Тип занятия: комбинированное занятие

Тема занятия: «Преобразование выражений с корнями n-ой степени»

Цель занятия:

Деятельностная:

 формирование у учащихся умений выполнять преобразования иррациональных выражений.

Дата: 29.02.2024

Содержательная:

- закрепить представление о корне n-ой степени;
- расширить знания учеников за счет включения новых определений: степень с рациональным показателем;
- познакомиться с задачами на использование свойств корня n-ой степени при решении различных задач.

Оборудование занятия: доска, учебник.

План занятия:

- 1. Корень п-ой степени и его свойства (повторение).
- 2. Степень с рациональным показателем.
- 3. Задания с решением.
- 4. Задачи для самостоятельного решения

Ход занятия

1. Корень -ой степени и его свойства

Определение:

Корнем n-ой степени (n — натуральное число, отличное от 1) из числа a называется такое число b, n-ая степень которого равна числу a.

$$\sqrt[n]{a} = b$$
, где $a = b^n$.

Определение:

Арифметическим корнем n-ой степени от отрицательного числа a называется неотрицательное число b, n-ая степень которого равна числу a.

Свойства:

Для положительных чисел a, b при $n \in \mathbb{N}$, $k \in \mathbb{Z}$ для корней n–ой, k –ой степени

$$1. \ (\sqrt[n]{a})^n = a;$$

$$2.\sqrt[n]{ab} = \sqrt[n]{a} . \sqrt[n]{b};$$

$$3. \sqrt[nk]{a^k} = \sqrt[n]{a};$$

$$4. \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}};$$

$$5. \left(\sqrt[n]{a}\right)^k = \sqrt[n]{a^k};$$

$$6. \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}.$$

2. Степень с рациональным показателем

Определение:

Степенью числа a>0 с рациональным показателем $\frac{m}{n}$ называется значение корня —ой степени из числа a^m .

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}.$$

Свойства:

Для любых чисел a, b, для любых целых чисел m, n

1.
$$a^m$$
. $a^n = a^{m+n}$;

2.
$$a^m$$
: $a^n = a^{m-n}$;

3.
$$(a^m)^n = a^{mn}$$
;

4.
$$(ab)^n = a^n . b^n$$
;

$$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n};$$

6. если
$$m > n$$
, то $a^m > a^n$ при $a > 1$

$$a^m < a^n$$
при $0 < a < 1$.

Свойства:

Для a > 0, b > 0 и любых рациональных чисел r, s

1.
$$a^r$$
. $a^s = a^{r+s}$; 2. a^r : $a^s = a^{r-s}$;

2.
$$a^r$$
: $a^s = a^{r-s}$

3.
$$(a^r)^s = a^{rs}$$
;

4.
$$(ab)^r = a^r . b^r$$
;

$$5. \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r};$$

6. если r - рациональное число И

$$0 < a < b,$$

то
$$a^r > b^r$$
 при $r > 0$; $a^r > b^r$ при $r < 0$

7. Для рациональных чисел r, s из неравенства r > s, получаем $a^r > a^s$ при a > 1, $a^r < a^s$, при 0 < a < 1.

3. Задания с решением

Пример 1. Вычислите:

a)
$$\sqrt[4]{\frac{81}{256}}$$
; 6) $\sqrt[3]{27}$.

Решение:

a)
$$\sqrt[4]{\frac{81}{256}} = \frac{3}{4}$$
 и $\sqrt[4]{\frac{81}{256}} = -\frac{3}{4}$, так как $(\frac{3}{4})^4 = \frac{81}{256}$ и $(-\frac{3}{4})^4 = \frac{81}{256}$.

Ответ: $\frac{3}{4}$ и $-\frac{3}{4}$

б)
$$\sqrt[3]{27} = 3$$
, так как $3^3 = 27$.

