Tox4j High Level API

Objective

What are we doing? Why are we doing this? What are the goals? What are NON-goals?
This section explains the project to someone not familiar with tox4.

HLAPI aims to provide a high-level API that is directly suited for implementing a Tox client,
meaning that it implements all needed platform-independent parts (friends list, file transfers,
...) on top of the low-level toxcore bindings. Platform-specific operation that are specifically
not implemented include storage and Ul, for instance.

This will provide a common base for various Tox clients, increasing code-sharing in the
ecosystem and making it easier to implement new features/protocol extensions across all
existing clients.

This will not be a Tox client (beyond the needs of testing, and perhaps a simple demo), nor
will this provide any Ul. This does not replace toxcore (it is only a wrapper around it).

Moreover, it is not in scope (for GSoC) to have features specific to multi-account. However,
multi-account is supported in the sense that the lack of global state (see Design principles)
makes it possible to run several instances of HLAPI in the same process.

Typographic conventions

Throughout the design document, a consistent typesetting convention must be followed. This
convention is defined here.

BoldCamelCase Type names (class, trait, type, object)
ALL_CAPS Numeric constants found in ToxConstants
italics Method name

underlined Emphasis
Background

Related work in the tox project? What similar projects exist? Links to external
documents/wikipedia? Nothing about design/requirements here, just background.

There are several Tox clients all implementing more or less the same logic such as chat
logs, profiles, and friend lists. This leads to fragmentation and duplication of effort.

Antox is an Android Tox client which uses the low level Tox4j API. The high level interactions
are in a tightly coupled set of Android-specific implementation classes and Ul classes. This
tight coupling of Ul and logic makes the client difficult to maintain.

A related project is the modular high level multimedia library, which provides a uniform API
over various platform-dependent audio/video/desktop capture libraries. Although we do not
aim to provide any platform-dependent implementations, the multimedia library’s design can
help us in the design of our A/V interface.

Functional programming

The design of HLAPI is done in a functional style; in particular, we leverage existing
concepts, such as Monads and Lenses, to model some of the components of HLAPI. To
that end, we reuse typeclasses defined in scalaz.

This has the dual benefit of reusing a familiar interface (instead of rolling our own Monad
trait) and giving us testable invariants for free, which are a very good fit for property-based

testing.

The Monad that HLAPI relies the most on is State[ToxState, _]: state monads are very
effective at describing programs in which some immutable state is modified and modified
copies are passed around.

Lenses model a “location” in a datastructure. They can be thought of as a pair of a getter
and a setter that returns a modified copy of the datastructure. The point of the Lens
abstraction is that it gives better composability.

See http://eed3si9n.com/learning-scalaz/Lens.html| and
http://www.monadzoo.com/blog/2012/11/18/using-lenses-with-scalaz-7/.

Requirements

Who are the customers for the solution? What are their needs? What is the problem space?
This section estimates scale requirements. How much data needs to be stored/processed?
What kind of data? What about latency/throughput/etc network requirements? How about
growth?

Customers

We are building a new Android client which uses HLAPI as its business logic and data
storage layer. Antox is also planning to adopt HLAPI.

Part of this design is a high level network protocol built on top of Tox custom packets. This
network protocol and any application protocols built on it need to be fully specified to enable
alternative implementations.

Mobile-specific requirements
- Battery-friendliness
- Support high-latencyljitter links and not-yet-ack'd messages
- Automatic retransmit of lost messages

https://github.com/Astonex/Antox
https://wiki.tox.im/GSoC/2015/Ideas#Modular_library_for_platform-dependent_audio.2C_video_and_desktop_capture
https://github.com/scalaz/scalaz
http://eed3si9n.com/learning-scalaz/State.html
http://eed3si9n.com/learning-scalaz/Lens.html
http://www.monadzoo.com/blog/2012/11/18/using-lenses-with-scalaz-7/

Scale

For estimating the scaling parameters, we consider three distinct use cases. The first two
are desktop and mobile, which are similar in many ways, since they are both operated by
humans. The third use case is a bot.

Bot

For the bot, we maximise all estimates, giving us an a minimum upper bound of what we can
hope to support. All maxima are calculated assuming no interactions occur besides the one
the calculation is for. Since maxima are heavily dependent upon external parameters, we
assume the bot runs in the following environment:

Assumptions

Network 1 Gbit/sec full duplex

RAM 64 GiB

CPU Intel Xeon E5-1650 @ 3.20GHz (6 physical cores with HT), 12MiB
cache

Initial numbers

Transfer rate 1Gbit/s = 1000Mbit/s = 125MB/s = 119.20MiB/s

Protocol overhead 42B Ethernet! + 20B IP + 8B UDP + 28B Tox = 98 bytes/frame
Status update 1B

Location update 8B * 7 = 56B

File packet 1372B

Status updates 1/friend/minute

Derived maxima

Status packetrate 125MB/s / 99B/packet = 1.26M packets/s

Location packet rate 125MB/s / 154B/packet = 811.7K packets/s

File packet rate 125MB/s / 1470B/packet = 85K packets/s

File data rate 85K packets/s * 1372B/packet = 116MB/s = 111MiB/s

Number of friends 1.28M packets/s * (1/friend/minute) * 60 s/minute = 75.8M friends
Number of groups 75.8M peers / (1000s peer/group) = 100k groups

We use the geolocation update as an example to compute the maximum number of
messages per second, assuming a single friend and no other interactions.

The numbers for status and location updates are slightly wrong, because the Tox protocol
may add up to 7 bytes padding to conceal the precise packet size. This means the numbers
presented here are slightly higher than what the actual network can support, but this is not
an issue, since our implementation should at least support these numbers.

Desktop & mobile
For desktop and mobile, we used a modified pisg to collect statistics from real IM and IRC
users who ran the script on their chat logs. The statistics the script collects are:

- IM/ private chats:

' Headers and inter-packet gap; minimum Ethernet payload size is another 42B and our payload is
more than that.

http://en.wikipedia.org/wiki/Ethernet_frame#Structure
http://en.wikipedia.org/wiki/IPv4#Header
http://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure
http://dev.w3.org/geo/api/spec-source.html#coordinates_interface
http://pisg.sourceforge.net/

- Average frequency of messages

- Average & median size of a message

- Number of peers

- IRC / group chats:

- Total number of visited channels

- Average frequency of messages in those channels

- Average & median size of a message

- Average (over time) number of active users in the channel
Need a spec for “active” users; proposal: a user is active for X minutes after
sending a message (or action); sending a new message does not accumulate
time, but resets the counter.

Desktop Mobile Bot
Friend list
Number of friends ~10-100 75M
Status update freq ~1/min/friend
Text messages
In-flight messages? 1-10 10s 1000s
Frequency (mean) 1/s 800K/s
Frequency (peak) 10/s 800K/s
Message length <100B avg., <10k usually 56B
File transfers
Size unbounded 5GiB unbounded
Bandwidth 110MiB/s 10MiB/s 111MiB/s
Queue® 10s memory-bound

Group chats

Groups 100s ~100k

Peers per group 1000s

2 Send function returned, and the recipient has not acknowledged reception yet.
% The number of scheduled transfers. A transfer is a bunch of files (or directories) that were scheduled
together.

Format

Some data formats are human-readable and highly compressible (those properties are
usually correlated). This is especially true for natural text, and some other file formats.
The HLAPI wire format should take advantage of this whenever possible.

