

IOUtils Project Plan
A new ChromeOnly API for File I/O.

Author: Keefer Rourke
Last updated: 2020, Aug 27
Related docs

●​ Port OS.File to C++

Related bugs
Bug 1529336:

●​ OS.File loads scripts in a way that means they stick around in memory as strings
Bug 975702:

●​ [OS.File] Port OS.File to C++
Bug 1231711:

●​ [meta] Port OS.File to C++
Bug 986145:

●​ [OS.File] Stop using OS.File during startup

Abstract
OS.File (osfile.jsm) is a filesystem API for our frontend JavaScript code in Firefox. For several
years, we have wished to port the OS.File API to C++ for performance gains (reduced memory
usage, cache-contention, and disk access).

OS.File is implemented in both JavaScript and C++, but the main API for interacting with it is
written in JavaScript. As a consequence of this, each process must load its own copy of the
API, as it cannot live in shared memory. With the Fission project (site isolation for SPECTRE
et al.) the number of Firefox processes will increase drastically, so this API must be
rewritten.

I propose a new WebIDL API, dubbed “IOUtils” (named after ChromeUtils, DebuggerUtils,
InspectorUtils, etc.), to be the replacement for OS.File.

This is a working document to address the issue of defining and implementing the new
IOUtils API in C++, as well as the eventual replacement of OS.File. Goals (and non-goals) of
the project are outlined below with a project plan, progress on implementations, and any
additional concerns and questions.

https://docs.google.com/document/d/1YrjPUYAvh0-2UBSGHfBW69PcMVXtg44HzK8sUt3VhJo
https://bugzilla.mozilla.org/show_bug.cgi?id=1529336
https://bugzilla.mozilla.org/show_bug.cgi?id=975702
https://bugzilla.mozilla.org/show_bug.cgi?id=1231711
https://bugzilla.mozilla.org/show_bug.cgi?id=986145
https://searchfox.org/mozilla-central/source/toolkit/components/osfile/osfile.jsm

Goals
●​ Create an ergonomic, unified, and performant API for File I/O, instrumented from

JavaScript
●​ Feature parity with OS.File, except for broken features which have unaddressed bugs
●​ Use clear, simple method signatures for common usage patterns
●​ Fully describe the API in Web IDL to freely allow for the implementation to change
●​ Use this opportunity to simplify and/or improve the API used for file I/O

○​ E.g. Attempt to hide platform-specific differences between win32/unix
systems

Non-Goals
●​ Perform a method-by-method, class-by-class port; the shape of this new API may be

different than OS.File’s API for technical or preferential reasons
●​ To surprise; the new API should be familiar to the caller, following modern but

established conventions in the mozilla-central code-base.
●​ Replace other I/O APIs (e.g. nsIFile & FileUtils) which may be present in

mozilla-central
○​ Corollary: We also do not want to introduce Yet Another File API, which will be

half-adopted. This API must be stable, and sufficient to cover OS.File
use-cases.

●​ Work outside the context of the Firefox desktop front-end; this API is intended to be
exposed only to privileged JavaScript (ChromeOnly)

IOUtils API
This revised File I/O API takes inspiration from the existing OS.File API, and well-known I/O
libraries such as Golang’s os and io/ioutil packages, Apache Commons IOUtils, among
others.

This API is privileged, and it should be clear that it is not to be confused with the
unprivileged DOM File API.

Differences from OS.File

At no point should a file descriptor/handle be exposed to the caller. This API operates only
on path and file objects. Platform-specific file descriptors may have been exposed by
instances of OS.File through the fd attribute. This will no longer be possible.

https://searchfox.org/mozilla-central/search?q=nsIFile&path=
https://searchfox.org/mozilla-central/search?q=fileutils.jsm&path=
https://golang.org/pkg/os/
https://golang.org/pkg/io/ioutil/
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://developer.mozilla.org/en-US/docs/Web/API/File
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/OSFile.jsm/OS.File_for_workers#Attributes

The Date type does not exist in WebIDL, thus IOUtils will have no methods that support
changing file access/modification times with specified values.

Error reporting

When an OS.File method runs into an error, it will throw/reject with a custom OS.File.Error
object with custom attributes that can be checked for different common error cases.

IOUtils has similar behaviour, but instead it throws/rejects with a DOMException.
DOMExceptions have a name and a message. The following DOMExceptions are thrown
depending on the failure:

Exception Name Reason for exception

NotFoundError A file at the specified path could not be found on disk.

NotAllowedError Access to a file at the specified path was denied by the operating
system.

NotReadableError A file at the specified path could not be read for some reason. It
may have been too big to read, or it was corrupt, or some other
reason. The exception message should have more details.

ReadOnlyError A file at the specified path is read only and could not be modified.

NoModification
AllowedError

A file already exists at the specified path and could not be
overwritten according to the specified options. The exception
message should have more details.

OperationError Something went wrong during the I/O operation. E.g. failed to
allocate a buffer. The exception message should have more
details.

UnknownError An error happened that is unknown to the IOUtils
implementation. The nsresult error code should be included in
the exception message to assist with debugging and improving
the IOUtils internal error handling.

Ownership and Review

This API will be ChromeOnly, and thus will be placed under the following source directories:

1.​ Web IDL files will be placed under dom/chrome-webidl
2.​ Implementations will be placed under dom/system

https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/OSFile.jsm/OS.File.Error
https://developer.mozilla.org/en-US/docs/Web/API/DOMException

Therefore, this code will be owned by the Document Object Model Module, and reviews will
be requested from peers of the DOM.

Specification

This privileged API will be exposed on both Windows and Workers in the Firefox front-end.

A patch with the first draft of the specification can be found here.

The current API is defined here. Example usages can be found in tests here and here.

Implementation

IOUtils will be implemented as a set of abstractions in C++, on top of the Netscape Portable
Runtime (NSPR) to support a platform-neutral API and implementation.

Static methods

OS.File method IOUtils equivalent Implementation status

read read ✅ (patch)

readUTF8 ✅ (patch)

writeAtomic writeAtomic ✅ (patch) (follow-up)

writeAtomicUTF8 ✅ (patch)

move move

✅ (patch)

rename

remove remove ✅ (patch)

removeDir remove({recursive: true})

removeEmptyDir

makeDir makeDirectory ✅ (patch)

stat stat ✅ (patch)

setDates touch ✅ (patch)

https://wiki.mozilla.org/Modules/All#Document_Object_Model
https://phabricator.services.mozilla.com/D76743
https://searchfox.org/mozilla-central/source/dom/chrome-webidl/IOUtils.webidl
https://searchfox.org/mozilla-central/source/dom/system/tests/test_ioutils.html
https://searchfox.org/mozilla-central/source/dom/system/tests/file_ioutils_worker.js
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://phabricator.services.mozilla.com/D78134
https://phabricator.services.mozilla.com/D87020
https://phabricator.services.mozilla.com/D78134
https://phabricator.services.mozilla.com/D82601
https://phabricator.services.mozilla.com/D87020
https://phabricator.services.mozilla.com/D82202
https://phabricator.services.mozilla.com/D83663
https://phabricator.services.mozilla.com/D83996
https://phabricator.services.mozilla.com/D84408
https://phabricator.services.mozilla.com/D86832

copy copy ✅ (patch)

new DirectoryIterator(path) getChildren ✅ (patch)

setPermissions None ❌ Will not implement

unixSymlink None ❌ Will not implement

getCurrentDirectory None ❌ Will not implement

setCurrentDirectory None ❌ Will not implement

open None ❌ Will not implement

openUnique None ❌ Will not implement

exists None, use stat if necessary ❌ Will not implement

Action Plan, timeline, roadmap
This project will be achieved through the following steps:

1.​ Fully define and finalize the new API in WebIDL.
a.​ Once this API is approved by module owners, it will be merged into

mozilla-central. Methods will be implemented one-by-one, along with
introducing their IDL definitions.

b.​ This will inform the incremental development which will occur through the
summer.

2.​ Implement the new API in incremental patches.
a.​ Submit a new patch per method or data structure, with tests

■​ For methods of the new API which correspond directly to the OS.File
API, ensure there are tests that assert compatibility between the two
APIs. These tests will also assist in developing a migration guide.

b.​ Do not introduce usages of the new API outside of tests until it is fully
implemented.

3.​ Migrate the >1000 usages of OS.File in JavaScript to use the new IOUtils API described
in this document.

a.​ This will likely be done file-by-file in many patches.
4.​ Remove the implementation of OS.File entirely from Mozilla Central?

