How to Maintain invoicingdb

Rhyannon Joy Rodriguez

Summary

This documentation guides the team through database access and maintenance
following the shutdown of the corp replica. We're transitioning to a new model
where analytical data comes from the data lake and operational data comes from
primary instances via dedicated service accounts. To access production data
now, users must temporarily enable self-service grants in our schema
management tool, request permissions, use the read-only endpoint for queries,
then disable self-service grants. Making database changes requires MySQL 8,
AWS CLI, credentials from Kion and AWS, and critically, creating snapshots
before changes and communicating all work in the team Slack channel. The goal
is to restrict production access to services only while engineers work
primarily in the QA environment. *All proprietary information and links have
been removed.

Frequently Asked Questions

Analytical vs Operational Data and Corp Replica vs Primary Instance

Financial Systems is moving towards the analytical-operational permissions
structure currently being enforced for centraldb. Analytical data, like that
used for financial reporting, should be sourced from our data lake. Previously
requests for analytical data were being routed to our corp replica, but we’ve
turned-off our corp replica, Generally, corp replicas:

e Are read-only clusters that replicate themselves from a primary cluster
using low-level binlog replication
Are dedicated to read-only operations by humans for analytical purposes.
They should not be used by non-humans, such as daemons or cronjobs
No production application and or business critical solution should rely
on a corp replica

e Read/write operations should not be performed against them, as this will
break the replication and require the replica to be rebuilt

e Due to the large number of user grants, restoring grants takes a long
time and rebuilding can take hours

e Are only supported by us as “best effort” and do not come with SLOs or
any other guarantees. We expect them to break and have issues often, and
they do.



We do not recommend or support any important work to be done using them.
If a team’s capability or process requires a guarantee of availability,
it eventually needs to be migrated to a reliable data source, the
primary instance, or our data lake

Operational data should be sourced from the primary instance through service
accounts. We want to move away from shared service accounts. Service accounts
should not be used by multiple applications.For example, we eventually want to
remove the money user. Service account requests should include:

Application or service

Permissions requested (read or read/write)

Tables it needs to access along with the permissions (select, insert,
update, delete)

For restricted tables, follow the steps from article “Requesting Access
to Restricted Tables”

How do we access our data in PROD now that we don’t have the corp
replica?

Temporarily set our invoicingdb schema in to accept self-service grants, grant
yourself access, reset your password, then turn-off self-service grants.

1.
2

Navigate to Schema Management and add invoicingdb to the Schema Name bar
Check Allow Self-Service Grants and Save
o Expect to see “The schema details have been saved”
Navigate to Permissions - Request (MySQL), add add invoicingdb to the
Schema Name bar
Select Request Permissions
o Notice that the host field lists the database cluster write
endpoint
m The only endpoint onboarded is the write endpoint
1. Use KION - AWS if you require additional details about
this internal database’s endpoints
o Expect to see “Permissions successfully granted”
Navigate to Credentials - Reset Password
o You may choose to set your own or allow our tools to generate one
for you
o Select Reset Password
o Use your new password to set-up a new data source in your query
tool of choice
When setting your datasource properties (in DataGrip or otherwise),
please use the read-only endpoint


https://quark.sandbox.indeed.net/

“ ”

o “ro” for read-only

prodinvoicing db.cluster-ro-cr2gqaomp8yh.us-east-2.rds.amazonaws.com

o Write access is for services or specific database changes (like
adjusting grants)
m In addition, binary logs (binlogs) are only accessible with
specific grants and the write endpoint
m Read access is for some services and Invoicing engineers
o Previously, the corp-replica was for financial systems analysts
and reporters
7. Do not forget to turn off self-service grants
o Return to Schema Management
o Uncheck Allow Self-Service Grants
o Select Save
8. If you attempt to run a query in PROD and see

Connections using insecure transport are prohibited while
--require_secure_transport=0N

o Navigate to your data source, right-click and select Properties
m Navigate to the SSH/SSL tab
m Check Use SSL box
1. Select Test Connection
2. If successful, select Apply then OK

How do we verify the retention period for our database transaction
logs (binary logs/"”binlogs”)?

Binlogs are not enabled by default for clusters. This is something that each
database owner should configure based on their specific requirements. For
example, we currently do not have retention periods set for our QA database
invoicingdbtest binlogs. You must have credentials to access the PROD database
invoicingdb, if you don’'t, see the above section “How do we access..” You must
have the proper permissions to view binlogs, otherwise you may see ACCESS
DENIED. If you’'re conducting a task that requires viewing binlogs, you’ll need
cluster admin credentials and the write endpoint must be in use. Service users
require REPLICATION CLIENT privilege to view binlogs, while individual users
have not been granted binlog access at this time. Observe that we have enabled
binlogs by setting cluster parameters in the our Terraform invoicingdb.tf file
and in particular these variables:



name = "binlog_format"

value = "ROW"

apply_method "pending-reboot”

¥
{

name = "enforce_gtid_consistency'’

value = "ON"

apply_method "pending-reboot”

}
{

name "gtid-mode"

value = "ON"

apply_method "pending-reboot”