Ответ: 3

Пример 2. Найдите значение выражения:

a)
$$\sqrt[4]{16.625}$$
; 625 ; $6\sqrt[4]{5\frac{1}{16}}$

$$6)\sqrt[4]{5\frac{1}{16}}$$

в)
$$\sqrt[21]{2187}$$

B)
$$\sqrt[21]{2187}$$
 Γ) $\sqrt[4]{9}$ $\sqrt{65}$ $\cdot \sqrt[4]{9}$ $+$ $\sqrt{65}$

Решение:

a)
$$\sqrt[4]{16 \cdot 625} = \sqrt[4]{16} \cdot \sqrt[4]{625} = 2 \cdot 5 = 10$$

Ответ: 10

$$6)\sqrt[4]{5\frac{1}{16}} = \sqrt[4]{\frac{81}{16}} = \frac{\sqrt[4]{81}}{\sqrt[4]{16}} = \frac{3}{2}$$

Otbet: $\frac{3}{2}$

B)
$$\sqrt[21]{2187} = \sqrt[21]{3^7} = \sqrt[3]{3}$$

$$\Gamma) \sqrt[4]{9} - \sqrt{65} \cdot \sqrt[4]{9} + \sqrt{65} = \sqrt[4]{(9 - \sqrt{65})} \cdot (9 + \sqrt{65}) = \sqrt[4]{(9)^2} - (\sqrt{65})^2$$

$$= \sqrt[4]{81 - 65} = \sqrt[4]{16} = 4$$

Ответ: 4

Пример 3.Вынесите множитель из-под знака корня:

a)
$$\sqrt[4]{243b^4}$$
 6) $\sqrt[5]{-128a^7}$

б)
$$\sqrt[5]{-128a^7}$$

Решение:

a)
$$\sqrt[4]{243b^4} = \sqrt[4]{3 \cdot 80b^4} = 3b\sqrt[4]{3}$$

Ответ: $3b\sqrt[4]{3}$

6)
$$\sqrt[5]{-128a^7} = \sqrt[5]{-4 \cdot 32 \ a^2a^5} = -2a\sqrt[5]{4a^2}$$

Пример 4. Внесите под знак корня:

a)
$$4\sqrt[3]{3}$$

a)
$$4\sqrt[3]{3}$$
 6) $ab\sqrt[8]{\frac{5b^3}{a^7}}$

Решение:

а) $4\sqrt[3]{3}$, так как корень третьей степени, внесем число 4 под корень с

$$4\sqrt[3]{3} = \sqrt[3]{4^3 \cdot 3} = \sqrt[3]{192}$$

Ответ: $\sqrt[3]{192}$

б) $ab\sqrt[8]{\frac{5b^3}{a^7}}$, так как корень восьмой степени, внесем число a, b под корень с показателем 8.

$$ab\sqrt[8]{\frac{5b^3}{a^7}} = \sqrt[8]{a^8b^8 \frac{5b^3}{a^7}} = \sqrt[8]{5ab^{16}}$$

Ответ: $\sqrt[8]{5ab}^{16}$

4. Задачи для самостоятельного решения

Задача 1. Вычислите:

a)
$$\sqrt[5]{-\frac{1}{32}}$$
; 6) $\sqrt[3]{64}$

Задача 2. Найдите значение выражения:

6)
$$\sqrt[3]{\sqrt[2]{64}}$$

B)
$$\sqrt[7]{128^3}$$

Задача 3. Вынесите множитель из-под знака корня:

a)
$$\sqrt{45a^4b^6}$$

Задача 4.Внесите под знак корня:

a) -
$$b\sqrt[4]{3}$$

Задание на дом:

- 1. Повторить формулы сокращенного умножения, свойства квадратного корня.
- 2. Выполнить задания для самостоятельного решения.
- 3. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10-11 классы : базовый и углубленный уровни : учебник / Ш. А. Алимов, Ю. М. Колягин, М. В. Ткачёва [и др.]. 10-е изд., стер. Москва : Просвещение, 2022. 463

§5 c. 24-29, № 61, №62

Выполненную работу необходимо сфотографировать и отправить на почтовый ящик <u>pushistaV@yandex.ru</u>, <u>Бережная Валерия Александровна</u> (VK)

ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО