Algorithmic Frontier: Domain-Specific
Computational Paradigms

Beyond Transformers—Domain-Specific Algorithms

The current era of artificial intelligence is overwhelmingly defined by the success of
large-scale, general-purpose architectures, most notably the transformer. Their
unprecedented ability to scale with data and compute has revolutionized fields from natural
language processing to computer vision, creating a powerful paradigm of pre-training on vast,
unlabeled datasets and fine-tuning for specific tasks. This success has naturally led to the
application of these models to scientific domains, where they have shown promise in
accelerating data analysis, predicting protein structures, and identifying patterns in
high-dimensional experimental outputs. However, this report posits that the uncritical
application of these general-purpose architectures to deep scientific problems is
approaching a point of diminishing returns. The next frontier of discovery will not be unlocked
by simply scaling existing models, but by a strategic pivot towards a new lexicon of
domain-specific algorithms.

Scientific inquiry demands more than statistical correlation; it requires causality,
interpretability, and adherence to fundamental physical laws. The "black-box" nature of many
deep learning models, while acceptable for tasks where performance is the sole metric, is a
significant impediment to scientific discovery, where understanding the "how" and "why" is
paramount for non-machine learning experts in fields like physics, chemistry, and materials
science.' The future of computational science lies in a fundamental shift from using Al as a
tool

for science—a pattern recognizer that accelerates existing workflows—to developing a truly
Scientific Al, where the algorithms themselves are designed to operate according to scientific
principles. This is a qualitative evolution of Al's role from a high-throughput lab assistant to a
collaborative partner in hypothesis generation and theory formation. Systems like Al-Hilbert,
which symbiotically integrate theoretical knowledge as formal axioms with empirical data to
derive new, interpretable mathematical models, exemplify this new paradigm.® They augment
the scientific method itself, rather than merely accelerating its constituent steps.

This report is predicated on a foundational concept in machine learning: the "No-Free-Lunch"
theorem. There is no single model that is optimal for all problems. The immense success of
transformers has created a cognitive bias towards a universal architecture, yet a growing
body of evidence suggests that for scientific problems, domain-agnostic scale must be
complemented by domain-specific structure. Research into Hamiltonian Neural Networks and
Physics-Informed Neural Networks demonstrates that embedding physical principles like
energy conservation or the form of a partial differential equation directly into the model's



architecture leads to vastly improved data efficiency, generalization, and physical plausibility.*
In some climate modeling scenarios, simpler, physics-based models have even been shown to
outperform complex deep learning approaches that struggle with natural data variability.®

Therefore, this document serves as a strategic white paper outlining a research agenda for
this new era. It presents a curated portfolio of 100 distinct, domain-specific algorithm
categories designed to trigger thinking and guide development. These are not existing,
off-the-shelf algorithms, but conceptual paradigms that respond to the unique challenges of
their respective domains. Organized across five critical areas—Physical/Engineered Systems,
Chemistry/Materials Science, Biological Complexity, Neuroscience/Cognitive Systems, and
Socio-Economic/Adaptive Systems—this catalog represents a necessary diversification of our
computational toolkit. It is a blueprint for moving beyond correlation to causation, from
pattern recognition to principle discovery, and from black-box prediction to glass-box
understanding.

Executive Summary Table

The following table provides a comprehensive, at-a-glance reference to all 100 algorithm
categories detailed in this report. It is designed for executive review and to serve as a
navigable index to the full descriptions in the subsequent sections. Each entry includes a
unique identifier, a descriptive name, its primary domain, and a one-sentence
"Thought-Trigger" that distills the core concept of the algorithm.

Table 1: A Catalog of 100 Domain-Specific Algorithm Categories

ID Algorithm Category | Primary Domain Core Principle /
Name "Thought-Trigger"

Part I: Physical
and Engineered
Systems

PHY-01 Hamiltonian Physical Systems Learn a system's
Symplectic conserved energy
Integrators landscape to
guarantee stable,
long-term
trajectory
predictions that
never violate
physics.




PHY-02

Lagrangian
Variational Solvers

Physical Systems

Discover equations
of motion by
finding the "path of
least action" in
observational data,
inherently
capturing system
symmetries.

PHY-03

Port-Hamiltonian
Dissipative
Learners

Physical Systems

Model real-world
systems with
friction and
external forces by
learning how
energy flows in,
out, and through
the system.

PHY-04

Constrained
Gauge-Equivariant
Field Learners

Physical Systems

Learn fields (e.g.,
electromagnetism)
that automatically
respect intrinsic
geometric
constraints and
symmetries, like
divergence-free
properties.

PHY-05

Lie Group
Integrators for
Symmetrical
Systems

Physical Systems

Simulate systems
with rotational or
other continuous
symmetries by
performing
calculations
directly on the
manifold of the
symmetry group.