¥

With the correct permissions while using the write endpoint, you should be
able to see that with SHOW VARIABLES LIKE 'log_bin'; the binlog_backup is set
ON. In addition, you should be able to see a list of logs with the command
show binary logs; in your DataGrip query console (or the tool of your choice).
The retention period is configured in the AWS CLI. Verify the configuration
with the following:

CALL mysqgl.rds_show_configuration;

You may set the retention periods with the following:

CALL mysqgl.rds_set_configuration('binlog retention hours', <some integer



like 24>);

What & Why: Historical Context

Our tables from moneydb were migrated to our own prodinvoicing cluster, but
keeping the name moneydb limited our use of our internal privilege management
system. We have migrated these tables to invoicingdb, so that we can manage
permissions and use our new internal DML and DDL tools.

Our data team is reworking their documentation, but if a doc has a Verified
badge, it should be safe to follow. Reference the documentation in the MySQL
documentation hub before heading to the Slack channel #help-mysql.

During the second migration, existing permissions were copied from moneydb, so
your individual permissions should not have been interrupted to moneydb.
You'll notice from the MySQL documentation hub that using Terraform is the
recommended path to managing new databases, but it is more complex to
retroactively implement to an existing environment. We can use AWS CLI for our
new databases for select circumstances until advised otherwise.

Once all of our internal databases are onboarded onto our internal permissions
system, individuals should be able to self-serve grants. We should aim to
limit traffic to the PROD database. Engineers should only be interacting with
QA while PROD should only be for services. We have turned-off our corp
replica. If for any reason you need admin credentials to make changes not
possible through our tools, see the How-to: Making Database Changes section
below.

db name cluster grants aka
invoicingdbtest gainvoivingdb engineers & “QA”
services

invoicingdb prodinvoicingco engineers “corp replica”


https://indeed.atlassian.net/wiki/spaces/SQL

invoicingdb prodinvoicingdb services only “PROD”

How-to: Making Database Changes

Document your work on a JIRA ticket. Communicate with the team anytime you're
making a database change so as to not accidentally implement a scream test.
Test your changes in QA before moving to PROD. Request that a teammate
verifies your changes. Use Slack channel #invoicing-engineers.

1. If you need to upgrade to MySQL 8

o Not all of our databases have been upgraded yet and the
system-setup script does not enforce MySQL 8.
o Reference article “How to Upgrade MySQL 5.7 to 8.0 on Mac”
2. If you need to install AWS CLI
o Reference article “How-to: Setup AWS CLI”
m Should already be installed and up to date if you're using
the system-setup script
m Check with brew install awscli
m In order to verify your installation (if you installed), or
test your connection you’'re going to need the next step
3. Generate short-term AWS Credentials
o Reference article “"How do I generate short-lived AWS credentials
to use?”
m Log into Kion using Okta
m Select the appropriate project, either financial-systems-qa
or financial-systems-prod
m To continue with “How-to: Setup AWS CLI" Step #4
e Set your profile to [default]
e You don’'t need any profile or timezone info in your
local ~/.aws/credentials file
o To verify that your access to AWS works, Step #7, remove the
command’s profile flag:

aws ec2 describe-vpcs --dry-run



o Short-term credentials expire after a certain number of hours,
make sure they don’t stick around somewhere on your local machine
4. Generate AWS Credentials for our clusters
o Reference article “How do I retrieve the root credentials of my
cluster?”

o Generate cluster credentials with this AWS CLI command

aws secretsmanager get-secret-value --region S{us-east-2} --secret-id
rds-admin-credentials-${gainvoicingdb}

o Change the cluster to reflect the appropriate environment
m QA cluster: gainvoicingdb
m PROD cluster: prodinvoicingdb
e Corp Replica cluster was prodinvoicingco
e Do not attempt to make changes on the replica, it was
turned-off 03/25
e If we ever restore the corp replica, reference article
“How do I rebuild a corp replica of a cluster?”
m Reference articles “How do I access my cluster?” and or “How
do I connect using DataGrip?”
o Remember that these credentials DO NOT EXPIRE by default
m Set your password to expire
m Or, delete your admin console when you’ve completed your
database task
5. If there is any chance that your changes could be destructive in PROD,
restore a snapshot of the cluster before you begin your maintenance
window:
o Reference article “How do I restore a snapshot of my cluster?”
o Reference AWS documentation “Restore-db-cluster-from-snapshot”
o Snapshot commands from the second migration:

aws rds create-db-cluster-snapshot --region us-east-2 --db-cluster-identifier
prodinvoicingdb --db-cluster-snapshot-identifier corp-replica-backup-20241021

6. Execute your changes in stages, verify QA before moving to PROD
7. Document and communicate any issues



	How to Maintain invoicingdb 
	Summary 
	 
	Frequently Asked Questions 
	Analytical vs Operational Data and Corp Replica vs Primary Instance 
	How do we access our data in PROD now that we don’t have the corp replica? 
	How do we verify the retention period for our database transaction logs (binary logs/”binlogs”)? 

	What & Why: Historical Context 
	How-to: Making Database Changes 

