
Algorithmic Frontier: Domain-Specific 
Computational Paradigms 
Beyond Transformers—Domain-Specific Algorithms 
The current era of artificial intelligence is overwhelmingly defined by the success of 
large-scale, general-purpose architectures, most notably the transformer. Their 
unprecedented ability to scale with data and compute has revolutionized fields from natural 
language processing to computer vision, creating a powerful paradigm of pre-training on vast, 
unlabeled datasets and fine-tuning for specific tasks. This success has naturally led to the 
application of these models to scientific domains, where they have shown promise in 
accelerating data analysis, predicting protein structures, and identifying patterns in 
high-dimensional experimental outputs. However, this report posits that the uncritical 
application of these general-purpose architectures to deep scientific problems is 
approaching a point of diminishing returns. The next frontier of discovery will not be unlocked 
by simply scaling existing models, but by a strategic pivot towards a new lexicon of 
domain-specific algorithms. 

Scientific inquiry demands more than statistical correlation; it requires causality, 
interpretability, and adherence to fundamental physical laws. The "black-box" nature of many 
deep learning models, while acceptable for tasks where performance is the sole metric, is a 
significant impediment to scientific discovery, where understanding the "how" and "why" is 
paramount for non-machine learning experts in fields like physics, chemistry, and materials 
science.1 The future of computational science lies in a fundamental shift from using AI as a 
tool 

for science—a pattern recognizer that accelerates existing workflows—to developing a truly 
Scientific AI, where the algorithms themselves are designed to operate according to scientific 
principles. This is a qualitative evolution of AI's role from a high-throughput lab assistant to a 
collaborative partner in hypothesis generation and theory formation. Systems like AI-Hilbert, 
which symbiotically integrate theoretical knowledge as formal axioms with empirical data to 
derive new, interpretable mathematical models, exemplify this new paradigm.3 They augment 
the scientific method itself, rather than merely accelerating its constituent steps. 

This report is predicated on a foundational concept in machine learning: the "No-Free-Lunch" 
theorem. There is no single model that is optimal for all problems. The immense success of 
transformers has created a cognitive bias towards a universal architecture, yet a growing 
body of evidence suggests that for scientific problems, domain-agnostic scale must be 
complemented by domain-specific structure. Research into Hamiltonian Neural Networks and 
Physics-Informed Neural Networks demonstrates that embedding physical principles like 
energy conservation or the form of a partial differential equation directly into the model's 



architecture leads to vastly improved data efficiency, generalization, and physical plausibility.4 
In some climate modeling scenarios, simpler, physics-based models have even been shown to 
outperform complex deep learning approaches that struggle with natural data variability.8 

Therefore, this document serves as a strategic white paper outlining a research agenda for 
this new era. It presents a curated portfolio of 100 distinct, domain-specific algorithm 
categories designed to trigger thinking and guide development. These are not existing, 
off-the-shelf algorithms, but conceptual paradigms that respond to the unique challenges of 
their respective domains. Organized across five critical areas—Physical/Engineered Systems, 
Chemistry/Materials Science, Biological Complexity, Neuroscience/Cognitive Systems, and 
Socio-Economic/Adaptive Systems—this catalog represents a necessary diversification of our 
computational toolkit. It is a blueprint for moving beyond correlation to causation, from 
pattern recognition to principle discovery, and from black-box prediction to glass-box 
understanding. 

Executive Summary Table 
The following table provides a comprehensive, at-a-glance reference to all 100 algorithm 
categories detailed in this report. It is designed for executive review and to serve as a 
navigable index to the full descriptions in the subsequent sections. Each entry includes a 
unique identifier, a descriptive name, its primary domain, and a one-sentence 
"Thought-Trigger" that distills the core concept of the algorithm. 

Table 1: A Catalog of 100 Domain-Specific Algorithm Categories 

ID Algorithm Category 
Name 

Primary Domain Core Principle / 
"Thought-Trigger" 

Part I: Physical 
and Engineered 
Systems 

   

PHY-01 Hamiltonian 
Symplectic 
Integrators 

Physical Systems Learn a system's 
conserved energy 
landscape to 
guarantee stable, 
long-term 
trajectory 
predictions that 
never violate 
physics. 



PHY-02 Lagrangian 
Variational Solvers 

Physical Systems Discover equations 
of motion by 
finding the "path of 
least action" in 
observational data, 
inherently 
capturing system 
symmetries. 

PHY-03 Port-Hamiltonian 
Dissipative 
Learners 

Physical Systems Model real-world 
systems with 
friction and 
external forces by 
learning how 
energy flows in, 
out, and through 
the system. 

PHY-04 Constrained 
Gauge-Equivariant 
Field Learners 

Physical Systems Learn fields (e.g., 
electromagnetism) 
that automatically 
respect intrinsic 
geometric 
constraints and 
symmetries, like 
divergence-free 
properties. 

PHY-05 Lie Group 
Integrators for 
Symmetrical 
Systems 

Physical Systems Simulate systems 
with rotational or 
other continuous 
symmetries by 
performing 
calculations 
directly on the 
manifold of the 
symmetry group. 

PHY-06 Physics-Informed 
Neural ODEs 

Physical Systems Solve complex 
ordinary differential 
equations by using 



(PIN-ODEs) a neural network as 
the solution 
function, penalized 
by its deviation 
from the equation 
itself. 

PHY-07 Inverse Problem 
Solvers via 
Differentiable 
Physics 

Physical Systems Discover unknown 
physical 
parameters (e.g., 
material 
conductivity) by 
backpropagating 
from observed data 
through a 
differentiable 
simulation. 

PHY-08 Spatiotemporal 
Fourier Neural 
Operators 

Physical Systems Learn the entire 
solution family for a 
PDE in the 
frequency domain, 
enabling zero-shot 
super-resolution 
and mesh-free 
predictions. 

PHY-09 Causal 
Spatiotemporal 
Graph Networks 

Physical Systems Model complex 
physical 
interactions by 
learning a causal 
graph where nodes 
are system 
components and 
edges represent 
physical influence, 
respecting the 
speed of light. 

PHY-10 Discontinuity-Awar Physical Systems Learn to solve PDEs 
with sharp 



e PDE Solvers gradients or shocks 
(e.g., in supersonic 
flow) by adaptively 
placing 
computational 
effort at 
discontinuities. 

PHY-11 Active Learning 
Multi-Fidelity 
Surrogates 

Engineered 
Systems 

Intelligently build a 
cheap 
approximation of 
an expensive 
simulation by 
deciding which 
simulation (cheap 
low-res or costly 
high-res) to run 
next. 

PHY-12 Bayesian 
Optimization for 
Design Exploration 

Engineered 
Systems 

Efficiently search 
vast engineering 
design spaces by 
building a 
probabilistic model 
of the performance 
landscape to guide 
each new 
experiment. 

PHY-13 Generative Models 
for Topology 
Optimization 

Engineered 
Systems 

Generate novel, 
high-performance, 
and 
manufacturable 
structural designs 
(e.g., trusses, 
brackets) that 
optimally distribute 
material under 
load. 



PHY-14 Differentiable 
Engineering 
Simulators 

Engineered 
Systems 

Represent an entire 
engineering 
simulation (e.g., a 
finite element 
model) as a 
differentiable 
program for 
gradient-based 
design 
optimization. 

PHY-15 Control Co-Design 
Optimizers 

Engineered 
Systems 

Simultaneously 
optimize a system's 
physical design 
(e.g., a robot's 
body) and its 
control policy (its 
"brain") to achieve 
superior 
performance. 

PHY-16 Probabilistic 
Graphical Models 
for System 
Reliability 

Engineered 
Systems 

Model the 
probability of 
system failure by 
representing 
components as 
nodes in a graph 
and learning the 
conditional failure 
probabilities 
between them. 

PHY-17 Bayesian 
Calibration of 
Simulation Models 

Engineered 
Systems 

Systematically 
reduce the gap 
between simulation 
and reality by using 
real-world data to 
infer the probability 
distributions of 
uncertain model 
parameters. 



PHY-18 Forward 
Uncertainty 
Propagation via 
Polynomial Chaos 

Engineered 
Systems 

Efficiently compute 
how uncertainty in 
a model's inputs 
propagates to its 
outputs without 
running millions of 
Monte Carlo 
simulations. 

PHY-19 Physics-Constraine
d Data Assimilation 
Algorithms 

Engineered 
Systems 

Fuse sparse, noisy 
real-world sensor 
data with a 
physics-based 
model to create a 
complete and 
accurate estimate 
of a system's state. 

PHY-20 Hybrid 
Particle-Mesh 
Solvers 

Physical Systems Combine the 
strengths of 
grid-based and 
particle-based 
methods to 
simulate 
phenomena with 
both continuous 
fields and discrete 
elements, like 
fluid-structure 
interaction. 

Part II: Chemistry 
and Materials 
Science 

   

CHE-01 SE(3)-Equivariant 
Generative 
Networks for 3D 
Molecules 

Chemistry Generate novel 3D 
molecular 
conformers that are 
guaranteed to be 
physically realistic 
by building 



rotational and 
translational 
symmetries into the 
network 
architecture. 

CHE-02 Hypergraph Neural 
Networks for 
Reaction Pathways 

Chemistry Model complex 
chemical reactions 
by representing 
reactants, 
products, and 
transition states as 
nodes in a 
hypergraph to 
predict reaction 
outcomes and 
yields. 

CHE-03 Quantum Graph 
Neural Networks 
for Electron 
Dynamics 

Chemistry Learn molecular 
properties by 
directly 
approximating 
solutions to the 
Schrödinger 
equation on a 
molecular graph, 
capturing quantum 
effects. 

CHE-04 Differentiable 
Molecular 
Dynamics 
Simulators 

Chemistry Create end-to-end 
differentiable 
simulations of 
molecular motion 
to learn force fields 
from data or design 
molecules that 
self-assemble into 
target structures. 

CHE-05 Generative Models 
for Crystal 

Materials Science Discover new 
stable crystalline 



Structure Design materials by 
generating atom 
positions and 
lattice vectors that 
adhere to 
crystallographic 
symmetry groups. 

CHE-06 Compositional 
Generative Models 
for Material Design 

Materials Science Create novel, 
complex materials 
by learning a 
"language" of 
fundamental 
building blocks and 
the grammatical 
rules for combining 
them. 

CHE-07 Latent Space 
Optimization for 
Inverse Property 
Design 

Materials Science Navigate the latent 
space of a 
generative material 
model using 
optimization 
algorithms to find 
novel materials with 
specific target 
properties (e.g., 
high conductivity). 

CHE-08 Property-Constrain
ed Diffusion Models 

Materials Science Generate new 
materials that are 
guaranteed to have 
desired properties 
by guiding the 
diffusion/denoising 
process with a 
separate property 
prediction model. 

CHE-09 Multi-Objective 
Inverse Design 

Materials Science Simultaneously 
optimize for 



Algorithms multiple, often 
competing, material 
properties (e.g., 
strength vs. weight) 
to find the 
Pareto-optimal 
frontier of new 
materials. 

CHE-10 Generative Models 
for Amorphous and 
Disordered 
Systems 

Materials Science Design glasses and 
other 
non-crystalline 
materials by 
learning the 
statistical 
distributions of 
local atomic 
environments 
rather than a fixed 
lattice structure. 

CHE-11 Neuro-Symbolic 
Equation Discovery 
for QSAR 

Chemistry Discover 
human-readable 
mathematical 
formulas that link a 
molecule's 
structure to its 
biological activity 
(QSAR) by 
combining neural 
networks with 
symbolic 
regression. 

CHE-12 Automated 
Synthesis Planning 
via Graph Rewriting 

Chemistry Propose viable 
multi-step 
synthesis routes for 
a target molecule 
by treating 
chemical reactions 
as graph 



transformation 
rules and searching 
for a path from 
reactants. 

CHE-13 Causal Inference 
for Mechanistic 
Chemistry 

Chemistry Determine the 
causal drivers of a 
reaction's outcome 
by applying causal 
discovery 
algorithms to 
high-throughput 
experimental data, 
distinguishing 
correlation from 
cause. 