Access patterns
- Log: Message recall/editing => append and mutate tail
Access the bottom and full-text search
- Friend list: infrequent modifications, random access, add/remove

Confidentiality
- Fairly different for large, public* group chats and private conversations
Scale constraints are also quite different in those 2 cases

Reliability
- Data corruption
- bitrot (silent data corruption in the storage layer)
- power failure during write
- both seem to require cooperation from the client
- Crashes
- Should be mostly prevented by the use of safe language features
(i.e. no exceptions, no casts)
- Can occur in the JNI binding or in toxcore itself
- Atoxcore crash is not survivable (assert failures in the JNI bindings)

Design ldeas

Overview of the design. If you have multiple viable ideas, list them all with pros and cons. Do
not include code, only type signatures and explanations. Use diagrams if necessary. Major
structural elements go here. Which existing technologies will be used? Which components
will you write? How do they integrate? How will others integrate with them? What scaling
parameters need to be considered most prominently? How will the product be rolled out to
users? Implementation strategies go here, implementation does not.

Design principles

Referential transparency

Almost all library functions should be referentially transparent. Referential transparency
simplifies the interactions inside the library, as the observable behaviour of a function only
depends on its parameters. Property-based testing using random inputs also becomes
simpler, since the state each function operates on is small and independent.

* The private character of a group chat cannot be easily determined, so all logs should be treated as
private data.

http://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
http://www.scalatest.org/user_guide/property_based_testing

We achieve this by operating only on immutable data structures. Moreover, functions
operating on immutable data structures are trivially thread-safe and reentrant, which is
desirable for a library meant to be used by Ul-driven applications.

Storage format independence
We should be independent of any serialisation format and provide:
- data types that accurately describe the objects being handled;
- elementary operations defined directly on those data types;
- higher level operations defined in terms of the elementary ones;
- default (de)serialisation methods (again, outputting streams rather than file-based
I/0) and utility classes that turn stream 1/O into file-backed 1/0.
This seems important, as it enables the client to:
- inspect objects (contacts, chat logs, ...) more easily;
- pick a format adapted to the storage method, so it can, for instance, avoid storing
opaque JSON in a database.
Also, this seem to be good design as it enforces separation of concerns inside the library.

Mobile-friendliness
Mobile devices and other embedded platform have tighter restrictions. Since one of our
major use-cases is a mobile app, we require the design to
- have ways of notifying the Ul about message acknowledgement; while not
mobile-specific, packet loss, latency and jitter on mobile networks exacerbates the
need to provide the Ul with this information, and polling (another way of providing
that information) is both cumbersome and inefficient;
- avoid unnecessary wakeups and batch network transmissions to be more
energy-efficient;
- consider memory to be a scarce resource;
- avoid making assumptions about the platform in the API and implementation.

Technologies used

The library is built using Scala with support for functional programming from the Scalaz
library. It provides useful concepts and syntactic sugar (such as lenses and monads, and
notation for them), which make some operations less error-prone. To avoid imposing this
choice on the client, we do not expose Scalaz types in the API, though we recommend the
client uses Scalaz for some things (such as the State[ToxState, _] monad).

We use Snappy for its fast (de)compression, relatively good compression ratio (1.5x-4x is
typical on human-readable data) and its native Java implementation.

The wire format for our network protocols uses Protocol Buffers. Cap'n Proto was also
considered, but protobuf is already used within Tox4j. Both provide a language- and
platform-independent specification language for a binary wire format, which can be used to
generate the serializer and parser in a variety of languages.

Generic data structures

Streams: We take an immutable Stream datatype. While this has higher potential for
memory leaks (leaking a Stream makes all subsequent Streams and values leak), it

https://github.com/scalaz/scalaz
https://github.com/dain/snappy
https://code.google.com/p/snappy/source/browse/trunk/README#40
https://developers.google.com/protocol-buffers/
https://capnproto.org/

simplifies the interactions between components.® Moreover, this data type uses Futures
rather than blocking when a client attempts to access yet-unknown values of the stream.

class Stream[+A] {
val next: Future[(A, Stream[A])]

}

class Source[-A] {

def put(a: A): Option[Source[A]]

def putAll(s: GenTraversable[A]): Option[Source[A]]
}

Here, +aA and -A denote covariant and contravariant types.

Assuming we have Apple <: Fruit (Apple is a subtype of Fruit), this means that any
Stream[Apple] is a Stream[Fruit] (covariance), and any Source[Fruit] is a Source[Apple]
(contravariance). This is useful in situations where various Streams (or Sources) that
operate on related types can be combined: for instance, it could occur when interleaving the
events coming from several Streams into a single Stream.

Futures: Use futures when wrapping a potentially-blocking operation, rather than use
explicit callbacks.

Iterables: For iterable data structures, GenTraversable[_] was chosen over Iterable[_]:
- It does not involve a mutable iterator.
- It provides many useful functions (fold, ...).
- It supports parallel collections.

Specific data structures
Unless specified otherwise, all data structures are immutable.

ToxState
ToxState is an immutable data structure that represents the state of HLAPI. This includes:

- module-specific state (friend list, ongoing conversations, ...);

- information related to the user (nick, pubkey, ...);

- callbacks that ToxInstance calls when /O is performed.
Such callbacks are monadic: they have type A => ToxState => (ToxState, B). If B is Unit, it
is omitted and the return type is ToxState. For instance, GroupMessaging.create has type
ToxState => (ToxState, GroupConversation).

This specific type signature makes them directly suitable for use with Scalaz's State monad,
as it provides the following method: apply[S, A](f: (S) => (S, A)): State[S, A], so ToxState
transformers can easily be used with the monad syntax.

final case class ToxState private (
moduleStates: Map[ToxModule, Any], // Map from modules to their state
conversationCallback: Option[UserConversation => ToxState => ToxState],
friendCallback: Option[IncomingRequest => ToxState => ToxState]

) 1

/** Register callbacks. For HLAPI's internal use only */

® For instance, it is possible to safely share an immutable stream.

http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package$$State$
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/scalaz/package.html#State[S,A]=scalaz.package.StateT[scalaz.Id.Id,S,A]

private[hlapi] def registerConversation(callback: UserConversation => ToxState =>
ToxState): Option[ToxState]

private[hlapi] def registerFriend(callback: IncomingRequest => ToxState => ToxState):
Option[ToxState]

/** Wraps _getState and _toxState in a lens */
private def statelLens(t: ToxModule): Lens[ToxState, t.State]

/** Register a module.
* This calls the module's register method with appropriate parameters. */
def register(t: ToxModule): \/[String, (ToxState, t.ImplType)]

Callback registration is handled by the modules themselves when they are being registered.
At its most basic, a ToxModule implements the following trait:

abstract class ToxModule extends Configurable with Equal[ToxModule] {
type State
def initial: State
def name: String = getClass.getName

def policy: Policy = Policy.default // Default security policy is empty

type ImplType
private[hlapi] def impl(lens: Lens[ToxState, State]): ImplType

def register: ToxState => \/[String, (ToxState, ImplType)]

The implementation of a module only has access to its own state (stored in ToxState)
through a lens, which is provided at registration. This is less error-prone than having
methods for state manipulation, as external code, for example another ToxModule
implementation, cannot directly inspect or modify the state of a given ToxModule without
using unsafe features.

Any such interaction must be done through an API defined by the ToxModule. While it is
possible to expose a concrete module.State and a Lens[ToxState, module.State] (or
equivalent) in the module's API, doing so is not recommended. Modules should enforce
separation of concerns in their API, instead.

Should a ToxModule depend on other ToxModules, it must be given the relevant
module.Impl objects at construction time. While this puts the burden of managing
dependencies on the client (when it comes to loading the modules), it avoids dependency
loops and other problems.

A ToxModule also carries a Policy object, an immutable wrapper around
java.security.Permissions. Its purpose is to let HLAPI run modules in appropriate security
contexts, following a least privileges principle.

object Policy {
private def copy(p: Permissions): Permissions
def apply(p: Permissions): Policy
val default = Policy(new Permissions())

}

final class Policy private (p: Permissions) {

def add(perm: Permission): Policy

def addAll(perm: GenTraversableOnce[Permission]): Policy
def addAll(perm: Permissions): Policy
}

Alternatives:

An older version of the design had one ToxState.registerFoo method per component, which
is not scalable. Instead, ToxModule now carries the register method, as the registration
code is component-specific. ToxState only provides a convenience register method, which
calls register on the ToxModule.

There used to be no difference between the module itself and it's ImplType. Adding this
separation enforces that modules get registered. This does not prevent the client from using
a ToxState where the module was not registered, but the monadic notation makes it hard to
do accidentally.

Tox configuration
HLAPI and its components can be configured using a SettingKey-based approach: each
module (and ToxState itself) possess SettingKey objects, which describe a single setting.

/** The interface implemented by setting keys. */
abstract class SettingKey {

/** The type of the setting's value */

type V

/** The default value */

val default: V

ToxModules and ToxState implement a common Configurable interface:

/**
* Abstract class implemented by configurable modules.
*
* In particular, all [[im.tox.hlapi.core.ToxModules]] and [[ToxConfig]]
* are configurable in this way.
*/
abstract class Configurable {
/** The type which describes the various settings */
type SettingKey <: SettingKey

/** To each [[SettingKey]] there is a matching lens. */
def getSetting(key: Setting): ToxState => key.V
def setSetting(key: Setting)(value: key.V): ToxState => ToxState

Configurations values are heavily read during HLAPI operation. This is why ToxModules
(and ToxCore) will provide equivalent getSetting and setSetting methods which deal directly
with module.State, for internal use.

Like their equivalents from Configurable, they can only be implemented inside the Impl
object, as it holds the lens that connect the modules' state and ToxState.

This can be implemented using an immutable, heterogeneous map, for modules which have
many settings; other modules may prefer to use a flat tuple, which should use less memory
and provide faster access, at the cost of needing more code per config option.

Configuration options for ToxState:

sealed trait OptimizationTarget

final case object Memory extends OptimizationTarget
final case object Battery extends OptimizationTarget
final case object Performance extends OptimizationTarget

sealed trait ToxConfig extends SettingKey
final case object Target extends ToxConfig {
type V = OptimizationTarget
val default = Battery
}

final case object AwayMessage extends ToxConfig {
type V = TextMessage
val default

}

object ToxConfig extends Configurable {
type Setting = ToxConfig

def getSetting(key: ToxConfig): ToxState => key.V
def setSetting(key: ToxConfig)(value: key.V): ToxState => ToxState

}

Alternatives:

It is possible to avoid the use of an heterogeneous data-structure, but at the price of type
safety. Also, providing Int indexes (for instance for storing the settings in a Vector) doesn't
seem doable easily (and safely). This is why we made this performance/safety tradeoff.

User profiles

case class User(
// 38B pubkey, pretty-printed with 72 characters (152B in UTF-16)

toxId: PublicKey,

name: String,
statusMessage: String,

status: Online | Offline

HLAPI will not support more detailed status, as they are confusing for users (not included
anymore in most mobile chat apps, and may not reflect actual user status) and make
optimisation for bandwidth & battery use harder (because state changes are more frequent
and Tox needs to be “more sure” of the state, forcing more frequent data exchange).

Friend tag
User tags implement a N:M user group system, where one user may belong to multiple
groups. In particular, a distinguished “star” group can implement the “starred user” feature.

class FriendTag private (
val name: String,
id: Int,

H
def add(user: User): ToxState => ToxState
def delete(user: User): ToxState => ToxState
def users: ToxState => ToxState

}

Alternatives

A N:1 group system was considered, but it would be less flexible, and would require
special-casing the “starred user” feature.

Conversationld

A Conversationld is an immutable object that carries the information required to identify and
contact a chatroom or user. It is an open case class which can be either of core.User,
group.GroupChat and group.GroupUser.

Conversationld and Conversation are open case-classes to allow for future extensions.
This also lets different packages implement the Conversation types that concern them.

abstract class message.ConversationId extends Serializable {
val key: PublicKey
val name: String

}

case class core.User(val key: PublicKey) extends ConversationId with
ValueType[PublicKey]

case class group.GroupChat(val key: PublicKey)
extends ConversationId with ValueType[PublicKey] {
def join: ToxState => (ToxState, Future[\/[GroupConversation, JoinError]])

}

case class group.GroupUser extends ConversationId {
val parent: GroupChat

}

Alternatives

It could have been possible not to have any separation between Conversation and
Conversationld. However, many functionalities (logs, friend lists, establishing conversations
...) require being able to designate the recipient of a conversation, such as a GroupChat or
a User, regardless of whether there is still an ongoing conversation.

Once the decision to have GroupChat and User was made, it made sense to unite those
datatypes in a case class that mirrors Conversation.

Conversation
A message.Conversation is an object representing an ongoing chat session. It is actually
an open case class which can be one of the following:
- UserConversation: a conversation with a single friend;
- GroupConversation: a group chat
- GroupUserConversation: a conversation with a single user, whose actual public key
is not known, but with whom we share a group chat.

The following diagram represents all Conversation and Conversationld types, and their
interactions:

id: Conversationld

Conversafion f-----------mmmm » Conversationld
X id: User
UserConversation f------------------------- » User
) id: GroupChat
GroUpCONVErSation f------mcermscrrrr s mssr sr s s i e GroupChat
smmeme _parent.id
A A
parent: GroupConversation id.parent parcnt:l@.‘roupﬂhat
B id: GroupUser, _ B
GroupUserConversation f-----------acamaamammaaamaasaaaaa il e e » GroupUser

As both GroupUserConversation and GroupUser carry a reference to their parent (resp. a
GroupConversation and GroupChat), 2 paths can be used to reach the same value.
HLAPI guarantees the following invariant:

forall GroupUserConversation guc, guc.parent.id == guc.id.parent

Any Conversation also has an associated message stream, which contains both received
and sent messages: this simplifies client code, as it is enough to display all the messages
from the stream, rather than add sent messages and deal with potential message
transforms, like message splitting.

abstract class Conversation {
val messageStream: Stream[MessageEvent]
val id: ConversationId

// Monadic operations
def sendMessage(message: Message): ToxState => (ToxState, Future[Unit])
def typing(isTyping: Boolean): ToxState => ToxState

}

case class UserConversation(val id: User) extends Conversation

case class GroupConversation(val id: GroupChat) extends Conversation {
def members: ToxState => GenTraversable[GroupUser]

}

case class GroupUserConversation(val id: GroupUser) extends Conversation {
val parent: GroupConversation

}

The Future[Unit] returned by sendMessage carries the information about message delivery:
it will be resolved (either as () or as an error) when the message is acknowledged, or if
delivery times out.

https://drive.draw.io/#G0B_ff9rFb6MSJTDZZX09mYm1NODQ

Alternatives: It could be possible to have instead a function which gets newly-received
messages from ToxState, but this would require the Ul to be aware of HLAPI's event loop,
either directly or by setting a callback on message delivery, whereas the solution we adopted
yields a pure® data structure that can be directly consumed in the Ul in its own event loop.
The same effect (needing to be mindful of HLAPI's event loop) would also manifest in tests.

No satisfying alternative was found to avoid the “diamond pattern” (guc.parent.id ==
guc.id.parent). It would be broken by removing either of the parent attributes, but this is
difficult for various reasons. Removing it from the GroupUser object makes it impossible to
know from which group chat a user came from, while removing it from the
GroupUserConversation object makes it harder for the client to link back to the ongoing
conversation.

The second point could be solved by maintaining a partial mapping from GroupChat to
GroupConversation, but this is error-prone: it would be possible to accidentally leak
memory or get a non-consistent mapping. Moreover, the information that there is one
GroupChat corresponding to each GroupConversation is lost at the type level. This leads
to an incomplete matching or a potentially uncaught exception in the places where the client
uses the mapping (or in HLAPI).

Message event

A MessageEvent is represents an event in the message stream. It can either be creation,
edition or deletion. Conversation carries a Stream of such events, which contain the
concrete Messages (documented below).

sealed abstract class MessageEvent(final val id: Messageld)

final case class NewMessage(message: Message) extends MessageEvent(message.id)
final case class DeleteMessage(id: Messageld) extends MessageEvent(id)
final case class EditMessage(message: Message) extends MessageEvent(message.id)

A NewMessage describes the emission of a new message in an ongoing Conversation,
while DeleteMessage (resp. EditMessage) denote the deletion (resp. replacement) of an
existing message.

Message

Message is an immutable, open case class, which can be either text (TextMessage or
ActionMessage), or inline media (no datatype defined yet).

As Conversations carry a Message stream, all kind of messages can be interleaved in a
single conversation. This does not cover use cases such as images embedded inside the
text (such as using images for emotes, but Unicode emoiji are used for this).

In particular, clients may encounter Message types they do not know how to handle. While
this cannot happen for the legacy messaging protocol (which only carries TextMessages
and ActionMessages), it is the case for the new text messaging protocol.
This is why the protocol extension must provide

- a way to signal message rejection to the sender (with an associated reason);

¢ While the implementation of streams may use mutation internally, it is not externally observable;
basically, writing occurs in a Future[_], which is write-once and can be expressed with call/cc.

- away to signal which message types are supported.
HLAPI will automatically reject messages that do not conform to an advertised message type
(see “Protocol extensions/Requirements”). However, messages might be unsupported for
reasons that cannot be exposed to the HLAPI (image too large to decompress, unsupported
media codec, ...), in which case the client must reject the message, rather than silently
discard.

abstract class Message {
val from: User
val time: com.github.nscala_time.time.Imports.DateTime

}

Both TextMessages and ActionMessages carry plain Unicode strings. Clients must not
serialize richer formatting ADTs as Unicode strings (for instance HTML).

Three extended message types, ImageMessage, SoundMessage and VideoMessage, can
carry respectively Image, Sound and Video objects. Those are currently wrappers around
Array[Buffer], pending definition of more appropriate datatypes.

HLAPI will provide support for richer formatting, in a different message type.

Storage

HLAPI lets its users implement only the needed requirements for the functionality they use.
In particular, several components (Logging, GroupChat, FriendList, and FileTransfer)
require some form of persistent storage.

Interfaces

It is unrealistic to expect all client implementers to come up with storage implementation,
especially in the face of their reliability requirements. Hence, HLAPI will provide a default
implementation for each, assuming the client can provide a FileLike storage. FileLike is an
interface that describes storage with random-position read/write. A FileLike implementation
is already provided, which internally uses java.nio.MappedByteBuffer.

FileLike directly deals with reading and writing Slices (consecutive bytes) from storage at
arbitrary offsets. Data is provided as individual bytes, which is well suited for existing Snappy
implementations, and does not seem to bring an unreasonable performance hit (i.e. more
than 1Gb/s throughput, without incurring high CPU load).

trait FilelLike {
// Attempt to discard part of the file (e.g using fallocate(2) hole-punching).
// Failure MUST be handled gracefully by the caller
// (i.e. HLAPI storage implementation).
// NOTE: Haven't yet found where Java implements this.
def discard(slice: Slice): Boolean = false

//TODO Need proper error monad
def apply(offset: Long, size: Int): Option[Slice]
def size: Long

}

trait Slice extends Iterable[Byte] {
def size: Int

https://nicolas.braud-santoni.eu/tmp/tox4j-FileLike-bench.png
https://github.com/nbraud/tox4j/blob/hlapi/src/test/java/im/tox/hlapi/storage/bench/FileLikeBenchWip.scala

def flush() // See below

def write(offset: Int)(data: Array[Byte]): Boolean
def write(data: Array[Byte]): Boolean = write(©)(data)

def get(offset: Int): Option[Byte]

def set(offset: Int, value: Byte): Boolean
}
After a write operation, the data may not yet be written to persistent storage. Calling flush
ensures the persistent write to the storage medium has happened.
discard attempts to discard part of the file. This operation may fail for arbitrary reasons, and
so the trait can provide a default implementation (which always fail). Supporting this feature
when possible is useful, however, because it makes garbage-collection of the KeyValue
store faster, and reduces the amount of I/O operations to the storage, which should improve
battery and flash life.
The use of Slice objects is to reduce the number of bound-checking (and corresponding
error-handling) performed.

Alternatives:

Using java.io.File directly was considered, but this would be much less flexible. Also, java.io
(and the newer java.nio) only support large (> 2GB) files through streams’, whereas we
need to handle random access.

Specialized storage classes

The actual storage interfaces distinguish two use-cases there: KeyValue, a generic interface
for persisting state and LogStorage for storing the logs. Moreover, the FileLike trait
describes the interface for file-like objects, which are used during file transfers and by the
default KeyValue and LogStorage implementations.

Both KeyValue and LogStorage must provide transactional semantics, i.e. either an
effectful operation has successfully completed or it has not happened at all, even if the
whole JVM crashes (or computer shuts down, or ...) before the operation returns. Read
operations started during a write must observe a consistent state. This state can be from
either before or after the write (thus blocking the read until the end of the write). A read
performed after a write must observe the writing’s effect.

KeyValue is a generic interface for a key/value store, parameterized by both of those types.
It can be implemented in more-or-less arbitrary fashions, as the generic VK V.
KeyValue[K,VI[K]] type is never required in an interface, allowing the client to implement
differently (for instance) KeyValue[PublicKey, User] and KeyValue[Transferld, Transfer].
Here, the KeyType trait is useful for generic implementations (as will be provided by HLAPI),
as it is possible to require keys to be serializable, ordered, ...). The exact KeyType trait is
not completely defined yet, as its design will be guided by the needs of the default storage
implementation.

trait ValueType[K] extends Serializable {

" There is support for random access, but indexing is done through 32-bits Ints.

val key: K
}

trait KeyType extends Serializable

trait KeyValue[K <: KeyType, T <: ValueType[K]] extends GenTraversable[T] {
// add should replace existing state with same id
def add(id: K, obj: T)
def lookup(id: K): Option[T]
def delete(id: K): Boolean
}

LogStorage is a specialized interface for log storage, supporting per-Conversation storage,
with insert, modify and delete operations. Its only use is implementing LoggingReq.

trait LogStorage extends GenTraversable[ConversationId] {
def lookup(conversation: ConversationId): GenTraversable[Message]
def append(conversation: ConversationId, message: Message)
def modify(conversation: ConversationId, message: Message)

def delete(conversation: ConversationId)
def delete(conversation: ConversationId, message: Message)

}

Interaction with ToxState

FileLikes used for file transfers do not need to be kept strongly synchronized with the
ToxState: the worst that can happen is a resume of a file transfer at an earlier point, causing
needless data transfers. However both KeyValue and LogStorage essentially provide
persistence for the component's state, and thus need more careful handling.