An approximate timeline is outlined below, with the understanding that this project is
scoped to take my entire internship (mid May 2020, through to end of August 2020).

https://phabricator.services.mozilla.com/D85940
https://phabricator.services.mozilla.com/D87875
https://searchfox.org/mozilla-central/search?q=OS.File&path=

Work will be tracked on this Trello board: https://trello.com/b/hnIEePZu

Approx. Dates Status Work detail

May 14-22 Complete Onboarding and in-depth review of existing OS.File
javascript API, planning for the new API.

OS.File API review

May 22-30 Complete Draft IOUtils API specification in Web IDL

Bug 1641699 Draft Web IDL specification with stubbed C++
implementation

June 1 - Aug 21 Complete Implement API in C++

Aug 18 - Aug 28 In progress Migrate OS.File API usages to use IOUtils

Bug 986145 Stop using OS.File during startup

Later Not started Remove OS.File from mozilla-central

Extensions and future work
Consider a synchronous version of the API for Rust consumers.

https://bugzilla.mozilla.org/show_bug.cgi?id=1231711#c19

Consider adding streaming support.
This could use the W3C streams API.

Add an analogous interface for OS.File’s directory iterator.
​ This will likely need async iterable support in webIDL.

A synchronous directory iterator would not be ideal, since it would probably need to
hold an nsIFile in its instance.

An alternative approach is currently implemented by the method:
Promise<sequence<DOMString>> IOUtils.getChildren(DOMString path)

https://trello.com/b/hnIEePZu
https://docs.google.com/document/d/1ioeubM4NqbOHGo9yEb2PtUGtqsGTmookB-WPzKux-zs/edit
https://bugzilla.mozilla.org/show_bug.cgi?id=1641699
https://bugzilla.mozilla.org/show_bug.cgi?id=986145
https://bugzilla.mozilla.org/show_bug.cgi?id=1231711#c19
https://www.w3.org/TR/streams-api/
https://developer.mozilla.org/en-US/docs/Mozilla/JavaScript_code_modules/OSFile.jsm/OS.File.DirectoryIterator_for_the_main_thread

Questions

Open

None at the moment.

Answered

●​ We support iterable —Do we support WebIDL’s async iterable? Would this be
required to make an async directory iterator?

A: IOUtils currently can’t provide an async iterator like OS.File’s DirectoryIterator
object, since we don’t support async iterables in WebIDL yet. However, we can
achieve similar functionality with a call to IOUtils.getChildren. E.g.

for (const dirEntry of await IOUtils.getChildren(path)) {

/* do something */
}

Rather than:

for await (const {path} of new DirectoryIterator(path)) {

/* do something */
};

●​ NSPR doesn’t appear to have a method for creating a new hard or soft link. How do
we extend NSPR to add support for this?

○​ Is this even necessary, given OS.File.unixSymlink isn’t used outside of tests?

A: IOUtils will not provide an API for managing file links.

●​ How are platform differences handled in chrome code? Do we perform runtime
checks and adjust behaviour accordingly (e.g. to use Windows Security Policies
instead of Unix file mode/perms)?

○​ If we implement on top of NSPR, do these runtime checks disappear?

A: We’ll perform platform checks sometimes, if it’s deemed necessary for some
performance enhancement, e.g. to make a call to posix_fadvise on Linux. We will
have a single implementation though.

https://heycam.github.io/webidl/#prod-AsyncIterable

●​ NSPR/PRIO has creationTime (OS.File’s corresponding file creationDate is buggy and
deprecated, and most Linux file systems don’t store creationTime in inodes).

○​ Do we expose a creationDate on the new API?

A: No, we will expose only what is available via the nsLocalFile C++ interface, since it
is the only correct cross-platform way to represent/manage files. This interface only
exposes modification times, and thus IOUtils will also only expose modification
times.

●​ NSPR doesn’t have a notion of “last access time”... Do we extend NSPR? Do we use

something else to implement this?

A: See the answer to the above question.

	IOUtils Project Plan
	Abstract
	Goals
	Non-Goals
	IOUtils API
	Differences from OS.File
	Error reporting

	Ownership and Review
	Specification
	Implementation

	Action Plan, timeline, roadmap
	Extensions and future work
	Questions
	Open
	Answered