CHE-14 Hybrid 
Quantum-Classical 
Solvers for 
Catalysis 

Chemistry Model catalytic 
reactions by 
treating the active 
site with 
high-fidelity 
quantum chemistry 
and the 
surrounding 
environment with a 
cheaper classical 
or ML model. 

CHE-15 Interpretable 
Chemical Rule 
Induction Systems 

Chemistry Extract simple, 
human-understand
able "if-then" rules 
for chemical 
reactivity or 
material stability 
from large 
datasets, 
complementing 
black-box models. 



CHE-16 Bayesian 
Experimental 
Design for 
Materials Discovery 

Materials Science Guide a materials 
discovery 
campaign by using 
a probabilistic 
model to decide 
which experiment 
to run next to 
maximize 
information gain 
about the property 
landscape. 

CHE-17 Uncertainty-Aware 
Active Learning for 
Force Fields 

Chemistry Build accurate 
machine learning 
force fields with 
minimal quantum 
chemistry 
calculations by 
intelligently 
selecting which 
molecular 
configurations are 
most uncertain. 

CHE-18 Transfer Learning 
for Sparse 
Materials Data 

Materials Science Predict properties 
for a new, 
data-scarce 
material class by 
pre-training a 
model on a large 
database of 
existing materials 
and fine-tuning it. 

CHE-19 Federated Learning 
for Proprietary 
Chemical Data 

Chemistry Train a shared 
model across 
multiple 
organizations' 
private chemical 
datasets without 
any organization 



having to reveal its 
proprietary data. 

CHE-20 Closed-Loop 
Synthesis and 
Characterization 
Algorithms 

Materials Science Create autonomous 
"self-driving labs" 
where an AI 
algorithm proposes 
a new material, 
directs a robot to 
synthesize it, 
analyzes the result, 
and uses the new 
data to inform the 
next cycle. 

Part III: Biological 
Complexity 

   

BIO-01 Causal Graph 
Discovery for Gene 
Regulatory 
Networks 

Biological 
Complexity 

Infer the directed, 
causal structure of 
gene regulation 
from observational 
gene expression 
data by searching 
for the graph that 
best explains the 
data's statistical 
properties. 

BIO-02 Mendelian 
Randomization as 
an Instrumental 
Variable Solver 

Biological 
Complexity 

Use genetic 
variants as natural 
"randomized trials" 
to determine the 
causal effect of a 
modifiable 
exposure (e.g., 
cholesterol) on a 
disease outcome. 

BIO-03 Interventional 
Causal Structure 

Biological Combine 
observational and 



Learning Complexity experimental (e.g., 
gene knockout) 
data to more 
robustly infer 
causal biological 
networks, resolving 
ambiguities that 
observation alone 
cannot. 

BIO-04 Counterfactual 
Estimators for 
Personalized 
Medicine 

Biological 
Complexity 

Predict how a 
specific patient 
would have 
responded to a 
treatment they did 
not receive, 
enabling true 
in-silico clinical trial 
simulation. 

BIO-05 Latent Causal 
Variable Discovery 

Biological 
Complexity 

Identify hidden, 
unmeasured 
confounding 
factors in biological 
data by modeling 
them as latent 
variables in a 
causal graph. 

BIO-06 Differentiable 
Cellular Automata 
for Morphogenesis 

Biological 
Complexity 

Model tissue 
development and 
pattern formation 
by representing 
cells as agents with 
differentiable rules, 
allowing 
optimization of 
parameters to 
match experimental 
observations. 



BIO-07 Neural 
Pharmacokinetic/P
harmacodynamic 
(PK/PD) Models 

Biological 
Complexity 

Learn the complex, 
nonlinear dynamics 
of how a drug is 
absorbed, 
distributed, 
metabolized, and 
excreted, and its 
effect on the body, 
directly from 
clinical data. 

BIO-08 Differentiable 
Models of 
Metabolic Networks 

Biological 
Complexity 

Represent a cell's 
entire metabolic 
network as a 
differentiable 
system of 
equations to 
predict metabolic 
fluxes and identify 
drug targets. 

BIO-09 End-to-End 
Differentiable 
Protein Folding & 
Docking 

Biological 
Complexity 

Simultaneously 
predict a protein's 
3D structure and 
how it binds to 
other molecules in 
a single, 
differentiable 
model that can be 
optimized for drug 
design. 

BIO-10 Probabilistic 
Programming for 
Systems Biology 

Biological 
Complexity 

Build stochastic 
models of 
biological 
processes (e.g., 
gene expression) 
and use Bayesian 
inference to fit the 
entire probability 
distribution of 



model parameters 
to noisy data. 

BIO-11 Hierarchical 
Agent-Based 
Models for 
Immunology 

Biological 
Complexity 

Simulate the 
immune system by 
modeling 
interactions across 
scales, from 
molecular signaling 
within a single 
T-cell to population 
dynamics of 
millions of cells in a 
lymph node. 

BIO-12 Multi-Scale 
Physiological 
Digital Twins 

Biological 
Complexity 

Create a 
patient-specific, 
integrated model 
from genomics to 
organ function, 
allowing for the 
in-silico testing of 
personalized 
interventions. 

BIO-13 Spatiotemporal 
Graph Networks for 
Tissue Dynamics 

Biological 
Complexity 

Model the dynamic 
behavior of cells in 
a developing or 
diseased tissue by 
representing them 
as nodes in a graph 
that evolves over 
time. 

BIO-14 Information 
Bottleneck for 
Biomarker 
Discovery 

Biological 
Complexity 

Discover the most 
concise set of 
biomarkers that are 
maximally 
predictive of a 
disease state by 
compressing 



high-dimensional 
data through a 
minimal information 
channel. 

BIO-15 Cross-Scale 
Information 
Transfer Models 

Biological 
Complexity 

Develop formalisms 
for how information 
from a low-level 
simulation (e.g., 
protein dynamics) 
can be used to 
rigorously 
parameterize a 
higher-level model 
(e.g., cell behavior). 

BIO-16 Goal-Conditioned 
Generative Models 
for Drug Design 

Drug Discovery Generate new drug 
candidates 
conditioned on a 
desired target 
property profile, 
such as high 
binding affinity and 
low toxicity, guiding 
the search towards 
viable molecules. 

BIO-17 Reinforcement 
Learning for 
Adaptive Clinical 
Trials 

Drug Discovery Optimize the 
design of a clinical 
trial in real-time by 
learning which 
patient subgroups 
respond best to a 
treatment and 
adaptively 
allocating new 
patients. 

BIO-18 Self-Supervised 
Learning for 

Drug Discovery Learn powerful 
feature 
representations 



Biomedical Imaging from vast unlabeled 
medical image 
datasets (e.g., 
histology slides) to 
dramatically 
improve the 
performance of 
downstream 
diagnostic models. 

BIO-19 Automated 
Experiment Design 
for Mechanism 
Elucidation 

Drug Discovery Design the specific 
sequence of 
experiments (e.g., 
which protein to 
knock out) that will 
most efficiently 
distinguish 
between 
competing 
hypotheses about a 
biological 
mechanism. 

BIO-20 Generative Models 
for Synthetic 
Biology Circuit 
Design 

Biological 
Complexity 

Design novel 
genetic circuits 
(e.g., oscillators, 
switches) by 
generating DNA 
sequences that are 
predicted to 
produce a target 
dynamic behavior 
when inserted into 
a cell. 

Part IV: 
Neuroscience and 
Cognitive 
Systems 

   



NEU-01 Coupled 
Neuron-Glial-Vascu
lature Network 
Models 

Neuroscience Simulate brain 
function as an 
integrated system 
where neural 
activity is 
dynamically 
coupled with glial 
cell support and 
metabolic energy 
supply from blood 
flow. 

NEU-02 Biophysically 
Detailed 
Multi-Compartment 
Neuron Solvers 

Neuroscience Model the complex 
electrical and 
chemical 
computations 
occurring within 
the dendritic tree 
of a single neuron, 
going beyond 
simple 
point-neuron 
models. 

NEU-03 Stochastic Ion 
Channel Simulators 

Neuroscience Capture the 
inherent 
randomness of ion 
channel openings 
and closings to 
understand how 
molecular-level 
noise impacts 
neural 
computation. 

NEU-04 Whole-Brain 
Effective 
Connectivity 
Models 

Neuroscience Infer the directed, 
causal influence 
that different brain 
regions exert on 
each other by 
fitting dynamic 



causal models to 
neuroimaging data 
(fMRI, EEG). 

NEU-05 Multi-Scale Brain 
Atlasing Algorithms 

Neuroscience Fuse brain data 
from different 
modalities and 
scales (e.g., 
histology, MRI, 
gene expression) 
into a single, 
coherent, 
multi-resolution 
atlas of brain 
structure and 
function. 

NEU-06 Differentiable 
Hodgkin-Huxley 
Models 

Neuroscience Create 
biophysically 
realistic neuron 
models whose 
parameters (e.g., 
ion channel 
densities) can be 
directly fit to 
electrophysiology 
data via gradient 
descent. 

NEU-07 Surrogate Models 
for Detailed Neuron 
Dynamics 

Neuroscience Build 
computationally 
cheap emulators of 
complex, 
multi-compartment 
neuron models, 
enabling the 
simulation of 
large-scale 
networks of 
realistic neurons. 



NEU-08 Differentiable 
Plasticity Rule 
Learners 

Neuroscience Discover the 
mathematical form 
of synaptic 
plasticity rules by 
treating the rule 
itself as a 
parameterized, 
differentiable 
function and fitting 
it to experimental 
data. 

NEU-09 Gradient-Based 
Neuro-Compilation 

Neuroscience Automatically tune 
the parameters of a 
biophysically 
detailed neural 
circuit model to 
make it perform a 
specified cognitive 
function (e.g., 
working memory). 

NEU-10 Homeostatic 
Activity Regulation 
Solvers 

Neuroscience Model the 
slow-acting 
feedback 
mechanisms that 
allow neural circuits 
to maintain stable 
activity levels 
despite ongoing 
synaptic plasticity 
and learning. 

NEU-11 Spatiotemporal 
Event-Based 
Learning Rules 

Neuroscience Develop learning 
algorithms for 
spiking neural 
networks that 
depend on the 
precise timing of 
neural spikes, 
enabling efficient 



computation on 
neuromorphic 
hardware. 

NEU-12 Energy-Efficient 
Neuromorphic 
Control Algorithms 

Neuroscience Design algorithms 
for controlling 
robotic or 
prosthetic devices 
that are optimized 
for the low-power, 
event-driven nature 
of neuromorphic 
chips. 

NEU-13 On-Chip Learning 
with Local Plasticity 

Neuroscience Create algorithms 
that can learn 
directly on 
neuromorphic 
hardware, using 
only locally 
available 
information at each 
synapse, mimicking 
biological learning. 

NEU-14 Hybrid 
Spiking-Analog 
Neuromorphic 
Systems 

Neuroscience Combine the 
efficiency of 
event-based 
spiking 
communication 
with the 
computational 
power of 
continuous-valued 
analog circuits in a 
single algorithmic 
framework. 

NEU-15 Generative Models 
of Neural Spike 

Neuroscience Learn the statistical 
structure of neural 
firing patterns to 



Trains generate synthetic, 
realistic neural 
activity or to 
perform 
"denoising" on 
recorded data. 

NEU-16 Hierarchical 
Predictive Coding 
Architectures 

Cognitive Systems Model perception 
and cognition as a 
process of 
hierarchical 
prediction error 
minimization, where 
higher brain areas 
predict the activity 
of lower areas. 

NEU-17 Task-Performing 
Cognitive Models 

Cognitive Systems Build integrated, 
end-to-end 
computational 
models that can 
perform a complex 
cognitive task (e.g., 
decision-making 
under uncertainty) 
and whose internal 
dynamics can be 
compared to brain 
data. 