KeyValueWrapper provides a monadic wrapper around a KeyValue object, where methods
produce a new instance and no actual 10 is performed until the perform/O() method is called.
ToxModules have a perform/O() method which ToxInstance can call when 10 is being
performed.

As Logging performs 10 immediately after messages from ToxCore are retrieved, it does
not seem necessary to provide a monadic wrapper for it.

Default implementations

FileLike

HLAPI provides a FileLike implementation called MappedFile, based on Java's
MappedByteBuffers. A MappedFile can be constructed from a path, represented as a Path
object or a String, and from a RandomAccessFile.

Each Slice carries its own MappedByteBuffer which is a mapping that starts at the
specified offset, and has at least the slice's length.

KeyValue

The HLAPI default KeyValue implementation separates its FileLike into three zones: a
header, 2 intent logs, and the tables. Both header and intent logs have fixed size.

The KeyValue implementation assumes that the keys can be efficiently hashed to a 64 bit
value, and uses the keyed hash function SipHash-2-4 for that purpose.

In particular, this implementation uses hashed tries internally, and so doesn't use key
ordering nor can it support ordered queries such as “all records with a key greater than X”.

Its design is influenced by Google's LevelDB and Phil Bagwell's Hashed Tries (HAMT).

Header: It contains the 32 bit magic number 0x29¢35097 (here to prevent accidental use of
a non-KeyValue file) followed by a version number (in our case, 0) and several parameters
required for using the key-value store.

header {
uint32 0x29c¢35097;
uint32 version_number = 0;
uint32 intent_log_size; // Default is 512kB
uint32 intent_log_chunk_size; // Default is 512B
uint32 table_number; // Number of tables
uint32 _; // Padding
uint64[2] hash_key; // Key used for hashing; taken at random when the file is created.

Intent Log: Each intent log has constant size, separated in constant-size chunks. Both of
those sizes are configurable when the KeyValue is created. Default values are 512kB logs,
with 512B chunks.

Each chunk starts with a flag that can be either FIRST (0xF0), MIDDLE (OxAA), LAST
(OxOF), EMPTY (0x00) or SINGLE (0OxFF). A sequence of contiguous chunks that starts with
FIRST, contains any number of MIDDLE and ends with LAST contains the encoding of a
(key, value) pair (called a record), as does a single chunk starting with SINGLE.

The rationale is as follows: use of the intent log avoids blocking the client while the tables
undergo a concurrent operations such as compaction. Moreover, chunking the log allows for
fast record skipping, supports records that can be as large as the whole intent log (minus the
2b/512B = 0.05%) and allows re-synchronization in the event of disk corruption®. Lastly, the
choice of constants was such that no two tags have less than 4 differing bits.

Tables: The main storage area, which forms the tail of the file, is structured into tables. Each
table starts with a header describing the size of its sections. It can be at most 4GB large.

table_header {
uint32 keys_max; // Max. size of the key chunk (values lie beyond)
uint32 keys_alloc; // Pointer to the end of the key chunk
uint32 values_alloc; // Pointer to the end of the value chunk
uint64 total_size; // Used to jump to the next table

}

8 Skipping blocks in the intent log will yield data loss. This circumstance cannot happen in the storage
model for which this KeyValue implementation is designed (transactional semantics, explicit flush)
except for records for which the add operation hasn't returned yet.

https://htmlpreview.github.io/?https://github.com/google/leveldb/blob/master/doc/impl.html
http://lampwww.epfl.ch/papers/idealhashtrees.pdf

Each table is a hashed trie: during lookup, the key is hashed and the table is a prefix tree for
the hashed keys. The root has degree 2'° = 1024, and is represented as an array of size
1024, lying immediately after the header. Internal nodes have degree at most 64 = 2°.

This means the depth of the tree is at most 9, assuming a 64-bit hash function.

node {
uint64 bit_set;
int32[bitCount(bit_set)] children;

}

In a node, the bitset (encoded as a single int64) describes which children are non-empty. It is
followed by an array whose i-th position is occupied by the offset of the i-th non-empty
children®.

For alignment reasons, and to avoid needless fragmentation, nodes are actually allocated
with enough size to accommodate 2, 4, 8, 16, 32 or 64 children. bit_set MUST be set to zero
when deleting a node; this allows easily checking if a node can be promoted to a larger size
without copying.

The children of a node are represented by their offset. If the offset is positive, it is relative to
the beginning of the key segment and points to an internal node. If the offset is negative, it is
relative to the beginning of the record segment and points to a record.
This is done in this fashion for two main reasons:
- In the event where the trie is corrupted, it is possible to read sequentially all records,
and reconstruct the index.
- It allows modifying the size the table to a larger size by a simple sequential copy
(without modification) of the records segment.

When a table is full, a new table is created at the end of the file. The i-th table has
key-segment size 2”i MB for i <= 10, and size 2GB afterwards.

TODO doc:
- freelists buckets
- algorithms for insert/delete/modify

Testing: Several sub-components of the implementation can be used as key-value stores,
like the intent log, a single table, and the sequence of tables. As such, they can be tested
separately using the generic tests for KeyValue, along with the complete implementation.

Components

The HLAPI first lets you create a Toxlnstance object, which contains the user's Tox key pair,
along with the thread which is used for encapsulating ToxCore's event loop.

Having an additional layer of abstraction between ToxCore and ToxInstance, which would
provide safer wrappers for ToxCore's methods, was considered. However, it was discarded
as either too cumbersome (having ToxInstance proxy all calls to the ToxCore wrapper) or

® Indexing in this structure can be done efficiently using java.lang.Long.bitCount.

having too little benefit (if the HLAPI code can call the wrapper directly, it can bypass the
monadic/async wrapping from ToxInstance).

Any non-trivial functionality is handled through optional components. Each such component
is described by its own section in the following text, and implements the ToxModule trait.

ToxInstance operates on immutable ToxState objects, which carry callbacks (registrable
once) and per-component state (whose type is defined by the component itself).
If the client wishes to use a given component, it must:
- construct the component (giving the constructor an implementation of the
requirements, if any);
- call its register method on ToxState, which either yields a new ToxState value, or the
name of the component which failed to register (the actual return type is V/[String,
A)); failure occurs if a component is registered more than once;
- use the new ToxState value for further HLAPI operations.

In the following text, each section (“Text messaging”, ...) is one such component.

While registration is enforced at the type level, as a client must register a component to get
the matching component.Impl object, it is possible to use a component with a ToxState
where it was never registered (and discard the ToxState that registration yielded). The client
must never do so, and use of the State[ToxState, _] monad makes this mistake less likely,
because the monad handles the state-passing for the client.

Some HLAPI operations can be done without the client having to implement a specific
interface (for instance, generating a new NoSpam value, setting user status, ...). Those
operations are implemented as functions which operate on ToxState, defined in separate
classes as appropriate.

