natural language rules for generating the SQL queries for 
syntactically valid queries. This makes it difficult to adapt for new use 
cases. In ATHENA++ is presented to cope with nested SQL queries. In this 
approach linguistic patterns from NL queries are combined with domain 
reasoning using ontologies to enable nested query detection and 
generation. In addition, a new benchmark dataset (FIBEN) is introduced, 
containing 237 distinct complex SQL queries on a database with 152 
tables. This approach tries to translate a NL query to OQL using the domain 
ontology, and then the OQL query is translated to SQL by using the 
mappings between the ontology and the database. It appears that one 
potential limitation of such an approach is the requirement to have both a 
domain ontology and a defined mapping of that ontology to the database. 

Syntax-based and grammar-based systems7 share similar 
methodologies. In both approaches, the NL query is parsed using linguistic 
rules to produce a syntax tree. Then, for syntax-based systems, the 
concepts in the tree are mapped to a query in the target query language 
(e.g. SQL). This has a variety of issues. First, a given query may have 
different parse trees, which after mapping may produce different queries. 
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Another issue is deciding which concepts from the query to map and which 
ones not. To alleviate this, grammar-based systems exploit domain 
knowledge captured by the grammar with the aim of reducing ambiguity 
when mapping queries. However, this method requires knowledge of the 
domain to build an effective parsing grammar, making it hard to adapt to 
new domains. 

In contrast to approaches treating items in a language as symbols 
(symbolic approaches), relying on theoretical foundations in linguistics, 
connectionist approaches, also known as computational intelligence-based 
approaches, try to learn statistical patterns in the data and/or distributed 
representations of it, allowing for a richer linguistic variability. These 
methods can be divided into traditional machine learning and more recent 
deep learning techniques. The latter have become widely used in natural 
language processing (NLP) tasks, achieving state-of-the-art results. The 
main difference between these methods and traditional machine learning is 
that their objective is to learn a distributed representation (in the form of 
real-valued vectors) of the data, without the need for the feature 
engineering stage that earlier approaches required. 

2.5 Description of existing similar systems 

2.5.1 Natural Language User Interface for SAP 
NLSQL converts Natural Language request to SQL queries and get's back 

with text response and SQL script via API web service. It helps SAP administrators 
to provide SAP users with Natural Language Interface for SAP. Natural Language 
User Interface for SQL API provides the possibility for End Users to request 
information from SAP database using the only Natural Language. for more info you 
can visit : store.sap.com  
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2.5.2 CHATA 
​ Chata embeds an intelligent, conversational interface that allows users 
to access and analyze data simply by typing requests in everyday language.  
for more info you can visit : chata.ai  
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1-​ Analysis and Design 

 

3.1 System Overview 

3.1.1 System Architecture

 

 
1.​ Selecting Dataset: We selected Spider dataset as it is a large-scale 

complex and cross-domain text-to-SQL dataset annotated by Yale 
University students. 

 
2.​ Preprocessing Dataset: The process of cleaning and preparing the raw 

data to enable feature extraction. 
 

3.​ Feature Extraction: Preparing the features of the data for the ML model 
 

4.​ Splitting dataset: Dividing the data into two (or more) subsets. The first 
part is used to train the model and the other is used to evaluate the model. 
 

5.​ Model building & training: Creating a model, training and evaluating it, 
and repeating the previous steps till we build a model that achieve good 
accuracy 
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6.​ Preprocessing user Input: Preparing the user input for the ML model so 

that the model is able to easily interpret the input data features. 
 

7.​ Predicting query: Running the trained model on the input data and 
returning the output database query. 

A.​Functional Requirements  
●​ The system should take an English input text from the user. 
●​ The system should be able to generate SQL query from the input. 
●​ The system should be able to notify the user with the progress 

while generating the SQL query. 
●​ The user should be able to choose the desired database. 

B.​non-Functional Requirements 
●​ The system should be efficient in using computer resources. 
●​ Users with no training shall be able to use the system. 
●​ The system shall be self‐explanatory and intuitive. 
●​ The user interface should be efficient and easy to use. 
●​ The translated SQL query should be close enough to the meaning 

text input said by the user. 
 

3.1.2 System Users 

 
A.​ Intended Users: 

1.​ Database Engineers: 

●​ Their main job is to write SQL queries to retrieve data from 

the database. 

●​ The system will make their jobs easier by using an 

automated tool to generate the SQL query for them. 

2.​ Regular Users: 

●​ The system will help them to get the SQL query to execute it 

on the database. 