NEU-18 Neuro-Symbolic 
Models of 
Reasoning 

Cognitive Systems Bridge the gap 
between neural 
perception and 
symbolic thought 
by creating hybrid 
models that can 
learn from raw data 
but also reason 
with abstract 
concepts and logic. 



NEU-19 Generative Models 
of Behavior and 
Action Selection 

Cognitive Systems Learn a 
probabilistic model 
of an animal's or 
human's behavioral 
repertoire to 
predict future 
actions and 
understand the 
principles of 
decision-making. 

NEU-20 Embodied 
Reinforcement 
Learning for 
Neuroethology 

Cognitive Systems Understand the 
neural basis of 
behavior by training 
artificial agents 
with simulated 
bodies and nervous 
systems to solve 
tasks in realistic 
virtual 
environments. 

Part V: 
Socio-Economic 
and Adaptive 
Systems 

   

SOC-01 Generative Agent 
Models for Social 
Simulation 

Socio-Economic 
Systems 

Create realistic 
"artificial societies" 
by populating 
agent-based 
models with agents 
whose behaviors 
are driven by the 
rich, contextual 
reasoning of large 
language models. 

SOC-02 LLM-Powered 
Communication 

Socio-Economic 
Systems 

Simulate the 
spread of 
information and 



Network Simulators misinformation by 
modeling agents 
who communicate 
with each other 
using natural 
language, 
influenced by their 
individual beliefs 
and biases. 

SOC-03 Emergent Norm 
and Convention 
Solvers 

Socio-Economic 
Systems 

Model how social 
norms and 
conventions (e.g., 
traffic rules, 
language) can 
emerge from the 
repeated local 
interactions of 
individual agents 
without central 
planning. 

SOC-04 Calibrated 
Agent-Based 
Models 

Socio-Economic 
Systems 

Improve the realism 
of agent-based 
simulations by 
continuously 
calibrating agent 
behaviors against 
real-world data 
streams (e.g., from 
social media or 
economic 
indicators). 

SOC-05 Digital Twin Models 
of Social Systems 

Socio-Economic 
Systems 

Build dynamic, 
data-driven virtual 
replicas of 
real-world social 
systems (e.g., a 
city's 
transportation 



network) to test 
policy interventions 
in silico before 
deployment. 

SOC-06 Multi-Agent 
Reinforcement 
Learning for 
Mechanism Design 

Socio-Economic 
Systems 

Discover optimal 
economic or social 
mechanisms (e.g., 
auction rules, tax 
policies) by 
modeling 
stakeholders as 
strategic RL agents 
and finding the 
rules that lead to a 
desirable 
equilibrium. 

SOC-07 Differentiable 
Game Theoretic 
Solvers 

Socio-Economic 
Systems 

Find equilibria in 
complex, 
multi-player games 
by representing the 
game as a 
differentiable 
system, allowing for 
gradient-based 
discovery of 
optimal strategies. 

SOC-08 Heterogeneous 
Agent 
Macroeconomic 
Models 

Socio-Economic 
Systems 

Move beyond 
representative-age
nt models in 
economics by 
simulating the 
interactions of 
millions of 
heterogeneous 
households and 
firms, each with 
their own learned 
behaviors. 



SOC-09 LLM-Augmented 
Economic Agents 

Socio-Economic 
Systems 

Enhance the 
behavioral realism 
of economic agent 
models by using 
LLMs to model 
complex 
decision-making, 
expectation 
formation, and 
strategic 
communication. 

SOC-10 Inverse 
Reinforcement 
Learning for Policy 
Inference 

Socio-Economic 
Systems 

Infer the underlying 
objectives and 
preferences of 
real-world actors 
(e.g., consumers, 
firms) by observing 
their behavior and 
finding the reward 
function they are 
likely optimizing. 

SOC-11 Co-evolutionary 
Models of Networks 
and Opinions 

Socio-Economic 
Systems 

Simulate the 
feedback loop 
where individuals' 
opinions are 
shaped by their 
social network, 
while the network 
itself evolves as 
people form and 
break ties based on 
their opinions. 

SOC-12 Higher-Order 
Network Diffusion 
Models 

Socio-Economic 
Systems 

Model complex 
contagion 
phenomena (e.g., 
the spread of 
behaviors that 
require social 



reinforcement) by 
considering 
interactions within 
groups, not just 
pairs, of individuals. 

SOC-13 Causal Inference on 
Networked Data 

Socio-Economic 
Systems 

Disentangle peer 
effects from 
homophily and 
confounding 
factors to 
determine the true 
causal influence of 
social connections 
on individual 
outcomes. 

SOC-14 Temporal Network 
Algorithms for 
Dynamic Processes 

Socio-Economic 
Systems 

Analyze how the 
timing and ordering 
of interactions in a 
social network 
affect dynamic 
processes like 
disease spread or 
information 
diffusion. 

SOC-15 Belief Propagation 
and Message 
Passing on Graphs 

Socio-Economic 
Systems 

Model how 
individual agents 
update their beliefs 
based on 
information 
received from their 
neighbors in a 
social network, 
leading to 
collective 
consensus or 
polarization. 



SOC-16 Inverse Generative 
Social Science 
Solvers 

Socio-Economic 
Systems 

Given an observed 
macroscopic social 
pattern (e.g., 
wealth inequality), 
algorithmically 
search for the 
simplest set of 
individual agent 
rules that can 
generate it. 

SOC-17 Agent-Based 
Models of Scientific 
Discovery 

Socio-Economic 
Systems 

Simulate the 
process of 
scientific progress 
itself by modeling 
scientists as agents 
who collaborate, 
compete, and build 
upon each other's 
work to explore a 
knowledge 
landscape. 

SOC-18 Cultural Evolution 
Simulators 

Socio-Economic 
Systems 

Model the evolution 
of cultural traits 
(e.g., languages, 
technologies) as 
they are 
transmitted and 
modified across 
generations of 
learning agents. 

SOC-19 Computational 
Institutional Design 

Socio-Economic 
Systems 

Use multi-agent 
simulation and 
optimization to 
design and test the 
rules of new social 
or economic 
institutions (e.g., 
voting systems, 



markets) in silico. 

SOC-20 Emergence 
Detection and 
Quantification 
Algorithms 

Socio-Economic 
Systems 

Develop formal 
methods to 
automatically 
detect when a 
multi-agent system 
is exhibiting true 
emergent, 
collective behavior 
that cannot be 
explained by its 
individual parts. 

 

Part I: Algorithms for Simulating Physical and 
Engineered Systems 
 

The simulation of systems governed by the laws of physics and engineering represents a 
foundational pillar of modern science. For decades, progress has been driven by increasing 
computational power and the refinement of numerical methods for solving well-defined 
differential equations. However, many frontier challenges—such as modeling turbulence, 
designing complex materials, or controlling robotic systems in real-time—push the limits of 
these traditional approaches. They are often computationally prohibitive, struggle with the 
"curse of dimensionality," or fail to produce stable, long-term predictions when faced with 
noisy or incomplete data. 

The algorithmic paradigms outlined in this section represent a departure from purely 
data-agnostic numerical solvers. They seek to create a new class of simulation tools that are 
constrained, stabilized, and informed by the very physical laws they aim to model. This is 
achieved by embedding principles like energy conservation, geometric symmetries, and the 
structure of differential equations directly into the learning architecture. The result is a move 
from brittle, black-box predictors to robust, physically-plausible models that can learn 
efficiently from sparse data and generalize to new scenarios. 

A key convergence point for these algorithmic categories is the creation of a new type of 
software artifact: a "Digital Twin Physics Engine." Traditional solvers are static, hand-coded 
implementations of known equations. In contrast, the integration of physics-informed learning 



(for local laws), conservation-aware architectures (for global stability), efficient surrogate 
models (for real-time performance), and uncertainty quantification (for decision-making 
confidence) enables the construction of self-calibrating, differentiable models.9 Such an 
engine would learn from both high-fidelity simulation data and sparse, real-world sensor 
streams, continuously refining its internal representation of the physical world to create a 
high-fidelity, predictive replica of a complex engineered system.12 

Furthermore, these approaches signal a profound shift in the fundamental goal of scientific 
computing. The traditional paradigm focuses on solving a specific problem instance, such as 
calculating the fluid flow over a single, fixed airfoil design. A more powerful and general 
paradigm, exemplified by methods like Fourier Neural Operators, is to learn the entire solution 
operator—the abstract mathematical mapping from any valid input (any airfoil shape, any flow 
condition) to the corresponding solution.13 This elevates the task from single-instance 
computation to learning a continuous, reusable "solver function," with transformative 
implications for design exploration, optimization, and control, where thousands or millions of 
forward simulations are often required.15 

 

Conservation-Aware Dynamics Solvers 
 

These algorithms are designed for the long-term, stable simulation of dynamical systems. 
Instead of directly learning the state transitions, which can accumulate errors and violate 
physical laws over time, they learn a fundamental, conserved quantity of the system. The 
dynamics are then derived from this learned quantity, guaranteeing that the simulation 
remains physically plausible by construction. 

1.​ PHY-01: Hamiltonian Symplectic Integrators. This approach parameterizes a system's 
Hamiltonian—a scalar function representing its total energy—with a neural network.16 By 
learning the energy landscape from trajectory data, the algorithm can use Hamilton's 
equations to derive the time evolution of the system's position and momentum. Because 
this formulation is inherently energy-conserving, it produces highly stable, long-term 
predictions for systems like planetary orbits or molecular dynamics, avoiding the 
diverging or decaying trajectories that plague standard recurrent models.16 

2.​ PHY-02: Lagrangian Variational Solvers. Operating on a related principle, these 
algorithms learn a system's Lagrangian, the difference between its kinetic and potential 
energy. The dynamics are then derived by solving the Euler-Lagrange equation, which 
finds the trajectory that minimizes the "action." This variational approach is powerful 
because, via Noether's theorem, it naturally captures system symmetries and their 
corresponding conservation laws (e.g., conservation of momentum from translational 
symmetry). 

3.​ PHY-03: Port-Hamiltonian Dissipative Learners. While standard Hamiltonian methods 



are ideal for closed, energy-conserving systems, most real-world systems involve energy 
dissipation (e.g., friction) and external inputs (e.g., control forces).5 Port-Hamiltonian 
neural networks extend the framework by explicitly modeling these energy flows. The 
algorithm learns not only the internal Hamiltonian but also the dissipation and 
input/output port structures, enabling accurate modeling of open, non-autonomous 
systems like damped oscillators or controlled robotic arms.5 

4.​ PHY-04: Constrained Gauge-Equivariant Field Learners. Many physical fields, such 
as the magnetic field in electromagnetism, must satisfy intrinsic constraints (e.g., being 
divergence-free). These algorithms are designed to learn the dynamics of such fields 
while guaranteeing that these constraints are perfectly satisfied at every step. This is 
achieved by designing the network's architecture to be equivariant to gauge 
transformations, ensuring that the learned dynamics are physically meaningful and 
well-behaved. 

5.​ PHY-05: Lie Group Integrators for Symmetrical Systems. This class of algorithms is 
designed for systems whose state space has the structure of a Lie group, such as the 
rotational dynamics of a rigid body (SO(3) group) or a satellite. Instead of representing 
the state with redundant coordinates (e.g., Euler angles), these methods perform 
integration directly on the underlying geometric manifold of the group. This approach 
avoids singularities and ensures that the system's inherent symmetries are perfectly 
preserved throughout the simulation. 

 

Physics-Informed Differential Operators 
 

This category moves beyond black-box function approximation to create neural networks that 
are explicitly aware of the partial differential equations (PDEs) that govern a physical system. 
By incorporating the PDE structure into the training process, these models can learn from 
sparse data, enforce physical laws, and solve both forward and inverse problems that are 
intractable for traditional methods. 