PHY-06

Physics-Informed
Neural ODEs

Physical Systems

Solve complex
ordinary differential
equations by using




(PIN-ODEs)

a neural network as
the solution
function, penalized
by its deviation
from the equation
itself.

PHY-O7

Inverse Problem
Solvers via
Differentiable
Physics

Physical Systems

Discover unknown
physical
parameters (e.g.,
material
conductivity) by
backpropagating
from observed data
through a
differentiable
simulation.

PHY-08

Spatiotemporal
Fourier Neural
Operators

Physical Systems

Learn the entire
solution family for a
PDE in the
frequency domain,
enabling zero-shot
super-resolution
and mesh-free
predictions.

PHY-09

Causal
Spatiotemporal
Graph Networks

Physical Systems

Model complex
physical
interactions by
learning a causal
graph where nodes
are system
components and
edges represent
physical influence,
respecting the
speed of light.

PHY-10

Discontinuity-Awar

Physical Systems

Learn to solve PDEs
with sharp




e PDE Solvers

gradients or shocks
(e.g., in supersonic
flow) by adaptively
placing
computational
effort at
discontinuities.

PHY-11

Active Learning
Multi-Fidelity
Surrogates

Engineered
Systems

Intelligently build a
cheap
approximation of
an expensive
simulation by
deciding which
simulation (cheap
low-res or costly
high-res) to run
next.

PHY-12

Bayesian
Optimization for
Design Exploration

Engineered
Systems

Efficiently search
vast engineering
design spaces by
building a
probabilistic model
of the performance
landscape to guide
each new
experiment.

PHY-13

Generative Models
for Topology
Optimization

Engineered
Systems

Generate novel,
high-performance,
and
manufacturable
structural designs
(e.g., trusses,
brackets) that
optimally distribute
material under
load.




PHY-14

Differentiable
Engineering
Simulators

Engineered
Systems

Represent an entire
engineering
simulation (e.g., a
finite element
model) as a
differentiable
program for
gradient-based
design
optimization.

PHY-15

Control Co-Design
Optimizers

Engineered
Systems

Simultaneously
optimize a system's
physical design
(e.g., arobot's
body) and its
control policy (its
"brain") to achieve
superior
performance.

PHY-16

Probabilistic
Graphical Models
for System
Reliability

Engineered
Systems

Model the
probability of
system failure by
representing
components as
nodes in a graph
and learning the
conditional failure
probabilities
between them.

PHY-17

Bayesian
Calibration of
Simulation Models

Engineered
Systems

Systematically
reduce the gap
between simulation
and reality by using
real-world data to
infer the probability
distributions of
uncertain model
parameters.




PHY-18 Forward Engineered Efficiently compute
Uncertainty Systems how uncertainty in
Propagation via a model's inputs
Polynomial Chaos propagates to its
outputs without
running millions of
Monte Carlo
simulations.
PHY-19 Physics-Constraine | Engineered Fuse sparse, noisy
d Data Assimilation Systems real-world sensor
Algorithms data with a
physics-based
model to create a
complete and
accurate estimate
of a system's state.
PHY-20 Hybrid Physical Systems Combine the
Particle-Mesh strengths of
Solvers grid-based and

particle-based
methods to
simulate
phenomena with
both continuous
fields and discrete
elements, like
fluid-structure
interaction.

Part Il: Chemistry
and Materials
Science

CHE-O1

SE(3)-Equivariant
Generative
Networks for 3D
Molecules

Chemistry

Generate novel 3D
molecular
conformers that are
guaranteed to be
physically realistic
by building




rotational and
translational
symmetries into the
network
architecture.

CHE-02

Hypergraph Neural
Networks for
Reaction Pathways

Chemistry

Model complex
chemical reactions
by representing
reactants,
products, and
transition states as
nodesin a
hypergraph to
predict reaction
outcomes and
yields.

CHE-03

Quantum Graph
Neural Networks
for Electron
Dynamics

Chemistry

Learn molecular
properties by
directly
approximating
solutions to the
Schrodinger
equation on a
molecular graph,
capturing quantum
effects.

CHE-04

Differentiable
Molecular
Dynamics
Simulators

Chemistry

Create end-to-end
differentiable
simulations of
molecular motion
to learn force fields
from data or design
molecules that
self-assemble into
target structures.

CHE-05

Generative Models
for Crystal

Materials Science

Discover new
stable crystalline




Structure Design

materials by
generating atom
positions and
lattice vectors that
adhere to
crystallographic
symmetry groups.

CHE-06

Compositional
Generative Models
for Material Design

Materials Science

Create novel,
complex materials
by learning a
"language" of
fundamental
building blocks and
the grammatical
rules for combining
them.