B.​ User Characteristics 
●​ Knowledge of computers (any person who can use computers). 
●​ Understanding how to run the SQL query on the database 

management tool. 
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3.2 System Analysis & Design 

3.2.1 Use Case Diagram 

 
Figure 3.2.: Use Case Diagram 

 

Use Case Choose Database 

Description The user should be able to choose a 
database from the list of databases 

Precondition valid schemas of databases 

Post Condition The chosen database  

Flow of Events Primary Flow 
●​ The user choose database from 

checkbox 
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Use Case Input Question  

Description The user should be able to type the 
requested question 

Precondition chosen database 

Post Condition The question and the database are 
sent to the server 

Flow of Events Primary Flow 
●​ The user enters the desired 

question 
●​ The user clicks on Translate to 

SQL button 
Error Flow 

●​ The user types in a language 
other than English 

●​ The user types nothing 
  
 

Use Case Get generated SQL query  

Description The user should be able to get the 
generated query 

Precondition The Model finishes its processing with 
input 

Post Condition - 

Flow of Events Primary Flow 
●​ The user gets the generated 

SQL query 
Error Flow 

●​ If The user typed in a language 
other than English or he typed 
nothing he will get an 
UnTranslatable Error 
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3.2.2 Class Diagram 

3.2.3 Sequence Diagram 

 
Figure 3.3.: Sequence Diagram 
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      ​ Implementation and Testing 

In this chapter, we will explain the application’s different modules and the role 
of each of them in the project. 
 
Our modules are developed using Python, which is an interpreted, object- 
oriented, high-level programming language with dynamic semantics. 
 
Specially used for web development as a back-end tool and machine learning 
applications. 
 
The system enables the user to enter a question in English language and to                               
choose the database of the domain that the question belongs to, then our model 
translates this statement to a SQL statement which could be used by the end 
user to retrieve any data from the databases related to his field. 
 

4.1 The flow of the model: 

 
-​ Question Input: The user inputs a question in Natural language and 

chooses a database name which is the most relatable to his question.  
 

-​ Translation: the generated sequence (hybrid of the schema and the input) 
is passed to our translation model which outputs raw program sequences 
with probability scores using a beam search algorithm. 

 
​ To create the translation model, we used Pytorch machine learning                             
            framework which is a free and open-source software framework 
            based on a library called Torch. 
 
           It is used for applications related to Artificial intelligence such as  
           Computer vision and Natural language processing. 
 
 

-​ Post Processing : the raw program sequences are passed through a SQL 
checker, which verifies its syntactical correctness where sequences that 
failed to pass the checker are discarded from the output. 
 

4.2 Dataset : 

 
-​ Spider dataset :  
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Spider is a large-scale complex and cross-domain semantic 
parsing and text-to-SQL dataset annotated by 11 Yale students. 
The goal of the Spider challenge is to develop natural language 
interfaces to cross-domain databases. It consists of 10,181 
questions and 5,693 unique complex SQL queries on 200 
databases with multiple tables covering 138 different domains. 

 
         The preprocessing also included data cleaning and completing   
         missing meta-data.       
4.2 Model Architecture: 

Main model network consists of the following components :  
 
[1] Question-Schema encoding :  
 
      As shown in the following figure, we represent each table with its table  
      name followed by its fields, before each table name we write symbol [T] to  
      identify table names in the statement and symbol [C] to identify field names. 
      
      In case of a question that requires multiple tables (join queries), they are  
      concatenated to form a serialization of the schema. The start and the end of  
      tables and fields names are surrounded by the symbol [SEP] and the  
      question is preceded by the symbol [CLS] to form the hybrid question -  
      schema sequence. 

 
     Finally, The hybrid Sequence X (Shown in the previous figure) is passed to   
     be encoded through BERT, Followed by bi-directional LSTM. 
 
[2] Bridging :  
 
Modeling only the table/field names and their relations is not always enough to 
capture the semantics of the schema and its dependencies with the question. 
 
The solution to this problem is the Fuzzy string matching algorithm. 
 
We perform a fuzzy string match between the question and the picklist of each 
field in the database. The matched field values are inserted into the 
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question-schema representation X, succeeding the corresponding field names 
and separated by the special token [V]. If multiple values were matched for one 
field, we concatenate all of them in matching order. If a question is matched 
with values in multiple fields. We add all matches and let the model (BERT) 
learn to resolve ambiguity. 
 
[3] Decoder : 
 
An LSTM with multihead attention is used as a decoder, where the decoder is 
initiated with the final state of the encoder. 
 
At each step, the decoder performs one of the following actions :  
 

-​ Generating a token from the vocabulary. 
 

-​ Copying a token from the question. 
 

-​ Copying a schema component from our current schema. 
     
 
Mathematically, at each step t, given the decoder state st and the encoder 
representation [hQ; hS ] ∈ R (|Q|+|S|)×n , we compute the multi-head attention 
through the following equations :  
 

 
 
 
where h ∈ [1, . . . , H] is the head number and H is the total number of heads. 
 
The probability of generating from V and the output distribution is defined as 
the following equation :  
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Figure 4.1.: Model Architecture 

4.3 Training: 

 
 
- The number of examples used for the training was 8695 examples trained for 
25  
   epochs and mini batch size of 32. 
 
 
- We train our model used the BERT large model and LSTM with 8-head 
attention  
   between the encoder and the decoder. 
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- We use cross-entropy as a loss function along with Adam-SGD with default   
   parameters as an optimizer. 
 