6.​ PHY-06: Physics-Informed Neural ODEs (PIN-ODEs). This is a specific application of 
the broader Physics-Informed Neural Network (PINN) paradigm to systems of ordinary 
differential equations (ODEs).5 The algorithm represents the solution to the ODE system 
as the output of a neural network that takes time as an input. The network is then trained 
to minimize a loss function that includes not only the mismatch with any available data 
points but also the "residual" of the ODE itself, effectively forcing the network to learn a 
function that satisfies the differential equation.7 

7.​ PHY-07: Inverse Problem Solvers via Differentiable Physics. A powerful application of 
PINNs is solving inverse problems, where the goal is to infer unknown system parameters 
from observed data. For example, one could infer the spatially varying thermal 
conductivity of a material by measuring its temperature at a few points. By making the 



unknown parameter a trainable variable in the PINN framework, the algorithm can use 
automatic differentiation to compute the gradient of the data mismatch with respect to 
the parameter and solve for it using gradient descent.4 

8.​ PHY-08: Spatiotemporal Fourier Neural Operators. The Fourier Neural Operator (FNO) 
is a novel architecture for learning the solution operators of PDEs.14 Instead of operating 
in the spatial domain, the FNO applies the convolution theorem, performing the learning 
of the integral kernel operator in the Fourier (frequency) domain. This approach is 
remarkably efficient and, crucially, mesh-independent, meaning an FNO trained on a 
low-resolution simulation can be evaluated on a high-resolution grid without retraining, a 
property known as zero-shot super-resolution.13 

9.​ PHY-09: Causal Spatiotemporal Graph Networks. For systems with complex, 
interacting components, these algorithms model the system as a dynamic graph where 
nodes represent physical locations or objects. The key innovation is to enforce causality 
in the message-passing between nodes, ensuring that information cannot propagate 
faster than a characteristic speed (e.g., the speed of sound or light). This architecture is 
well-suited for learning the evolution of complex fields or multi-body systems where 
interactions are local. 

10.​PHY-10: Discontinuity-Aware PDE Solvers. Many important physical phenomena, such 
as shockwaves in fluid dynamics or phase transitions in materials, involve sharp 
discontinuities that are notoriously difficult for standard neural networks to represent. 
These algorithms address this by dynamically adapting the model architecture or 
sampling strategy during training. They learn to identify regions of high gradients and 
allocate more computational resources or use specialized activation functions to 
accurately capture these sharp features. 

 

Adaptive Multi-Fidelity Surrogate Models 
 

For many engineering problems, a single high-fidelity simulation (e.g., a full computational 
fluid dynamics run) is too expensive to be used within an optimization loop. Surrogate models, 
also known as metamodels or emulators, are computationally cheap approximations of these 
expensive simulations. The algorithms in this category focus on building the most accurate 
surrogate model with the fewest possible calls to the expensive simulator. 

11.​PHY-11: Active Learning Multi-Fidelity Surrogates. This approach accelerates the 
creation of a surrogate model by leveraging multiple levels of simulation fidelity (e.g., a 
fast, coarse-mesh CFD model and a slow, fine-mesh one). The algorithm uses an active 
learning strategy, often based on uncertainty, to intelligently decide at each step whether 
to query the cheap, low-fidelity model to broadly explore the design space or the 
expensive, high-fidelity model to refine the surrogate in a critical region. This balances 
the trade-off between information gain and computational cost. 



12.​PHY-12: Bayesian Optimization for Design Exploration. Bayesian optimization is a 
powerful sequential strategy for finding the global optimum of an expensive black-box 
function.18 It works by building a probabilistic surrogate model (typically a Gaussian 
process) of the objective function, which provides not only a prediction of performance 
but also a measure of uncertainty for any given design. An "acquisition function" then 
uses this prediction and uncertainty to decide the next point to sample, efficiently 
trading off between exploiting known good regions and exploring uncertain ones. 

13.​PHY-13: Generative Models for Topology Optimization. Topology optimization seeks 
to find the optimal distribution of material within a design domain to maximize 
performance (e.g., stiffness) for a given amount of material. These algorithms use 
generative models, such as GANs or VAEs, to learn a low-dimensional latent space of 
high-performing, manufacturable designs. Optimization can then be performed 
efficiently in this latent space, allowing for the rapid generation of novel and complex 
structures that would be difficult to discover with traditional methods. 

14.​PHY-14: Differentiable Engineering Simulators. This paradigm treats an entire 
engineering simulation pipeline—including mesh generation, the numerical solver, and 
post-processing—as a single, end-to-end differentiable program.19 By leveraging 
automatic differentiation, it becomes possible to compute the exact gradient of a 
performance metric (e.g., aerodynamic lift) with respect to every parameter of the design 
(e.g., the coordinates defining an airfoil's shape). This enables highly efficient, 
gradient-based optimization of complex engineering systems. 

15.​PHY-15: Control Co-Design Optimizers. Traditionally, the physical design of a system 
(its "body") and its control system (its "brain") are optimized separately. Control 
co-design algorithms break this paradigm by optimizing both simultaneously. This often 
involves a nested optimization loop where the outer loop proposes a physical design and 
the inner loop finds the optimal controller for it, or a fully joint optimization using 
techniques like differentiable simulators, leading to synergistic designs that outperform 
those from a sequential process. 

 

Probabilistic Solvers with Uncertainty Quantification 
 

Physical models and the data used to calibrate them are never perfect. Uncertainty 
Quantification (UQ) is the science of rigorously tracking and propagating all sources of 
uncertainty—from noisy measurements to unknown model parameters—through a simulation. 
The goal is not a single, deterministic answer, but a probabilistic one that provides 
decision-makers with crucial information about confidence and risk.20 

16.​PHY-16: Probabilistic Graphical Models for System Reliability. These algorithms 
model a complex engineered system as a graph where nodes represent components and 
edges represent dependencies. By assigning conditional probability tables to each 



component (e.g., the probability of pump failure given a certain temperature), the 
framework can be used to efficiently compute the probability of cascading failures and 
overall system reliability. This is particularly useful for risk assessment in critical 
infrastructure like power grids or aerospace systems. 

17.​PHY-17: Bayesian Calibration of Simulation Models. This is a formal statistical 
framework for the inverse UQ problem: using experimental data to reduce uncertainty in 
a simulation model's parameters.11 Instead of finding a single "best-fit" value for each 
parameter, Bayesian calibration infers the full posterior probability distribution for each 
parameter, consistent with the observed data and any prior knowledge. This provides a 
complete picture of parameter uncertainty and its correlations. 

18.​PHY-18: Forward Uncertainty Propagation via Polynomial Chaos. Running thousands 
of Monte Carlo simulations to see how input uncertainties affect outputs can be 
prohibitively expensive. Polynomial Chaos Expansion (PCE) is a powerful alternative that 
approximates the model's output as a series of orthogonal polynomials of its random 
inputs. By determining the coefficients of this expansion from a small number of model 
evaluations, PCE can efficiently and accurately compute the statistical moments (mean, 
variance) and even the full probability distribution of the output. 

19.​PHY-19: Physics-Constrained Data Assimilation Algorithms. Data assimilation is the 
process of fusing sparse, noisy observations with a dynamic model to obtain the best 
possible estimate of a system's state, a core task in weather forecasting and climate 
modeling. These algorithms enhance classical methods (like Kalman filters) by 
incorporating physics-informed neural networks or other machine learning models. The 
physical constraints regularize the problem, allowing for more accurate state estimation 
even when observational data is very limited. 

 

Lagrangian and Mesh-Free Flow Solvers 
 

While many simulation methods solve equations on a fixed grid (an Eulerian approach), 
Lagrangian methods track the motion of individual fluid parcels or particles. These mesh-free 
approaches are naturally adaptive and can be particularly effective for problems involving free 
surfaces, large deformations, or complex moving boundaries. 

20.​PHY-20: Hybrid Particle-Mesh Solvers. These algorithms combine the advantages of 
both Eulerian and Lagrangian methods. For example, in a fluid-structure interaction 
problem, the fluid might be solved on a grid while the deforming structure is represented 
by a set of Lagrangian particles. The algorithms focus on the robust and accurate 
coupling and information transfer between the particle and mesh representations to 
capture the complex physics at their interface. 

 



Part II: Algorithms for Inverse Design in Chemistry and 
Materials Science 
 

The forward problem in chemistry and materials science—predicting the properties of a 
known substance—has seen tremendous progress. The grand challenge, however, is the 
inverse problem: given a set of desired properties, design a novel molecule or material that 
exhibits them.21 This requires a shift from predictive to generative algorithms. The categories 
outlined in this section are dedicated to this task, moving beyond simple screening of existing 
compounds to the 

de novo construction of new chemical and material structures. 

These algorithms are distinguished by their deep integration of domain-specific constraints. A 
successful generative model for chemistry cannot simply produce an arbitrary collection of 
atoms; it must respect the fundamental rules of geometry, topology, and quantum mechanics 
that govern molecular and material stability. Therefore, a central theme is the use of 
Geometric Deep Learning (GDL), which operates on representations like molecular graphs 
and 3D point clouds, building in physical symmetries such as rotational and translational 
invariance.22 

A critical evolution in this field is the move from simple interpolation to compositional 
extrapolation. Early generative models were adept at creating new molecules that were "in 
between" examples seen during training, but they struggled to generate truly novel scaffolds 
or material classes.21 The next generation of algorithms addresses this through compositional 
approaches. This involves first learning a "basis set" of fundamental, recurring chemical 
motifs or material building blocks. A second, hierarchical algorithm then learns the "grammar" 
for combining these blocks in novel ways to create complex structures that are locally 
plausible but globally unprecedented, much like a human chemist combines known functional 
groups to build a new molecule.21 

Finally, a truly useful inverse design framework must consider not only the target structure 
and its properties but also its accessibility. A wonder material that cannot be synthesized is of 
little practical value. This points toward a "Generative Triad," where the algorithm co-designs 
the material's Structure, its resulting Properties, and a viable synthesis or manufacturing 
Process simultaneously.25 This requires a multi-objective optimization framework that can 
balance predicted performance against metrics of synthesizability, such as thermodynamic 
stability or the complexity of precursor reactions, thus bridging the gap between 
computational discovery and experimental realization. 

 



Geometric Generative Models for Molecular Structures 
 

These algorithms generate new molecular and material structures directly in 2D (graph) or 3D 
(coordinate) space, with architectures that are specifically designed to respect the geometric 
and topologic constraints of chemistry. 

21.​CHE-01: SE(3)-Equivariant Generative Networks for 3D Molecules. These models 
generate the 3D coordinates of atoms for new molecules. Their key feature is SE(3) 
equivariance, which means that if the input is rotated or translated, the output is rotated 
or translated in exactly the same way. This is a fundamental physical symmetry that is 
built directly into the network architecture, ensuring that the model learns the intrinsic 
geometry of the molecule, not its arbitrary orientation in space, leading to much more 
data-efficient and robust generation.24 

22.​CHE-02: Hypergraph Neural Networks for Reaction Pathways. Standard graphs 
represent pairwise relationships, but chemical reactions often involve multi-body 
interactions (e.g., two reactants forming one product). Hypergraph networks can 
naturally represent these many-to-many relationships. This class of algorithms models an 
entire reaction network as a hypergraph, allowing it to learn the complex transformations 
involved in chemical synthesis and predict plausible reaction pathways, yields, and side 
products. 

23.​CHE-03: Quantum Graph Neural Networks for Electron Dynamics. Going beyond 
classical representations, these algorithms aim to directly approximate the solutions of 
the Schrödinger equation on a molecular graph. The messages passed between nodes 
(atoms) in the graph are not just scalar features but representations of atomic orbitals or 
electron density. This allows the model to learn quantum-mechanical properties like 
electronic excitation energies or charge distributions, which are critical for applications 
in photochemistry and electronics. 

24.​CHE-04: Differentiable Molecular Dynamics Simulators. These algorithms treat an 
entire molecular dynamics (MD) simulation as a differentiable program. This allows for 
backpropagation through time to optimize parameters. For example, one could learn a 
force field (the function describing inter-atomic forces) by minimizing the difference 
between the simulated trajectory and an experimental one, or one could design an initial 
molecular configuration that is optimized to self-assemble into a desired final structure. 