Text messaging
TextMessaging has simple, single-method interfaces:

trait TextMessagingReq {
def callback(newConversation: UserConversation)

}

class TextMessaging extends ToxModule {
type State = Unit
val initial: State = ()

type ImplType = Impl
private[hlapi] def impl(lens: Lens[ToxState, State]) = {
new Impl(lens)

}

final class Impl(lens: Lens[ToxState, State]) extends Configurable {
def startConversation(user: User)(tox: ToxState): (ToxState, UserConversation) = ???

type Setting = MessageSetting
def getSetting(key: Setting): ToxState => key.V = ???
def setSetting(key: Setting)(value: key.V): ToxState => ToxState = ???
}
}

sealed trait MessageSetting extends SettingKey

final case object strictEncoding extends MessageSetting {
type V = Boolean
val default = true

}

final case object downloadInlineMedia extends MessageSetting {
type V = Boolean
val default = true

}

final case object downloadInlineMediaWhenMobile extends MessageSetting {
type V = Boolean
val default = true

}

Message splitting
The messaging protocol extension supports arbitrary-sized messages. However, a
message-splitting specification is still required to handle the legacy protocol, and the one
suggested by STS is under-specified (in the case where a message contains no
whitespace).
HLAPI will split messages, when using the legacy protocol, in the following way:

- split at the last whitespace within MAX_MESSAGE_LENGTH bytes;

- if there is no such whitespace, split at MAX_MESSAGE_LENGTH bytes;

- process the tail of the message recursively (unless empty).

- no encoding detection is performed; all data sent/received is UTF-8, while the JRE
internally uses UTF-16 encoding.

By default, messages that are not valid UTF-8 are rejected, because detecting the
encoding is in general impossible, and cannot be achieved with high confidence
(making it likely that corrupted data is sent to the client, if it is attempted).

- In the case of the legacy protocol, HLAPI can be configured to replace bytes that do
not decode cleanly by a Unicode replacement character; else, it will signal rejection
by sending back a default rejection message (which must be ASCIl-only, to ensure it
can be decoded by the peer).

- In the new protocaol, rejection MUST be signaled to the other end, including in the
case of a wrong encoding. Such messages are not delivered to the client.

- Hook mechanism?
need to provide configuration methods

Logs
The requirements for the logs component are a little more intricate:

trait LoggingReq {
def logStore: LogStorage
def indexFile: FileLike

}

The storage implementation must have atomic semantics: an operation either has happened
or has not. In particular, power loss should never result in log corruption, which is why clients

are advised to use the default implementation provided under im.tox.hlapi.storage, which
can construct LogStorage on top of a FileLike object, as explained in the “Storage” section.

In return, HLAPI provides a Logging instance:

class Logging extends ToxModule {
type State = Unit
val initial: State = ()

type ImplType = Impl
private[hlapi] def impl(lens: Lens[ToxState, State]) = {
new Impl(lens)

}

final class Impl(lens: Lens[ToxState, State]) extends Configurable {
def lookup(conversation: ConversationId)(tox: ToxState): GenTraversable[Message]
def search(query: Query)(tox: ToxState): GenTraversable[Message]

type Setting = SyncConfig
def getSetting(key: Setting): ToxState => key.V
def setSetting(key: Setting)(value: key.V): ToxState => ToxState

The SyncConfig trait is shared with the FriendList module, and defines settings that are
relevant for synchronizable modules (see Device synchronization):

sealed trait SyncConfig extends SettingKey

final case object syncPeriod extends SyncConfig {
type V = org.joda.time.Period
val default = StaticPeriod.minutes(10)

}

final case object syncWhenMobile extends SyncConfig {
type V = Boolean
val default = false

}

Notes:
- The exact Query interface is not defined yet
- No clean way was found to handle varying requirements: for instance, there is no

need for modify, if edit is not supported. That is why support for message
edit/deletion is mandatory.

- The use of Apache Lucene for indexing was considered. However, they have a
hard-to-match storage API, large memory requirements, and large code size.

Friend list
The FriendList component provides a friend list, where each user can be annotated with
multiple tags (see Friend tags). It has comparatively simple requirements:

trait FriendListReq {

def callback(newRequest: IncomingRequest): ToxState => ToxState
def storage: KeyValue[PublicKey, User]

}

class FriendList(req: FriendListReq) extends ToxModule {

https://lucene.apache.org/core/

type State = KeyValueWrapper[PublicKey, User]
val initial: State = KeyValueWrapper(req.storage)

type ImplType = Impl
private[hlapi] def impl(lens: Lens[ToxState, State]) = {
new Impl(lens)

}

final class Impl(lens: Lens[ToxState, State]) extends Configurable {
def addNoRequest(user: User)(tox: ToxState): ToxState
def add(user: User, noSpam: NoSpam, message: String)(tox: ToxState): ToxState
def add(address: ToxAddress, nick: Option[String], message: String)(tox: ToxState):
ToxState
def add(address: ToxAddress, message: String)(tox: ToxState): ToxState = {
add(address, None, message)(tox)

}

def delete(user: User)(tox: ToxState): ToxState

val star: FriendTag

def lookupTag(name: String)(tox: ToxState): Option[FriendTag]

def createTag(name: String)(tox: ToxState): (ToxState, Option[FriendTag])
def tags(tox: ToxState): GenTraversable[FriendTag]

def friends(tox: ToxState): GenTraversable[User]

type Setting = SyncConfig
def getSetting(key: Setting): ToxState => key.V
def setSetting(key: Setting)(value: key.V): ToxState => ToxState

File transfer
The FileTransfer component also has simple requirements:

trait FileTransferReq {
type T <: Filelike
def callback(newTransfer: IncomingTransfer[T]): ToxState => ToxState
def state: KeyValue[TransferId, Transfer[T]]

}

Here, T is a user-defined type that is used for representing file locations. Suitable choices
include URIs and file paths, but this design lets clients use directly the right type for their
platform.

HLAPI provides one function, and most interactions are done through the Transfer type:

final case class FileTransferring(req: FileTransferReq) extends ToxModule {
type State = Unit
val initial: State

type ImplType = Impl
private[hlapi] def impl(lens: Lens[ToxState, State]) = {
new Impl(lens)

}

final class Impl(lens: Lens[ToxState, State]) extends Configurable {
def proposeFile(file: req.T, user: User)(tox: ToxState): (ToxState,
OutgoingTransfer[req.T])

type Setting = FileSetting
def getSetting(key: FileSetting): ToxState => key.V
def setSetting(key: FileSetting)(value: key.V): ToxState => ToxState
}
}

sealed trait FileSetting extends SettingKey
final case object transferWhenMobile extends FileSetting {
type V = Boolean
val default = true
¥
final case object simultaneousTransfers extends FileSetting {
type V = Int
val default =5
¥
final case object simultaneousTransfersPerUser extends FileSetting {
type V = Int
val default = 2
¥
final case object suspendTranferUponCongestion extends FileSetting {
type V = Boolean
val default = true

}

Notes:
- Should we add per-transfer registrable callbacks (for instance on abort or on
completion) ?