 
- LSTM hidden layer dimension is set to 400. 
 
 
- Learning rate is set to 0.0005. 
 
 
- We fine tune BERT model with a fine-tuning rate linearly increasing from 
0.00003  
   to 0.00006. and shrinks at the end of the training process to 0. 
 
4.4 Results : 

 
- To validate the translation model, we use the Exact Match (EM) metrics 
which is  
   widely used in Question answering and machine translation tasks. 
 
- The Exact Match (EM) metrics evaluates the structural correctness of the 
predicted    
   SQL by checking the orderless set match of each SQL clause in the predicted 
query. 
 
- The best accuracies are shown in the following figure :  
 
    - Top-1 exact match : 0.695. 
     
    - Top-2 exact math : 0.741. 
 
    - Top-3 exact match : 0.765 
 
    - Top-5 exact match : 0.784 
 
    - Top-10 exact match : 0.800 
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Figure 4.2. Results 

 

4.5 Used environments : 

 
- Our project is built as a web application using the following environments :  
 
  

(1)​ Google colaboratory :  
 
Colaboratory is a Google research project created to help disseminate 
machine learning education and research. It's a Jupyter notebook 
environment that requires no setup to use and runs entirely in the cloud. 
We used google colab notebooks for our trails and models training. It 
provides an environment for developing and training models with the 
following specifications: 
   
- 3.9 GB RAM 
 
- 78.5 GB HARD DISK 

 
(2)​ PyCharm :  

 
 PyCharm is an IDE used in computer programming, specifically for the    
 Python language. It is developed by the Czech company JetBrains. 
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(3)​ NLTK : 
 
NLTK is a leading platform for building Python programs to work with 
human language data. It provides easy-to-use interfaces to over 50 
corpora and lexical resources such as WordNet, along with a suite of text 
processing libraries for classification, tokenization, stemming, tagging, 
parsing, and semantic reasoning, wrappers for industrial-strength NLP 
libraries, and an active discussion forum. 
 

 
(4)​ Pandas :  

 
Pandas is a high-level data manipulation tool developed by Wes 
McKinney. It    is built on the Numpy package and its key data structure 
is called the DataFrame. DataFrames allow you to store and manipulate 
tabular data in rows of observations and columns of variables. 
 

      
    (6) PyTorch :  
           
          PyTorch is an open source machine learning framework for Python 
programs  
           that facilitates building deep learning projects. 
 

4.6 Used technologies : 

 
(1)​ HTML, css and bootstrap for the front-end part. 

 
(2)​ Flask : 

 
- Flask is a web framework for Python, meaning that it provides 
functionality    for building web applications, including managing HTTP 
requests and rendering templates. 
 

(3)​ Ngrok :  
 
​ - A global distributed service for deploying web applications running in 
any  
            cloud, private network or local host. 
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                        5- User Manual 

5.1 Overview : 

 
- Our product is a web application where its main purpose is to query different  
database domains without prior knowledge of any programming language, This 
is   done by translating the question of user asked in natural language (English 
language) 
to SQL-form one, then this query could be used to get answers to the user’s 
question. 
 
5.2 Operating the web application : 

5.2.1 Start page :            

 

 
5.2.2 choose the database related to the domain of your question : 
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5.2.3 Enter your question in Natural language : 
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5.2.4 Click on “Translate to sql” button to start translation : 

 
5.2.5 : Translation to SQL query is done :  
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    6- Conclusion and Future Work 

6.1 Conclusion 

 
We present a powerful sequential architecture for modeling dependencies 
between natural language question and relational DBs in cross-DB 
semantic parsing. Our Model serializes the question and DB schema into a 
tagged sequence and maximally utilizes pre-trained LMs such as BERT to 
capture the linking between text mentions and the DB schema 
components. It uses anchor texts to further improve the alignment between 
the two crossmodal inputs. Combined with a simple sequential decoder 
with schema-consistency driven search space pruning, Our Model attained 
state-of-the-art performance on the widely used Spider text-to-SQL 
benchmarks.Our analysis shows that our model is effective at generalizing 
over natural language variations and memorizing structural patterns. It 
significantly outperforms previous work in the easy category of Spider. 
However, it struggles in compositional generalization and sometimes 
makes unexplainable mistakes. This indicates that when data is ample and 
the target logic form is shallow, sequence-to sequence models are good 
choices for cross-DB semantic parsing, especially given the implementation 
is easier and decoding is efficient. For solving the general text-to-SQL 
problem and moving towards production, we plan to further improve 
compositional generalization and interpretability of the model. We also plan 
to study the application of our model and its extensions to other tasks that 
require joint textual and tabular understanding such as weakly supervised 
semantic parsing and fact checking. 
 
 
 
6.2 Future Work 

 
●​ We plan to enhance our system to be language independent so it can 

support multiple languages (E.g : Arabic) where everyone around the 
world can benefit from our application.  

●​ Also planning to support voice commands where users can easily request 
their information. 
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