25.​CHE-05: Generative Models for Crystal Structure Design. These algorithms are 
tailored for designing new crystalline solids. They generate not just the positions of 
atoms within a unit cell but also the lattice vectors that define the cell and the symmetry 
operations of the crystal's space group. By building in these crystallographic constraints, 
the models can efficiently search the vast space of possible periodic structures to 
discover new, thermodynamically stable materials. 

 



Compositional and Constrained Inverse Design Frameworks 
 

This category focuses on the high-level strategy for inverse design. Instead of relying on a 
single, monolithic generative model, these frameworks treat inverse design as a constrained 
optimization problem, often operating in the compressed latent space of a generative model, 
allowing for greater control, flexibility, and novelty. 

26.​CHE-06: Compositional Generative Models for Material Design. These algorithms 
learn to generate complex materials by first learning a vocabulary of simpler, reusable 
building blocks (e.g., molecular fragments or crystal motifs).21 A second, higher-level 
model then learns the rules for combining these blocks into larger, hierarchical 
structures. This compositional approach allows the model to generate materials that are 
significantly more complex and novel than those in the training set, enabling true 
extrapolation beyond known material classes.21 

27.​CHE-07: Latent Space Optimization for Inverse Property Design. This is a common 
and powerful framework for inverse design using models like Variational Autoencoders 
(VAEs) or Generative Adversarial Networks (GANs).26 First, a generative model is trained 
to learn a compressed, continuous latent representation of the chemical space. Then, an 
optimization algorithm (like Bayesian optimization) is used to search this latent space for 
points that, when decoded, produce molecules or materials with the desired properties 
as predicted by a separate property model. 

28.​CHE-08: Property-Constrained Diffusion Models. Diffusion models are powerful 
generative models that work by learning to reverse a noise-injection process. For inverse 
design, this process can be guided. During the denoising (generation) process, the 
model is steered at each step not only to produce a valid structure but also to move 
towards a region of the chemical space that satisfies a specific property constraint, 
ensuring the final generated output has the desired characteristic. 

29.​CHE-09: Multi-Objective Inverse Design Algorithms. Real-world materials design 
rarely involves a single objective; typically, there is a trade-off between competing 
properties (e.g., a material needs to be both strong and lightweight, or a drug needs to 
be potent but non-toxic). These algorithms use multi-objective optimization techniques 
to explore these trade-offs, aiming to discover the entire Pareto front of optimal 
materials, giving designers a range of choices rather than a single solution. 

30.​CHE-10: Generative Models for Amorphous and Disordered Systems. While crystal 
design is highly constrained by symmetry, designing amorphous materials like glasses or 
polymers is much harder as there is no repeating unit cell. These algorithms tackle this 
challenge by learning the statistical distributions of local atomic environments (e.g., 
radial distribution functions, bond angle distributions). The generation process then 
becomes one of constructing a large structure that satisfies these local statistical 
constraints on average. 



 

Symbolic and Rule-Based Materials Discovery Engines 
 

This category represents a move towards more interpretable and trustworthy AI for chemistry. 
Instead of producing a black-box model that predicts properties, these neuro-symbolic 
algorithms aim to discover the underlying rules, equations, or causal mechanisms that govern 
chemical and material behavior. 

31.​CHE-11: Neuro-Symbolic Equation Discovery for QSAR. Quantitative 
Structure-Activity Relationship (QSAR) modeling is a cornerstone of drug discovery. This 
class of algorithms uses symbolic regression techniques to find simple, human-readable 
mathematical equations that relate molecular descriptors to biological activity.2 By 
combining the search power of genetic programming or neural networks with the 
interpretability of symbolic expressions, these tools can uncover novel scientific insights, 
not just make predictions.1 

32.​CHE-12: Automated Synthesis Planning via Graph Rewriting. A key challenge in 
chemistry is retrosynthesis: figuring out how to make a target molecule. These algorithms 
frame this as a search problem on a graph of possible chemical reactions. Chemical 
reactions are encoded as formal graph rewriting rules, and the algorithm searches for a 
sequence of rule applications that transforms simple, commercially available starting 
materials into the desired complex target molecule. 

33.​CHE-13: Causal Inference for Mechanistic Chemistry. In high-throughput 
experimentation, it can be difficult to disentangle which experimental parameter is the 
true cause of an observed outcome. These algorithms apply causal discovery methods to 
experimental datasets to build a causal graph of the system. This allows researchers to 
distinguish between mere correlations and true cause-and-effect relationships, leading 
to a deeper mechanistic understanding of the reaction. 

34.​CHE-14: Hybrid Quantum-Classical Solvers for Catalysis. Modeling catalysis is 
computationally demanding because it requires high-accuracy quantum mechanics (QM) 
at the active site, but the surrounding catalyst support and solvent can often be treated 
with cheaper classical or machine learning (ML) models. These algorithms provide a 
framework for seamlessly coupling these different levels of theory, partitioning the 
system and managing the information flow across the QM/ML boundary to achieve a 
balance of accuracy and computational cost. 

35.​CHE-15: Interpretable Chemical Rule Induction Systems. This approach aims to 
extract human-understandable knowledge from large chemical datasets in the form of 
logical "if-then" rules. For example, a system might learn rules like "IF a molecule 
contains a nitro group AND an aromatic ring, THEN it is likely to be explosive." These 
algorithms, often based on decision trees or logic programming, provide transparent 
models that can be easily validated by human chemists. 



 

Active Learning Algorithms for Materials Property Exploration 
 

Experimental synthesis and characterization, as well as high-fidelity computational 
simulations, are expensive and time-consuming. Active learning algorithms address this 
bottleneck by creating a closed loop where the model intelligently decides which data point to 
acquire next, aiming to learn as much as possible about the chemical space with a minimal 
number of experiments. 

36.​CHE-16: Bayesian Experimental Design for Materials Discovery. This is a formal 
approach to active learning where the algorithm maintains a probabilistic (Bayesian) 
model of the material property landscape.27 At each step, it calculates the expected 
information gain from performing any possible experiment (e.g., synthesizing a new 
compound). It then selects the experiment that is predicted to be most informative for 
reducing the model's overall uncertainty or for finding an optimum, thus guiding the 
discovery process in the most efficient way possible. 

37.​CHE-17: Uncertainty-Aware Active Learning for Force Fields. Machine learning force 
fields (MLFFs) can achieve near-quantum accuracy at a fraction of the cost, but they 
require large training sets of expensive quantum chemistry calculations. These 
algorithms build MLFFs iteratively. The model is trained on a small initial dataset, and 
then used to run a simulation; the algorithm identifies the molecular configurations 
where the model is most uncertain about its predictions and requests new quantum 
calculations only for those specific points, rapidly improving the model's accuracy where 
it is most needed. 

38.​CHE-18: Transfer Learning for Sparse Materials Data. Many novel materials classes 
have very little experimental data available, making it difficult to train a model from 
scratch.25 Transfer learning algorithms address this by first pre-training a large model on 
a massive database of diverse materials (e.g., the Materials Project database). The 
learned chemical and physical representations are then transferred and fine-tuned on 
the small, specific dataset of interest, leading to significantly better predictive 
performance than training on the small dataset alone.29 

39.​CHE-19: Federated Learning for Proprietary Chemical Data. A major challenge in 
industrial chemistry is that valuable data is often siloed in proprietary corporate 
databases. Federated learning provides a solution by allowing a central model to be 
trained collaboratively without any raw data ever leaving the local servers. Each 
organization trains the model on its own data and sends only the model updates 
(gradients) to a central aggregator, which combines them to create an improved global 
model that benefits all participants while preserving data privacy. 

40.​CHE-20: Closed-Loop Synthesis and Characterization Algorithms. This category 
represents the pinnacle of automated discovery: the "self-driving laboratory." An AI 



algorithm, often using active learning, is connected to a robotic platform capable of 
chemical synthesis and characterization. The AI proposes a new molecule or material to 
test, the robot makes and measures it, and the results are fed back to the AI in a closed 
loop, enabling autonomous, round-the-clock scientific discovery with minimal human 
intervention.30 

 

Part III: Algorithms for Decoding Biological Complexity 
 

Biological systems present a unique and formidable set of challenges for computational 
modeling. Unlike the often-deterministic and well-described laws of physics, biology is 
characterized by staggering complexity, emergent phenomena, stochasticity, and intricate 
feedback loops operating across vast spatial and temporal scales—from nanoseconds in 
protein dynamics to years in organismal development.31 Data is frequently sparse, noisy, and 
observational, making the inference of mechanism from correlation a central difficulty. The 
algorithms in this section are designed to tackle these challenges head-on, moving beyond 
simple predictive models to frameworks that can infer causality, simulate multi-scale 
dynamics, and actively guide experimental discovery. 

A dominant theme emerging from this domain is the necessity of a "Causal Scaffolding" 
approach. Purely data-driven machine learning models applied to biological data are 
notoriously brittle, often latching onto spurious correlations that do not generalize or provide 
mechanistic insight.33 The strong emphasis on causal inference suggests a new algorithmic 
paradigm. This process would begin by using causal discovery algorithms on large-scale 
observational data (e.g., genomics, proteomics) to generate a putative "causal scaffold"—a 
sparse, directed graph of high-confidence regulatory or signaling relationships.34 
Subsequently, more detailed machine learning models, such as differentiable simulators, 
would be trained 

within the constraints of this scaffold to learn the quantitative dynamics along these 
established causal pathways.19 This two-stage approach leverages the strengths of both 
methodologies: causal discovery for finding the structure and differentiable programming for 
learning the parameters, mitigating the risk of discovering biologically nonsensical models. 

This integration of causality and dynamic simulation paves the way for a transformative 
application: the end of the "N of 1" problem in medicine through the creation of 
patient-specific, differentiable digital twins. The convergence of multi-scale modeling, which 
connects genomics to organ-level function, with the parameter-fitting power of differentiable 
programming, enables the construction of dynamic, personalized biological simulations.37 
Such a "digital twin" would be initialized with an individual patient's data (genomics, clinical 



labs, imaging) to parameterize a generic physiological model. This personalized, differentiable 
program could then be used to run in-silico experiments, allowing clinicians to optimize 
treatments by asking questions like, "What is the optimal chemotherapy schedule to minimize 
this virtual patient's tumor growth while keeping predicted liver toxicity below a critical 
threshold?" This represents a paradigm shift from reactive, population-based medicine to a 
predictive, deeply personalized standard of care. 

 

Causal Inference and Network Reconstruction Algorithms 
 

The central challenge in biology is often distinguishing correlation from causation. These 
algorithms provide a formal framework for inferring cause-and-effect relationships from data, 
which is essential for understanding disease mechanisms and identifying effective 
intervention points. 

41.​BIO-01: Causal Graph Discovery for Gene Regulatory Networks. Given large 
datasets of gene expression levels across many samples, these algorithms aim to 
reconstruct the underlying gene regulatory network as a directed acyclic graph (DAG), 
where a directed edge from gene A to gene B implies that A causally regulates B.35 
Methods like the PC algorithm or gradient-based approaches search over the space of 
possible graphs to find the one that best explains the conditional independence 
relationships observed in the data. This provides a systems-level, mechanistic map of 
cellular control. 

42.​BIO-02: Mendelian Randomization as an Instrumental Variable Solver. Mendelian 
Randomization (MR) is a powerful technique that leverages the random assortment of 
genes from parents to offspring as a "natural experiment".35 To determine if a modifiable 
risk factor (e.g., blood pressure) causes a disease, MR uses genetic variants associated 
with that risk factor as an instrumental variable. Because the genes are assigned 
randomly at conception, they are not subject to the confounding factors that plague 
traditional observational studies, allowing for much stronger causal claims about the risk 
factor's effect on the disease.39 

43.​BIO-03: Interventional Causal Structure Learning. While observational data can often 
only identify causal structures up to a certain equivalence class (i.e., some edge 
directions may be ambiguous), interventional data (e.g., from gene knockout or drug 
treatment experiments) can resolve these ambiguities.35 These algorithms provide a 
unified framework for learning a causal graph from a combination of observational and 
interventional datasets. They systematically use the results of interventions to prune the 
space of possible causal models, converging on a more accurate and detailed 
mechanistic picture. 