Group messaging
Remark: The group messaging API and feature set is not completely defined in toxcore yet,
so this may be subject to change (even more than the other components)

Should the callbacks be merged in a single newConversation(Conversation) callback?

trait GroupConversationReq {
def inviteCallback(chat: GroupChat)
def privateCallback(conversation: GroupUserConversation)

def storage: KeyValue[PublicKey, GroupChat]
}

class GroupMessaging extends ToxModule {
type State = Unit
val initial = ()

type ImplType = Impl
private[hlapi] def impl(lens: Lens[ToxState, State]) : Impl

trait Impl {
def create: ToxState => (GroupChat, ToxState)
def join(group: GroupChat): ToxState => (ToxState, Future[GroupConversation])

type Setting = GroupSetting
def getSetting(key: Setting): ToxState => key.V
def setSetting(key: Setting)(value: key.V): ToxState => ToxState

sealed trait GroupSetting extends SettingKey

See operations defined in
https://github.com/irungentoo/toxcore/compare/master...JFreegman:new groupchats#diff-a5
8028aec4211a18b170732935eba2e3R2251

JNI binding

The JNI binding is inherited from Tox4j, and is not exposed at all in the APIl. The ToxCore
object is encapsulated in a ToxInstance, which provides to the other HLAPI components
safe methods to interact with ToxCore.

The existing decoupling of HLAPI and ToxCorelmpl, through the ToxCore interface,
simplifies auditing and testing (JNI being unsafe), and makes it possible to use an alternative
ToxCore implementation (either for production use or testing).

AV
- Need to discuss client needs
- Configuration
- Codecs when {on mobile net; on battery; plugged in}
Testing

HLAPI implementation will follow the behaviour-driven development methodology: implement
a specification (in the form of a property-based test), implement the corresponding unit, and
check that the tests pass.
In addition to property-based random tests, we will also require unit tests and integration
tests:

- Unit tests make it easier to check corner cases where bugs are deemed more likely.

- Integration testing is (currently) the only way to test with an actual ToxCore

implementation, and can detect issues where several related components interact.

Test coverage metrics

Tox4j currently uses Scoverage, which supports statement coverage. This is an appropriate
metric for our needs: it enforces that all code actually gets executed (unlike line coverage),
and is yet lenient enough that coverage is achievable, unlike with path coverage which is (in
the strictest sense) impossible to achieve in the presence of unbounded loops and recursion.

Test framework

Tox4j currently uses ScalaTest with ScalaCheck for behavioural specifications and JUnit for
specific unit-tests. These tools seem fairly well suited to behaviour-driven development, so
we will keep using them.

Protocol extensions

Requirements
Protocol extensions are based on message-passing primitives, including message rejection
with a protocol-provided reason (feature not supported, syntax error, ...). This high-level

https://github.com/irungentoo/toxcore/compare/master...JFreegman:new_groupchats#diff-a58028aec4211a18b170732935eba2e3R2251
https://github.com/irungentoo/toxcore/compare/master...JFreegman:new_groupchats#diff-a58028aec4211a18b170732935eba2e3R2251
https://github.com/scoverage/scalac-scoverage-plugin

mechanism must support arbitrary-size “high level” messages, based on Toxcore's peer
discover, cryptography and low-level message transport primitives.

The protocol extensions must be described using a language- and platform-independent
syntax specification, from which efficient parsing and serialization code can easily be
generated. We chose protobuf (more precisely, its proto2 version) because Protocol Buffers
are already in use within Tox4j, and proto3 is'’ still in alpha, and is not yet supported by the
tooling we use.
For forward-compatibility with proto3, proto2 is employed with the following restrictions:

- Fields MUST NOT be required in the format specification.

Extensions may mandate protocol-specific message validation instead.

- Each field MUST have a default value compatible with proto3.

- Proto2 extensions MUST NOT be used.
For efficiency reasons, all repeated fields must have the attribute [packed=true].

- Optional features
- Advertise the set of supported features
- HLAPI will automatically discard messages related to unsupported features
- Features themselves could have varying support (i.e. supported image types,
n)
- such features MUST define a minimal feature set;
- they SHOULD, if possible/practical, require the client to advertise their
supported feature set;
- when such advertisement is done, HLAPI MUST automatically reject
unsupported messages;
- clients MUST reject unsupported messages in any case.
- Congestion control
- Be able to provide back pressure (i.e. signal to peers that we are overloaded,
and make them back off)
- Prioritize some components rather than others ? (e.g. give interactive
components priority over {friend list; log} synchronisation and file transfers)

Optional protocols
A message, in this protocol, carries a timestamp and one of the messages described in the
following sections.

The timestamp is encoded as an uint64 representing the number of seconds elapsed since
the Unix epoch, in UTC time. The sender SHOULD round it to the nearest half-minute in
pseudonymous contexts, including when sending group chat messages, to avoid (this venue
of) device-fingerprinting. The receiver SHOULD set it to the reception time if it is set to a
greater value.

Some security-sensitive properties, such as sender identity and originating group-chat,
MUST be provided by the low-level toxcore, rather than sent in the message (because a

10 At the time of writing, 2015-06-18.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/docs/proto
https://developers.google.com/protocol-buffers/docs/proto3#default

malicious sender could falsify them). This is less error-prone than all considered alternatives
(having toxcore check, or doing the checking in the high-level proto implementation).

Feature negotiation

The feature-set negotiation mechanism is based on a single Features message type, which
contains repeated Feature. Those describe the message types that can be received and
meaningfully interpreted by the client, they do not describe the ability to initiate an
interaction: i.e. they state “I am (un)able to receive file transfers” and NOT “l am (un)able to
initiate a file transfer”.

A Feature is simply an enum, which describes the presence of a single feature;
unmentioned Features are implicitly not supported:

- TEXT_MESSAGING describes this client's ability to receive text and action
messages.

- MEDIA_MESSAGING describe the client's ability to interpret messages that are not
simply text, in a conversation. The media messaging extension provides its own
mechanism for advertising which codecs are supported.

- GROUP_CHAT advertises the client's ability to take part in group chats; the set of
messages it can meaningfully receive is described by TEXT _MESSAGING and
MEDIA_MESSAGING.

- LOG_SYNCHRONIZATION, FRIEND_SYNCHRONIZATION and
GROUP_SYNCHRONIZATION are used to advertize that this client supports
synchronizing logdfiles, friends lists and lists of group chats.

- LOCATION_SHARING means the client can interpret location messages.

- FILE_RECEPTION means that this client can accept incoming file transfers.

Any change in the feature-set MUST trigger sending a Feature message to all
currently-connected friends. Joining a group-chat and observing a friend connect MUST
trigger the emission of a feature message.

Instant messaging
A Messaging message carries the following:
- amessage identifier (uint64) which MUST be present;
- atype, which can be NEW (default), MODIFY, or DELETE.
- some data, which can either be a text message or a media message.

Text messages carry:
- astring (ProtoBuf requires UTF-8 encoding) called data (empty by default);
- atype, which can be REGULAR (default) or ACTION.

Media messages follow a similar structure:
- datais a bytes field; implementations SHOULD reject messages with empty data;
- type can be UNKNOWN (default), IMAGE, SOUND or VIDEO.
Implementations MUST reject messages of type UNKNOWN; it is here to allow easily
checking if the field is missing or set to a value that this version of the format doesn't
know.

Device synchronization

Device synchronization relies on the following prerequisites:
- each device has a unique ID; its tox pubkey (or a hash thereof) is useable as such;
- locally, events have a monotonic ID (only requires an increasing counter).

Each device maintains a vector-clock that associates with every other device the ID (on the
other device) of the last synchronization event (with the current device). Whenever two
devices synchronize, they exchange all events that were newer than their clock, then update
their vector-clocks.

