
Token Binding over QUIC 

Chromium intent-to-implement: 
https://docs.google.com/document/d/1Ta3GlT_LrqAOLV217Kutn3B2trvifStxB0CThQ_kk78/edit 
Specs: 
http://datatracker.ietf.org/doc/draft-ietf-tokbind-protocol/​
http://datatracker.ietf.org/doc/draft-ietf-tokbind-negotiation/​
http://datatracker.ietf.org/doc/draft-ietf-tokbind-https/ 
 
The current Token Binding draft specs are designed around an application protocol (such as 
HTTP) running over TLS. In addition to supporting Token Binding over TLS, we wish to support 
Token Binding using QUIC in place of TLS. This is broken into two parts: the first is how to 
negotiate Token Binding with QUIC (replacing “Transport Layer Security (TLS) Extension for 
Token Binding Protocol Negotiation”), and the second is making a slight change to the Token 
Binding Protocol to support QUIC in place of TLS. 

Changes to QUIC crypto to support Token Binding 

QUIC_VERSION_26 introduces a new tag, XLCT, which must be present in the client hello, and 
makes a change to the main KDF, so that it closes over the server’s identity. These changes are 
to avoid an unknown key share attack on Token Binding. 
 
The value of the XLCT tag sent by the client in the CHLO must be equal to the FNV-1a hash of 
the server’s leaf certificate. (The XLCT name is an abbreviation for “expected leaf certificate.”) 
The server must verify this value, and send a REJ message if the values do not match. Such a 
mismatch could occur in a 0-RTT connection where the server has rotated its certificate since 
the client last connected. 
 
The main KDF is changed so that the HKDF info input includes the server’s leaf certificate. The 
info input previously had a suffix containing the connection ID, serialized client hello, and 
serialized server config. This change appends to the end of that suffix the server’s leaf 
certificate. 
 

Token Binding Protocol Negotiation in QUIC 

A new tag, TBKP, in the server config and the full client hello will be used to negotiate the token 
binding key parameters. In the server config, the value for this tag will be a list of tags 
corresponding to the key parameters that the server supports. Currently only one key parameter 
is supported, ecdsap256, represented by tag P256, corresponding to the value in the 
TokenBindingKeyParameters enum from the Token Binding Negotiation TLS Extension spec. If 
the client chooses to negotiate Token Binding, the full client hello will include the tag TBKP with 
a value of the tag for the preferred key parameter in the server’s list, or omit the TBKP tag if the 

https://docs.google.com/document/d/1Ta3GlT_LrqAOLV217Kutn3B2trvifStxB0CThQ_kk78/edit
http://datatracker.ietf.org/doc/draft-ietf-tokbind-protocol/
http://datatracker.ietf.org/doc/draft-ietf-tokbind-negotiation/
http://datatracker.ietf.org/doc/draft-ietf-tokbind-https/
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit


client does not support any of the server’s key parameters. This should function the same way 
as AEAD or KEXS. 
 
This negotiation scheme also works for 0-RTT connections: The client already knows what the 
server supports (because it is in the server config), so it sends a single value for TBKP in the 
client hello, and in the application data it can send a TokenBindingMessage (e.g. a 
Token-Binding header) using a key of that negotiated type. 
 

Token Binding Protocol changes 

The Token Binding Protocol assumes that TLS will be used, but the only part of the spec that is 
specific to using TLS for the transport layer is the reference to its Keying Material Exporters (as 
defined in RFC 5705). 

Key Material Exporters 

Quic has its own keying material exporter (as defined in 
QuicCryptoStream::ExportKeyingMaterial) which appears to be a likely candidate to use in place 
of the TLS EKM. However, it cannot be used until the crypto handshake is complete because it 
uses a subkey secret that is generated as part of the forward secure key derivation. To work 
around this issue, we can generate a subkey secret during the initial key derivation, and use 
that in a new exporter. 
 
The following changes would be needed: 

●​ Add a initial_subkey_secret field to QuicCryptoNegotiatedParameters 
●​ In the client and server, when calling CryptoUtils::DeriveKeys to derive the initial keys, 

pass in &initial_subkey_secret to be filled. 
●​ Define a new method QuicCryptoStream::ExportInitialKeyingMaterial. This will be 

implemented using CryptoUtils::ExportKeyingMaterial (like 
QuicCryptoStream::ExportKeyingMaterial), but uses initial_subkey_secret instead of 
subkey_secret. 


	Token Binding over QUIC 
	Changes to QUIC crypto to support Token Binding 
	Token Binding Protocol Negotiation in QUIC 
	Token Binding Protocol changes 
	Key Material Exporters 