CHE-O7

Latent Space
Optimization for
Inverse Property
Design

Materials Science

Navigate the latent
space of a
generative material
model using
optimization
algorithms to find
novel materials with
specific target
properties (e.g.,
high conductivity).

CHE-08

Property-Constrain
ed Diffusion Models

Materials Science

Generate new
materials that are
guaranteed to have
desired properties
by guiding the
diffusion/denoising
process with a
separate property
prediction model.

CHE-09

Multi-Objective
Inverse Design

Materials Science

Simultaneously
optimize for




Algorithms

multiple, often
competing, material
properties (e.g.,
strength vs. weight)
to find the
Pareto-optimal
frontier of new
materials.

CHE-10

Generative Models
for Amorphous and
Disordered
Systems

Materials Science

Design glasses and
other
non-crystalline
materials by
learning the
statistical
distributions of
local atomic
environments
rather than a fixed
lattice structure.

CHE-11

Neuro-Symbolic
Equation Discovery
for QSAR

Chemistry

Discover
human-readable
mathematical
formulas that link a
molecule's
structure to its
biological activity
(QSAR) by
combining neural
networks with
symbolic
regression.

CHE-12

Automated
Synthesis Planning
via Graph Rewriting

Chemistry

Propose viable
multi-step
synthesis routes for
a target molecule
by treating
chemical reactions
as graph




transformation
rules and searching
for a path from
reactants.

CHE-13

Causal Inference
for Mechanistic
Chemistry

Chemistry

Determine the
causal drivers of a
reaction's outcome
by applying causal
discovery
algorithms to
high-throughput
experimental data,
distinguishing
correlation from
cause.

CHE-14

Hybrid
Quantum-Classical
Solvers for
Catalysis

Chemistry

Model catalytic
reactions by
treating the active
site with
high-fidelity
quantum chemistry
and the
surrounding
environment with a
cheaper classical
or ML model.

CHE-15

Interpretable
Chemical Rule
Induction Systems

Chemistry

Extract simple,
human-understand
able "if-then" rules
for chemical
reactivity or
material stability
from large
datasets,
complementing
black-box models.




CHE-16

Bayesian
Experimental
Design for
Materials Discovery

Materials Science

Guide a materials
discovery
campaign by using
a probabilistic
model to decide
which experiment
to run next to
maximize
information gain
about the property
landscape.

CHE-17

Uncertainty-Aware
Active Learning for
Force Fields

Chemistry

Build accurate
machine learning
force fields with
minimal quantum
chemistry
calculations by
intelligently
selecting which
molecular
configurations are
most uncertain.

CHE-18

Transfer Learning
for Sparse
Materials Data

Materials Science

Predict properties
for a new,
data-scarce
material class by
pre-training a
model on a large
database of
existing materials
and fine-tuning it.

CHE-19

Federated Learning
for Proprietary
Chemical Data

Chemistry

Train a shared
model across
multiple
organizations'
private chemical
datasets without
any organization




having to reveal its
proprietary data.

CHE-20

Closed-Loop
Synthesis and
Characterization
Algorithms

Materials Science

Create autonomous
"self-driving labs"
where an Al
algorithm proposes
a new material,
directs a robot to
synthesize it,
analyzes the result,
and uses the new
data to inform the
next cycle.

Part lll: Biological

Complexity

BIO-01 Causal Graph Biological Infer the directed,
Discovery for Gene Complexity causal structure of
Regulatory gene regulation
Networks from observational

gene expression
data by searching
for the graph that
best explains the
data's statistical
properties.

BIO-02 Mendelian Biological Use genetic
Randomization as Complexity variants as natural
an Instrumental "randomized trials"
Variable Solver to determine the

causal effect of a
modifiable
exposure (e.g.,
cholesterol) on a
disease outcome.

BIO-03 Interventional Biological Combine

Causal Structure

observational and




Learning

Complexity

experimental (e.g.,
gene knockout)
data to more
robustly infer
causal biological
networks, resolving
ambiguities that
observation alone
cannot.

BIO-04

Counterfactual
Estimators for
Personalized
Medicine

Biological
Complexity

Predict how a
specific patient
would have
responded to a
treatment they did
not receive,
enabling true
in-silico clinical trial
simulation.

BIO-05

Latent Causal
Variable Discovery

Biological
Complexity

Identify hidden,
unmeasured
confounding
factors in biological
data by modeling
them as latent
variables in a
causal graph.

BIO-06

Differentiable
Cellular Automata
for Morphogenesis

Biological
Complexity

Model tissue
development and
pattern formation
by representing
cells as agents with
differentiable rules,
allowing
optimization of
parameters to
match experimental
observations.