Synchronization messages can be either of the following messages:

- START_SYNC, which carries a vector clock;

- DATA, which carries repeated events;

- END_SYNC, to confirm that all DATA was received successfully (and let the peer

update its vector clock).

The vector clock is relative to a (synchronizable) module, and those messages carry an
enum describing which module is concerned. Any implementation MUST reject DATA
messages containing events that do not conform to the appropriate type for the module.

Handling deletion

All the components that (currently) support synchronization have deletion events. However,
while message deletion (in the log) is an event that is kept forever (the message history is
preserved), it is not the case for the other components.

Hence, those components have to record deletion events and only garbage-collect them
after all other devices (present in the vector clock) have been informed.

Friend list synchronization
Profile synchronisation
Device-list synchronisation
Log synchronisation

Location sharing
Location sharing can be done in two ways: by providing (truncated-precision) coordinates
directly, or by comparing locations using a zero-knowledge protocol.
The use-case for the zero-knowledge protocol is fairly straightforward: Alice doesn't want to
transmit her location to her friend at all times, yet she wants to be notified when she is near a
friend (and potentially decide to reveal her current location).
As such, a location-sharing message is either an explicit coordinates message, or a
zero-knowledge message. Explicit coordinates are represented as follows:

- a precision uint32 field, that describes the error margin (in meters); clients SHOULD

let users specify an upper-bound on the precision;

- latitude and longitude float fields, describing WGS 84 coordinates, as provided by
GPS".

The zero-knowledge protocol isn't specified yet.

Implementation notes:

- Distance between locations should be computed as great-circles distance. Using the
haversine formula or a specialized library is recommended. That formula is
numerically stable, and accurate to within 0.5% (due to the Earth not being a perfect
sphere).

Friends recommendation
A/V chat
File transfers

Real-time synchronization
- Collaborative drawing/writing
- Based on operational transforms?

Temporary Thoughts

This section contains random thoughts that do not yet have a place in any other section. Use
this for braindumps and as scratch pad to jot down ideas that require more thought.

Technologies
- Nano protobuf: https://github.com/google/protobuf/tree/master/javanano
- Compression algorithm:
- Snappy
- https://code.google.com/p/snappy/
- https://github.com/dain/snappy
- https://github.com/xerial/snappy-java
- Database:
- SAQLite: https://www.sqlite.org/
- BDB (GNU AGPL may be problematic):
http://en.wikipedia.org/wiki/Berkeley DB
- LMDB: http://symas.com/mdb/ (Requires us to write a JNI API for it)
- LevelDB:
- https://github.com/google/leveldb
- hitps://github.com/dain/leveldb
- https://github.com/fusesource/leveldbini
- Text indexing

" For values up to 360, 24 bit significand yield approximately 10~ precision (in both angular
coordinates), which provides ~1m precision.

https://en.wikipedia.org/wiki/World_Geodetic_System#A_new_World_Geodetic_System:_WGS_84
https://en.wikipedia.org/wiki/Haversine_formula
https://github.com/google/protobuf/tree/master/javanano
https://code.google.com/p/snappy/
https://github.com/dain/snappy
https://github.com/xerial/snappy-java
https://www.sqlite.org/
http://en.wikipedia.org/wiki/Berkeley_DB
http://symas.com/mdb/
https://github.com/google/leveldb
https://github.com/dain/leveldb
https://github.com/fusesource/leveldbjni

- Lucene
- Might be possible to trim it down
will (probably) not solve the code size issue
- roll-our-own

- fuzzy matching on words is not too complex; Levenshtein automata
approach are simple to parallelize (“MapReduce”-like tasks) using
O(text length) time for generating automata, and O(output size) for

merging.

- unfortunately, multi-term search is much more complex (n-grams ?)

- NLP preprocessing is also quite complex
for instance, for sound-alikes or synonyms
- Futures

- Measure actual cost of calling JNI (and blocking) vs. creating Future/Promise

Timeline

Notes:
- higher priorities are greater
- Deadline is ETA + 1 week.
- Items in blue are scheduled for after GSoC

Action item Prio | ETA Done Alloc. time (h)
Modify HLAPI doc and interface for Sync event IDs | 2 26-07 10
Design message hook system 2 10
Design, test, ScalaDoc & implementation

ToxState/ToxInstance message queue 1 10-07 20
Replaceuse-of Serializable byuseeftheprete2 | 2 15-07 | 836+ 45
messageformats

ToxModule unloading 2 19-07 10
congestion handling 2 03-08 15
Internationalization + setting descriptions 3 14-08 10
message log queries 2

Tests, ScalaDoc & implementation

1:1 messaging 1 05-08 30
Group messaging 2

Friend list 2

File transfer

AV chat

Device synchronization 2 15
Implementation
KeyValue[_,_] 1 03-07 19
LogStorage interface and spec (+ dep interfaces) | 1 6
ToxState: better ToxModule state storage 3 6
LogStorage 1
Full text search 2
Protocol: documentation & proto2 format
wire-format for synchronization events 2
AV chat
File transfer
Message chunking 2 22-07 10

Test

CLI client

Past TODOs

Design settings mechanism for modules (will leverage state) 2015-06-02
Investigate SettingKey-style settings 2015-06-03
Write pisg script 2015-06-07
Benchmark cost of method call for file |O 2015-06-08
Merge AbstractFile in FileLike 2015-06-09
Implement and Test Configurable (unif. ToxModules & ToxState) 2015-06-21

Also done:
- Relocate classes in the right packages
- Add lenses for module state manipulation
- Finish storage wrapper experiments
- Change (again!) Stream
- Design message modification/deletion
- Add support for N:M friend groups

- GroupMessaging scala file
- Define datatype for inline media

	Tox4j High Level API
	Objective
	Typographic conventions
	Background
	Functional programming

	Requirements
	Customers
	Mobile-specific requirements
	Scale
	Bot
	Desktop & mobile

	Format
	Access patterns
	Confidentiality
	Reliability

	Design Ideas
	Design principles
	Referential transparency
	Storage format independence
	Mobile-friendliness

	-​avoid unnecessary wakeups and batch network transmissions to be more energy-efficient;
	-​avoid making assumptions about the platform in the API and implementation.
	Technologies used
	Generic data structures
	Specific data structures
	ToxState
	Tox configuration
	User profiles
	Friend tag
	Alternatives

	ConversationId
	A ConversationId is an immutable object that carries the information required to identify and contact a chatroom or user. It is an open case class which can be either of core.User, group.GroupChat and group.GroupUser.
	
	Alternatives

	It could have been possible not to have any separation between Conversation and ConversationId. However, many functionalities (logs, friend lists, establishing conversations …) require being able to designate the recipient of a conversation, such as a GroupChat or a User, regardless of whether there is still an ongoing conversation.
	Conversation
	Message event
	Message

	Storage
	Interfaces
	Specialized storage classes
	Interaction with ToxState
	Default implementations
	FileLike
	KeyValue

	Components
	Text messaging
	Message splitting
	Notes:

	Logs
	Notes:

	Friend list
	File transfer
	Group messaging
	JNI binding
	A/V

	Testing
	Test coverage metrics
	Test framework

	Protocol extensions
	Requirements
	Optional protocols
	Feature negotiation
	Instant messaging
	Device synchronization
	Handling deletion
	Friend list synchronization
	Profile synchronisation
	Device-list synchronisation
	Log synchronisation

	Location sharing
	Friends recommendation
	A/V chat
	File transfers
	Real-time synchronization

	Temporary Thoughts
	Timeline
	Past TODOs