44.​BIO-04: Counterfactual Estimators for Personalized Medicine. A key causal question 
in medicine is, "What would have been the outcome for this patient if they had received a 



different treatment?" These algorithms, rooted in the potential outcomes framework, use 
data from clinical trials or observational studies to estimate these counterfactual 
quantities. This allows for the estimation of individualized treatment effects, moving 
beyond population averages to predict which treatment is likely to be best for a specific 
patient given their unique characteristics. 

45.​BIO-05: Latent Causal Variable Discovery. Often, an observed correlation between 
two biological variables (e.g., two genes) is not due to a direct causal link but is caused 
by a third, unmeasured confounding factor (e.g., the activity of a master regulator). 
These algorithms are designed to detect the presence of such hidden confounders and 
infer their properties from the statistical signatures they leave in the observed data. This 
is crucial for avoiding incorrect causal conclusions and for identifying novel, previously 
unknown biological players. 

 

Differentiable Biology Simulators 
 

This paradigm treats complex biological processes as programs that can be differentiated 
from end-to-end. By leveraging automatic differentiation, these models can be efficiently 
fitted to experimental data using gradient-based optimization, enabling precise 
parameterization, sensitivity analysis, and in-silico design of biological interventions. 

46.​BIO-06: Differentiable Cellular Automata for Morphogenesis. Morphogenesis, the 
process by which organisms develop their shape, involves complex local interactions 
between cells. These algorithms model a developing tissue as a grid of cells (a cellular 
automaton), where each cell's state changes according to a set of rules based on its 
neighbors. By making these rules differentiable, the system can be optimized to find the 
specific local cell behaviors that successfully "grow" the target macroscopic structure, 
providing insight into the mechanisms of development. 

47.​BIO-07: Neural Pharmacokinetic/Pharmacodynamic (PK/PD) Models. PK/PD models 
describe what the body does to a drug (PK) and what the drug does to the body (PD). 
Traditionally, these are built using simple compartmental models. Neural PK/PD models 
replace or augment these with neural networks, allowing them to learn the complex, 
nonlinear dynamics of drug absorption, distribution, metabolism, and effect directly from 
sparse and noisy clinical data, leading to more accurate dosing predictions.40 

48.​BIO-08: Differentiable Models of Metabolic Networks. A cell's metabolism can be 
represented as a large system of coupled ordinary differential equations (ODEs) 
describing the rates of biochemical reactions.31 By implementing this system within a 
differentiable programming framework, it becomes possible to fit the hundreds or 
thousands of kinetic parameters of the network to experimental metabolomics data. The 
resulting model can be used to predict how the cell will respond to genetic mutations or 
drug treatments that target specific enzymes.36 



49.​BIO-09: End-to-End Differentiable Protein Folding & Docking. While models can 
predict a protein's static structure, its function is determined by its dynamics and 
interactions. This class of algorithms aims to create a single, unified, differentiable model 
that can predict a protein's 3D conformational ensemble and simultaneously predict how 
a small molecule (a drug) will bind to it. Because the entire system is differentiable, one 
can directly optimize the structure of the small molecule to maximize its predicted 
binding affinity, greatly accelerating structure-based drug design. 

50.​BIO-10: Probabilistic Programming for Systems Biology. Biological processes are 
inherently stochastic, or noisy. Probabilistic programming languages allow researchers to 
write models that explicitly include this randomness. These algorithms then use Bayesian 
inference methods (like Markov Chain Monte Carlo) to fit the full probability distributions 
of the model's parameters to experimental data, providing a rigorous way to quantify 
uncertainty and compare competing hypotheses about the system's structure.31 

 

Hierarchical Multi-Scale Biological Models 
 

Biological function emerges from interactions that span scales from molecules to whole 
organisms. These algorithmic frameworks are designed to bridge these scales, creating 
integrated models that capture how phenomena at one level of organization give rise to 
behavior at another. 

51.​BIO-11: Hierarchical Agent-Based Models for Immunology. The immune response is a 
classic multi-scale problem. These algorithms use an agent-based modeling (ABM) 
approach where individual immune cells are the agents.37 Crucially, the behavior of each 
agent is not governed by simple rules but by an internal model of its own subcellular 
signaling pathways. This hierarchical structure allows the simulation to capture how 
molecular-level events (e.g., a T-cell receptor binding an antigen) lead to cellular 
decisions (e.g., proliferation) and ultimately to population-level emergent phenomena 
(e.g., clearance of an infection). 

52.​BIO-12: Multi-Scale Physiological Digital Twins. This is the concept of creating a 
comprehensive, patient-specific computational model that integrates data and simulates 
processes across multiple biological scales.37 For example, a model of the heart would 
link a patient's genetic variants to changes in ion channel function (molecular scale), 
which alters the electrical activity of single cardiomyocytes (cellular scale), which in turn 
affects the propagation of the electrical wave across the heart tissue (organ scale), 
ultimately predicting the patient's ECG and arrhythmia risk (organism scale). 

53.​BIO-13: Spatiotemporal Graph Networks for Tissue Dynamics. These algorithms 
model a biological tissue as a dynamic graph, where cells are nodes and their physical or 
signaling connections are edges. The state of each cell and the graph's structure evolve 
over time according to learned rules. This framework is ideal for modeling processes like 



wound healing, tumor growth, or embryonic development, where both the internal states 
of the cells and their spatial relationships are constantly changing. 

54.​BIO-14: Information Bottleneck for Biomarker Discovery. In high-dimensional 
biological data (e.g., transcriptomics), the goal of biomarker discovery is to find a small 
subset of features (e.g., genes) that is maximally predictive of an outcome (e.g., disease 
status). The information bottleneck principle provides a formal way to do this. It trains a 
model to compress the input data into a minimal "bottleneck" representation that retains 
as much information as possible about the outcome, effectively discovering the most 
concise and powerful set of biomarkers. 

55.​BIO-15: Cross-Scale Information Transfer Models. A major theoretical challenge in 
multi-scale modeling is how to rigorously link models at different scales. These 
algorithms focus on developing formal methods for this "coarse-graining" and 
"fine-graining." For example, they might develop methods to take the output of a detailed 
molecular dynamics simulation of a protein and systematically derive the parameters for 
a simpler, more abstract model of that protein's function to be used in a higher-level cell 
simulation. 

 

Active Learning for Drug and Biomarker Discovery 
 

The search space for new drugs and biomarkers is astronomically large, and experimental 
testing is a major bottleneck. Active learning algorithms optimize the experimental process 
itself, using a model to intelligently select the next experiment to run in order to learn as 
quickly as possible. 

56.​BIO-16: Goal-Conditioned Generative Models for Drug Design. Standard generative 
models for drug discovery produce molecules similar to a training set. Goal-conditioned 
models add a control input, allowing a user to specify a desired property profile (e.g., 
"high affinity for protein X, low liver toxicity, good oral bioavailability"). The model then 
generates novel molecules that are optimized to meet this specific, multi-objective 
design goal, focusing the search on the most promising regions of chemical space.41 

57.​BIO-17: Reinforcement Learning for Adaptive Clinical Trials. Traditional clinical trials 
have a fixed design. Adaptive trial designs, powered by reinforcement learning (RL), can 
learn and modify the trial as it progresses. For instance, an RL agent can analyze 
incoming data and learn to preferentially assign new patients to the treatment arm that 
appears most effective for their specific subgroup, a process known as 
response-adaptive randomization, potentially leading to more efficient trials and better 
patient outcomes. 

58.​BIO-18: Self-Supervised Learning for Biomedical Imaging. Labeled medical data is 
scarce, but unlabeled data is abundant. Self-supervised learning algorithms leverage this 
unlabeled data by creating "pretext" tasks. For example, a model might be trained to 



predict a missing patch of a histology image or to recognize if two augmented versions of 
an image are the same. By solving these tasks, the model learns powerful visual 
representations that can then be fine-tuned for a diagnostic task with a very small 
number of labeled examples, dramatically improving performance. 

59.​BIO-19: Automated Experiment Design for Mechanism Elucidation. When faced with 
several competing hypotheses about a biological pathway, these algorithms determine 
the single most informative experiment to perform next. The algorithm simulates the 
expected outcome of every possible experiment under each hypothesis. It then selects 
the experiment whose predicted outcomes show the greatest difference between the 
hypotheses, thus providing the maximal power to discriminate between them and 
accelerating the process of scientific discovery. 

60.​BIO-20: Generative Models for Synthetic Biology Circuit Design. Synthetic biology 
involves engineering novel functions into cells by designing custom genetic circuits. 
These algorithms use generative models to design the DNA sequences for these circuits. 
The model is trained on a database of existing circuits and their observed behaviors (e.g., 
oscillating gene expression) and can then be tasked to generate a new DNA sequence 
that is predicted to produce a novel, desired dynamic behavior. 

 

Part IV: Algorithms for Modeling Neuroscience and 
Cognitive Systems 
 

The brain is arguably the most complex system known to science, with intricate structures and 
dynamic processes spanning scales from single molecules to global brain states and 
observable behavior. Computational neuroscience and cognitive science seek to understand 
the principles of neural computation that give rise to perception, action, and thought.43 The 
algorithmic categories in this section are designed to bridge the vast explanatory gaps 
between these scales: from the biophysics of individual neurons to the emergent dynamics of 
large-scale networks, and from neural activity to the abstract functions of the mind. 

A key direction for future research is to move beyond viewing the brain as a passive 
information processing device and instead model it as an active, multi-scale control system. 
Much of computational neuroscience has focused on representation—how the brain encodes 
sensory information.45 An emerging perspective, however, is to view the brain's primary 
function as one of predictive control: maintaining the body's internal homeostasis while 
selecting actions to achieve goals in a complex environment. This control problem is 
inherently multi-scale, linking genomics to neural dynamics and ultimately to behavior.46 This 
perspective implies a need for algorithms based on control theory and reinforcement learning, 
capable of modeling how neural circuits maintain stable internal states while pursuing external 
objectives, a core challenge in fields like neuroethology which studies the neural basis of 



natural behavior.48 

Another profound challenge is the gap between the "software" of cognition (the abstract, 
functional models from cognitive science) and the "wetware" of the brain (the biophysically 
detailed models of neurons and circuits). This points to the need for a new class of algorithm 
that can be described as a "neuro-compiler." Such a system would tackle the inverse problem 
of implementation: given a high-level functional specification for a cognitive process, like 
working memory, it would automatically search for and assemble a plausible, biophysically 
detailed neural circuit that performs that function.44 This would likely involve a combination of 
generative models to propose circuit motifs, differentiable simulators to test their function, 
and evolutionary or reinforcement learning algorithms to optimize the circuit's structure and 
parameters.45 The development of such "neuro-compilers" would revolutionize the ability to 
test cognitive theories in a biologically grounded manner, truly integrating the fields of 
cognitive science and computational neuroscience. 

 

Multi-Scale Neuro-Glia-Vascular Simulators 
 

These algorithms recognize that the brain is more than just a network of neurons. They aim to 
create integrated models that capture the critical interplay between neurons, supportive glial 
cells, and the brain's vascular system, which provides metabolic resources. 

61.​NEU-01: Coupled Neuron-Glial-Vasculature Network Models. These are integrated 
simulation frameworks that model the tripartite synapse and neurovascular coupling. 
They simulate not only the electrical activity of neurons but also how that activity triggers 
responses in nearby glial cells (like astrocytes) and how those glial cells, in turn, 
modulate local blood flow to meet metabolic demand.43 Such models are essential for 
understanding brain energy metabolism and diseases where this coupling breaks down, 
such as stroke or Alzheimer's. 

62.​NEU-02: Biophysically Detailed Multi-Compartment Neuron Solvers. Going beyond 
the simple "point neuron" abstraction, these algorithms simulate a single neuron as a 
complex, branching tree of compartments, each with its own electrical properties. They 
solve the cable equation across this structure to model how synaptic inputs at different 
locations on the dendritic tree are integrated to produce the neuron's output. This is 
crucial for understanding the computational power of individual neurons.43 

63.​NEU-03: Stochastic Ion Channel Simulators. The action potential, the fundamental 
unit of neural signaling, is generated by the opening and closing of thousands of 
individual ion channel proteins. At this scale, the process is inherently stochastic. These 
algorithms use methods like Gillespie simulations to model the probabilistic behavior of 
individual channels, allowing researchers to understand how this molecular-level noise 
contributes to the variability and reliability of neural computation. 



64.​NEU-04: Whole-Brain Effective Connectivity Models. While functional connectivity 
measures simple correlations between brain regions, effective connectivity aims to infer 
the causal, directed influences one region exerts on another. These algorithms, such as 
Dynamic Causal Modeling (DCM), fit a generative model of neural dynamics to 
neuroimaging data (fMRI, EEG/MEG). By testing different model structures, they can infer 
the most likely underlying circuit diagram that produced the observed brain activity. 

65.​NEU-05: Multi-Scale Brain Atlasing Algorithms. Brain data comes in many forms, from 
micrometer-resolution histology to millimeter-resolution MRI. These algorithms aim to 
fuse these disparate data types into a single, coherent, multi-scale probabilistic atlas. 
They solve a massive registration and alignment problem, mapping different data sources 
into a common coordinate framework to create a comprehensive reference for brain 
structure, connectivity, and gene expression across all scales. 

 

Differentiable Biophysical Neuron Models 
 

This category focuses on bridging the gap between realistic biophysical modeling and the 
powerful optimization tools of deep learning. By creating neuron and network models that are 
fully differentiable, parameters can be directly fitted to experimental data, and circuits can be 
"trained" to perform functions. 

66.​NEU-06: Differentiable Hodgkin-Huxley Models. The classic Hodgkin-Huxley model 
describes the dynamics of ion channels that produce action potentials.45 These 
algorithms implement this model and its modern variants within a differentiable 
programming framework.49 This allows the model's parameters, such as the densities and 
kinetics of various ion channels, to be automatically fitted to experimental voltage-clamp 
or current-clamp recordings from real neurons using gradient descent. 

67.​NEU-07: Surrogate Models for Detailed Neuron Dynamics. Simulating large networks 
of biophysically detailed multi-compartment neurons is computationally prohibitive. 
These algorithms create computationally efficient "surrogate" models that capture the 
complex input-output function of a detailed neuron model without the high simulation 
cost.43 This is often done by training a simpler model, like a small neural network or a 
polynomial function, to emulate the detailed model, enabling the simulation of 
large-scale yet biophysically plausible brain circuits. 

68.​NEU-08: Differentiable Plasticity Rule Learners. Synaptic plasticity, the process by 
which connections between neurons strengthen or weaken, is the basis of learning and 
memory. These algorithms aim to discover the mathematical laws governing plasticity 
from data. They represent a potential plasticity rule as a flexible, parameterized function 
(e.g., a small neural network) and then use differentiable simulation to find the 
parameters that best reproduce experimentally observed changes in synaptic strength. 

69.​NEU-09: Gradient-Based Neuro-Compilation. This is the inverse problem to model 



fitting: instead of asking what a circuit does, it asks how to build a circuit that does 
something specific. The algorithm starts with a biophysically detailed but randomly 
parameterized neural circuit. It then uses gradient-based optimization to tune the 
circuit's parameters (e.g., synaptic weights, neuronal properties) until the circuit's activity 
performs a target computation or matches a target pattern of activity, effectively 
"compiling" a function into a neural implementation. 

70.​NEU-10: Homeostatic Activity Regulation Solvers. Neural networks with plasticity can 
be unstable, leading to runaway excitation or quiescence. Biological brains solve this with 
homeostatic mechanisms that regulate overall activity levels over slow timescales. These 
algorithms model these homeostatic feedback loops, simulating how neurons adjust their 
intrinsic properties or scale their synaptic inputs to maintain a stable yet plastic 
operating regime, which is crucial for robust learning. 

 

Neuromorphic and Spiking Learning Algorithms 
 

Inspired by the brain's architecture and communication style, neuromorphic computing uses 
hardware with massive parallelism and event-driven (spiking) communication to achieve 
extreme energy efficiency. This requires a new class of algorithms that can learn and compute 
using sparse, timed spikes rather than the continuous values of traditional AI. 

71.​NEU-11: Spatiotemporal Event-Based Learning Rules. These are learning algorithms 
designed for Spiking Neural Networks (SNNs). Unlike standard backpropagation, these 
rules are typically local, meaning a synapse updates its weight based only on the activity 
of its pre- and post-synaptic neurons. They are critically dependent on the precise timing 
of spikes, implementing forms of Spike-Timing-Dependent Plasticity (STDP) to learn 
temporal patterns in data.50 

72.​NEU-12: Energy-Efficient Neuromorphic Control Algorithms. A key application for 
neuromorphic computing is in autonomous, power-constrained systems like drones or 
brain-computer interfaces.50 These algorithms are designed to perform real-time control 
tasks (e.g., navigation, motor control) on neuromorphic hardware. They leverage the 
sparse, event-based nature of the hardware to minimize power consumption, processing 
sensor data and generating motor commands only when new information is available. 

73.​NEU-13: On-Chip Learning with Local Plasticity. To enable true edge intelligence, 
learning must happen directly on the neuromorphic chip without requiring connection to 
a powerful external computer. These algorithms are designed to be implemented directly 
in hardware, often using local plasticity rules that do not require a global error signal. This 
allows neuromorphic systems to continuously adapt and learn from their environment in 
real-time. 

74.​NEU-14: Hybrid Spiking-Analog Neuromorphic Systems. This category explores 
algorithms that combine the strengths of different neuromorphic approaches. For 



example, a system might use digital, event-based spikes for long-range communication 
(for energy efficiency) but perform local computations using subthreshold analog circuits 
(for computational density and power). The algorithms must manage the interface 
between these discrete-event and continuous-time processing paradigms. 

75.​NEU-15: Generative Models of Neural Spike Trains. These algorithms learn the 
complex statistical dependencies in the firing patterns of populations of neurons. By 
training models like recurrent neural networks or temporal point process models on 
recorded neural data, they can generate new, synthetic spike trains that are statistically 
indistinguishable from real ones. These generative models are crucial tools for 
benchmarking analysis methods and for understanding the coding principles of neural 
populations. 

 

Cognitive Architecture Assemblers 
 

This category aims to bridge the gap between the low-level details of neuroscience and the 
high-level functions of cognitive science. The goal is to build computational models that can 
actually perform cognitive tasks, providing a mechanistic link between neural implementation 
and psychological phenomena. 

76.​NEU-16: Hierarchical Predictive Coding Architectures. Predictive coding is a 
prominent theory of brain function which posits that the brain is constantly generating 
predictions about incoming sensory information and only processing the "error" between 
its prediction and the actual input. These algorithms implement this theory in hierarchical 
models, where higher levels of the hierarchy predict the activity of lower levels. This 
framework provides a unified account of perception, learning, and attention. 

77.​NEU-17: Task-Performing Cognitive Models. Following the argument that "you can't 
play 20 questions with nature and win," these algorithms focus on building integrated, 
end-to-end models that can perform a complete cognitive task, such as making a 
decision based on visual evidence or navigating a maze.44 The goal is to create models 
whose internal components and dynamics can be directly compared with behavioral and 
neural data from humans or animals performing the same task, providing a strong test of 
our understanding.51 

78.​NEU-18: Neuro-Symbolic Models of Reasoning. Human intelligence combines the 
powerful pattern recognition of neural systems with the abstract, logical reasoning of 
symbolic thought. Neuro-symbolic algorithms aim to replicate this synergy. They typically 
consist of a neural component that learns from raw perceptual data and a symbolic 
component that can perform logical inference, planning, or causal reasoning, with a 
well-defined interface for communication between the two. 

79.​NEU-19: Generative Models of Behavior and Action Selection. These algorithms learn 
a probabilistic model over an organism's entire behavioral repertoire. By analyzing 



long-term recordings of an animal's movements and actions, these models can identify 
discrete behavioral "syllables" and the grammatical rules for sequencing them. This 
provides a quantitative, data-driven way to understand decision-making and the 
principles that govern how an organism chooses its next action. 

80.​NEU-20: Embodied Reinforcement Learning for Neuroethology. Neuroethology 
studies the neural basis of natural animal behavior.48 These algorithms support this field 
by creating realistic simulations of an animal's body and its environment. A reinforcement 
learning agent, whose architecture is constrained to resemble the animal's known neural 
circuits, is then trained to solve ecologically relevant tasks (e.g., foraging, navigation) 
within this simulation, providing a powerful platform for testing hypotheses about how 
neural circuits generate behavior. 

 

Part V: Algorithms for Simulating Socio-Economic and 
Adaptive Systems 
 

The final frontier for computational modeling lies in complex adaptive systems: systems 
composed of numerous interacting, intelligent, and often strategic agents, whose collective 
behavior gives rise to emergent, macroscopic patterns. This is the domain of computational 
social science, economics, epidemiology, and ecology.52 Traditional modeling approaches in 
these fields often rely on simplifying assumptions, such as the "representative agent" in 
economics or simple heuristic rules in agent-based models (ABMs), which fail to capture the 
rich complexity of human and animal behavior. The algorithms in this section leverage recent 
advances in AI to create more realistic, nuanced, and powerful simulations of these systems. 

A paradigm-shifting development is the augmentation of agent-based models with Large 
Language Models (LLMs).54 Instead of programming agents with simple rules, each agent can 
be endowed with an LLM, allowing it to reason, communicate in natural language, and exhibit 
more human-like, context-aware decision-making. This enables the creation of "artificial 
societies" where complex social phenomena, like the spread of narratives or the formation of 
social norms, can be "grown" from the bottom up in silico, fulfilling the vision of generative 
social science.56 

However, this increased realism presents a critical challenge: the simulation-to-reality gap. 
The behavior of AI agents, whether driven by RL or LLMs, may be optimal within the confines 
of the simulation but fail to reflect actual human behavior, limiting the real-world applicability 
of policy recommendations derived from them.57 This necessitates the development of 
"Calibrated Multi-Agent Reinforcement Learning (MARL)" algorithms. Such frameworks would 
regularize the learning process by incorporating a "realism loss," penalizing agent policies that 
diverge from the statistical patterns of behavior observed in large-scale, real-world datasets 



from computational social science.52 This calibration grounds the simulation in empirical 
reality, making its outputs far more credible and transferable. 

The convergence of these powerful simulation tools enables a new and ambitious scientific 
endeavor: "Computational Institutional Design." The goal shifts from merely simulating existing 
social systems to actively designing and testing the rules of entirely new ones.57 By modeling 
an economy or society as a multi-agent system, a higher-level optimization algorithm can 
search not over agent strategies, but over the very rules of the environment—the tax code, 
the market structure, the voting system—to find institutions that produce desirable societal 
outcomes like fairness, efficiency, and stability. This transforms computational modeling from 
a descriptive tool into a normative one for exploring solutions to humanity's most complex 
collective challenges. 

 

LLM-Augmented Agent-Based Models (ABMs) 
 

This new class of ABM replaces simple, hard-coded agent rules with the sophisticated 
reasoning and communication capabilities of Large Language Models, enabling far more 
realistic social simulations. 

81.​SOC-01: Generative Agent Models for Social Simulation. This is the foundational 
concept of creating "believable" digital personae by equipping each agent in a simulation 
with an LLM, a memory module, and a capacity for reflection and planning.54 These 
generative agents can engage in complex social behaviors, form relationships, and 
coordinate activities, leading to the emergence of complex social dynamics from simple 
initial conditions, as famously demonstrated in the "Stanford Smallville" simulation.55 

82.​SOC-02: LLM-Powered Communication Network Simulators. These algorithms model 
the spread of information, opinions, and narratives through a social network where 
agents communicate using natural language. Each LLM-agent can generate and interpret 
messages, update its beliefs based on the content it receives, and decide what 
information to share with its neighbors. This allows for nuanced simulations of 
phenomena like echo chambers, polarization, and the differential spread of true versus 
false information. 

83.​SOC-03: Emergent Norm and Convention Solvers. Social norms (e.g., which side of 
the sidewalk to walk on) often emerge without centralized enforcement. These algorithms 
model this process by simulating LLM-agents who must repeatedly coordinate to solve a 
common problem. Through interaction and observing the behavior of others, the agents 
can converge on a shared convention, providing a mechanistic model for the bottom-up 
formation of social order. 

84.​SOC-04: Calibrated Agent-Based Models. To ensure that LLM-agent simulations are 
grounded in reality, these algorithms continuously calibrate agent behaviors against 



real-world data streams. For example, the distribution of opinions expressed by agents in 
a political simulation could be compared to real-time data from social media, and the 
agents' internal models or prompts could be adjusted to minimize the divergence. This 
creates a feedback loop that keeps the simulation from drifting into unrealistic behavioral 
regimes. 

85.​SOC-05: Digital Twin Models of Social Systems. This concept extends the engineering 
digital twin to social systems. It involves creating a high-fidelity, real-time, agent-based 
model of a specific real-world system, such as a city's transportation network or an 
organization's communication patterns, constantly updated with real data.9 This "digital 
twin" can then be used as a safe, virtual testbed for evaluating the potential impacts of 
policy changes or interventions before they are implemented in the real world. 

 

Multi-Agent Reinforcement Learning (MARL) for Economic Policy 
Design 
 

These algorithms model economic systems as games played by self-interested, learning 
agents. This framework allows for the study of emergent market phenomena and the design 
of policies that are robust to the strategic behavior of participants. 

86.​SOC-06: Multi-Agent Reinforcement Learning for Mechanism Design. This is a 
powerful framework for discovering optimal policies or rules (mechanisms) in a 
multi-agent setting.59 For example, in the AI Economist project, a central "planner" agent 
uses reinforcement learning to set tax rates, while multiple "worker" and "firm" agents 
learn to maximize their own utility in response to those taxes.57 The planner's reward is 
based on a combination of productivity and equality, allowing it to learn a tax policy that 
balances these objectives in the emergent equilibrium.57 

87.​SOC-07: Differentiable Game Theoretic Solvers. For games with continuous action 
spaces, these algorithms represent the payoff functions and agent policies as 
differentiable functions (e.g., neural networks). This allows for the use of gradient-based 
methods to find Nash equilibria, where no agent has an incentive to unilaterally change 
its strategy. This approach can be more efficient than traditional equilibrium-finding 
algorithms, especially in high-dimensional games. 

88.​SOC-08: Heterogeneous Agent Macroeconomic Models. Traditional macroeconomic 
models often assume a single "representative" household and firm, which fails to capture 
the crucial role of inequality and heterogeneity. These algorithms overcome this by using 
MARL to simulate economies with millions of distinct agents, each with their own 
characteristics and learned policies.57 This allows for the study of how macroeconomic 
phenomena and policies are shaped by the distribution of wealth and income. 

89.​SOC-09: LLM-Augmented Economic Agents. This category enhances the behavioral 



realism of MARL-based economic models by incorporating LLMs into the agents' 
decision-making process.59 For example, an LLM could be used to model how firms form 
narrative-based expectations about the future economy or how consumers make 
complex purchasing decisions based on product descriptions and reviews, moving 
beyond simple utility maximization. 

90.​SOC-10: Inverse Reinforcement Learning for Policy Inference. Instead of specifying 
what agents should optimize, Inverse Reinforcement Learning (IRL) infers their objectives 
from their observed behavior. In an economic context, IRL algorithms can be used to 
analyze real-world market data and infer the underlying preferences and reward 
functions of consumers or firms. This provides a data-driven way to build more realistic 
models of economic behavior. 

 

Network Algorithms for Opinion Dynamics and Information Diffusion 
 

These algorithms model how things spread through networks of interacting agents. They go 
beyond simple contagion models to capture the complex dynamics of social influence, belief 
updating, and the co-evolution of network structure and agent states. 

91.​SOC-11: Co-evolutionary Models of Networks and Opinions. These models capture 
the crucial feedback loop between social structure and individual beliefs. They simulate 
two intertwined processes: opinion dynamics, where agents' opinions become more 
similar to their neighbors', and network evolution, where agents are more likely to form or 
maintain links with others who hold similar opinions (homophily). This can explain the 
emergence of polarized echo chambers and fragmented social structures. 

92.​SOC-12: Higher-Order Network Diffusion Models. Many social phenomena, like 
adopting a risky new behavior, require reinforcement from multiple peers, not just one. 
Simple contagion models on graphs (pairwise interactions) cannot capture this. 
Higher-order models, using structures like simplicial complexes or hypergraphs, can 
explicitly model group interactions, leading to more realistic simulations of complex 
contagion processes. 

93.​SOC-13: Causal Inference on Networked Data. A key challenge in social science is 
determining whether an outcome is due to peer influence (e.g., my friends made me 
adopt a behavior) or homophily (e.g., I chose friends who were already like me). These 
algorithms use advanced statistical methods, often leveraging temporal data or 
instrumental variables, to disentangle these effects and estimate the true causal impact 
of social ties on individual behavior.52 

94.​SOC-14: Temporal Network Algorithms for Dynamic Processes. Most real-world 
social networks are not static; the timing and order of interactions matter. Temporal 
network algorithms are designed to analyze and model these dynamic networks. They 
can identify critical time windows for influence or uncover how the specific sequence of 



interactions affects the speed and reach of a diffusion process, like a disease outbreak 
or the spread of a viral video.60 

95.​SOC-15: Belief Propagation and Message Passing on Graphs. This is a class of 
distributed algorithms where agents in a network iteratively update their beliefs by 
passing "messages" to their neighbors. Each message summarizes an agent's current 
belief about a state of the world. This process can be used to model how a group 
converges on a collective consensus or to solve decentralized inference problems on the 
network.60 

 

Generative Social Science and Emergence Solvers 
 

This category focuses on the core question of generative social science: how do macroscopic 
social patterns emerge from the local interactions of individual agents? These algorithms aim 
to solve the inverse problem: to discover the micro-level rules that generate observed 
macro-level phenomena. 

96.​SOC-16: Inverse Generative Social Science Solvers. Given an observed macroscopic 
social pattern (e.g., the power-law distribution of city sizes, patterns of residential 
segregation), these algorithms search for the simplest possible set of agent-level rules 
that can generate this pattern in a simulation.56 This is often framed as an optimization 
problem, where techniques like genetic algorithms or reinforcement learning are used to 
search the space of possible agent rules to find a set that minimizes the difference 
between the simulated and real-world outcomes. 

97.​SOC-17: Agent-Based Models of Scientific Discovery. These algorithms model the 
process of science itself as a complex adaptive system. Scientists are modeled as agents 
who choose research problems, perform experiments, and publish results on a 
"knowledge landscape." The simulation can explore how different institutional structures 
(e.g., funding mechanisms, collaboration networks) affect the efficiency and trajectory of 
collective scientific progress. 

98.​SOC-18: Cultural Evolution Simulators. These algorithms model how cultural 
traits—such as languages, technologies, or social norms—are transmitted and evolve 
over time. They simulate a population of agents who learn from others, innovate, and 
pass on modified traits to the next generation. This allows researchers to test hypotheses 
about the mechanisms driving cultural change and the evolution of human societies. 

99.​SOC-19: Computational Institutional Design. This is a normative extension of 
generative social science. Instead of just explaining existing social structures, these 
algorithms aim to design new ones. An outer optimization loop proposes a set of rules for 
a social or economic system (the "institution"), and an inner loop runs a multi-agent 
simulation to see what collective behavior emerges under those rules. The outer loop 
then uses the outcome to propose a better set of rules, searching for institutions that 



produce desirable societal outcomes like fairness or efficiency. 
100.​ SOC-20: Emergence Detection and Quantification Algorithms. A fundamental 

concept in complex systems is emergence, but it is often defined loosely. These 
algorithms aim to formalize and automate its detection. They use tools from information 
theory to measure the synergy and statistical dependencies between the micro-level 
states of agents and the macro-level state of the system, providing a quantitative score 
for whether a system is exhibiting true collective behavior that cannot be reduced to the 
sum of its parts. 

 

Conclusion: Synthesizing a Generative Framework for 
Scientific AI 
 

The 100 algorithm categories detailed in this report, while diverse and domain-specific, are 
not isolated concepts. They are interconnected components of a broader, emergent paradigm 
for computational science. When synthesized, they point toward a future where the process 
of scientific discovery itself is augmented and accelerated by a new class of AI systems. This 
conclusion draws together the cross-cutting themes that have appeared across all five 
domains and outlines a vision for an integrated, generative framework for Scientific AI. 

Three fundamental principles have consistently surfaced as critical for the next generation of 
scientific algorithms: 

1.​ Principle-Informed Learning: Across physics, chemistry, and biology, there is a clear 
and urgent move away from purely data-driven, black-box models. The most promising 
and robust algorithms are those that embed fundamental domain knowledge directly into 
their architecture. This includes everything from enforcing conservation laws in dynamics 
solvers 16, to building geometric symmetries into molecular generative models 24, to using 
causal structures to constrain biological network inference.35 This represents a 
fundamental recognition that in data-scarce or high-stakes scientific domains, inductive 
biases derived from established theory are not a limitation but a prerequisite for success. 

2.​ The Generative/Inverse Paradigm: In every design-oriented field, from materials 
science to drug discovery to economic policy, the primary goal is shifting from prediction 
(the forward problem) to generation (the inverse problem).21 The core task is no longer to 
ask "What are the properties of this thing?" but "What thing has these properties?" This 
has propelled the development of sophisticated generative models, constrained 
optimization frameworks, and active learning strategies that are designed not just to 
analyze the world but to create novel solutions within it. 

3.​ Multi-Scale and Multi-Agent Integration: From the brain to the economy, from a 
developing tissue to a turbulent fluid, the most challenging scientific problems are 



characterized by interactions that span vast scales and involve heterogeneous, adaptive 
agents.32 This has driven the need for hierarchical and hybrid modeling frameworks that 
can couple simulations at different levels of abstraction and capture the emergent 
behavior that arises from the collective actions of many individual components. 

These principles are not independent; they are deeply intertwined. A multi-scale model of a 
biological system is only credible if it is constrained by causal scaffolding. A generative model 
for a new material is only useful if it respects the physical principles of thermodynamics and 
geometry. The true power of these concepts lies in their integration. 

This leads to a final, forward-looking vision: the assembly of a unified Scientific Discovery 
Engine. The 100 algorithm categories in this report should not be viewed as a simple laundry 
list, but as a potential component library for such an engine. Inspired by systems like 
AlphaEvolve, this framework would integrate multiple AI paradigms to automate and augment 
the scientific method.61 Its core components would be: 

●​ The Generator: An evolutionary or large-scale search algorithm that proposes novel 
hypotheses, models, and even new algorithmic structures to solve a given problem.61 This 
component would explore the vast space of possibilities, generating candidate solutions. 

●​ The Verifier: A suite of high-fidelity, domain-specific simulators and models—drawn 
from the very categories detailed in this report—that act as the "virtual laboratory." This 
is the environment where the hypotheses generated are rigorously tested for physical 
plausibility, predictive accuracy, and consistency with known data. 

●​ The Interpreter: A neuro-symbolic component that takes the complex, often inscrutable 
models that succeed in the verification stage and attempts to distill them into simple, 
human-understandable laws, equations, or causal rules, using techniques like symbolic 
regression or rule induction.1 

Building this integrated Scientific Discovery Engine represents a grand challenge for the next 
decade of AI research. It requires a strategic pivot away from the singular pursuit of scaling 
general-purpose models and toward a deep, collaborative, and principle-driven engagement 
with the fundamental structures of each scientific domain. The algorithmic frontier is not a 
single peak to be scaled, but a vast and varied landscape that demands a diverse and 
specialized set of tools to explore. The paradigms outlined in this report are a map to that 
frontier. 
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