BIO-0O7

Neural
Pharmacokinetic/P
harmacodynamic
(PK/PD) Models

Biological
Complexity

Learn the complex,
nonlinear dynamics
of how a drug is
absorbed,
distributed,
metabolized, and
excreted, and its
effect on the body,
directly from
clinical data.

BIO-08

Differentiable
Models of
Metabolic Networks

Biological
Complexity

Represent a cell's
entire metabolic
network as a
differentiable
system of
equations to
predict metabolic
fluxes and identify
drug targets.

BIO-09

End-to-End
Differentiable
Protein Folding &
Docking

Biological
Complexity

Simultaneously
predict a protein's
3D structure and
how it binds to
other molecules in
asingle,
differentiable
model that can be
optimized for drug
design.

BIO-10

Probabilistic
Programming for
Systems Biology

Biological
Complexity

Build stochastic
models of
biological
processes (e.g.,
gene expression)
and use Bayesian
inference to fit the
entire probability
distribution of




model parameters
to noisy data.

BIO-11

Hierarchical
Agent-Based
Models for
Immunology

Biological
Complexity

Simulate the
immune system by
modeling
interactions across
scales, from
molecular signaling
within a single
T-cell to population
dynamics of
millions of cellsin a
lymph node.

BIO-12

Multi-Scale
Physiological
Digital Twins

Biological
Complexity

Create a
patient-specific,
integrated model
from genomics to
organ function,
allowing for the
in-silico testing of
personalized
interventions.

BIO-13

Spatiotemporal
Graph Networks for
Tissue Dynamics

Biological
Complexity

Model the dynamic
behavior of cells in
a developing or
diseased tissue by
representing them
as nodes in a graph
that evolves over
time.

BIO-14

Information
Bottleneck for
Biomarker
Discovery

Biological
Complexity

Discover the most
concise set of
biomarkers that are
maximally
predictive of a
disease state by
compressing




high-dimensional
data through a
minimal information
channel.

BIO-15

Cross-Scale
Information
Transfer Models

Biological
Complexity

Develop formalisms
for how information
from a low-level
simulation (e.g.,
protein dynamics)
can be used to
rigorously
parameterize a
higher-level model
(e.g., cell behavior).

BIO-16

Goal-Conditioned
Generative Models
for Drug Design

Drug Discovery

Generate new drug
candidates
conditioned on a
desired target
property profile,
such as high
binding affinity and
low toxicity, guiding
the search towards
viable molecules.

BIO-17

Reinforcement
Learning for
Adaptive Clinical
Trials

Drug Discovery

Optimize the
design of a clinical
trial in real-time by
learning which
patient subgroups
respond best to a
treatment and
adaptively
allocating new
patients.

BIO-18

Self-Supervised
Learning for

Drug Discovery

Learn powerful
feature
representations




Biomedical Imaging

from vast unlabeled
medical image
datasets (e.g.,
histology slides) to
dramatically
improve the
performance of
downstream
diagnostic models.

BIO-19

Automated
Experiment Design
for Mechanism
Elucidation

Drug Discovery

Design the specific
sequence of
experiments (e.g.,
which protein to
knock out) that will
most efficiently
distinguish
between
competing
hypotheses about a
biological
mechanism.

BIO-20

Generative Models
for Synthetic
Biology Circuit
Design

Biological
Complexity

Design novel
genetic circuits
(e.g., oscillators,
switches) by
generating DNA
sequences that are
predicted to
produce a target
dynamic behavior
when inserted into
acell.

Part IV:
Neuroscience and
Cognitive
Systems




NEU-0O1

Coupled
Neuron-Glial-Vascu
lature Network
Models

Neuroscience

Simulate brain
function as an
integrated system
where neural
activity is
dynamically
coupled with glial
cell support and
metabolic energy
supply from blood
flow.

NEU-02

Biophysically
Detailed
Multi-Compartment
Neuron Solvers

Neuroscience

Model the complex
electrical and
chemical
computations
occurring within
the dendritic tree
of a single neuron,
going beyond
simple
point-neuron
models.

NEU-03

Stochastic lon
Channel Simulators

Neuroscience

Capture the
inherent
randomness of ion
channel openings
and closings to
understand how
molecular-level
noise impacts
neural
computation.

NEU-04

Whole-Brain
Effective
Connectivity
Models

Neuroscience

Infer the directed,
causal influence
that different brain
regions exert on
each other by
fitting dynamic




causal models to
neuroimaging data
(fMRI, EEG).

NEU-05

Multi-Scale Brain
Atlasing Algorithms

Neuroscience

Fuse brain data
from different
modalities and
scales (e.g.,
histology, MRI,
gene expression)
into a single,
coherent,
multi-resolution
atlas of brain
structure and
function.

NEU-06

Differentiable
Hodgkin-Huxley
Models

Neuroscience

Create
biophysically
realistic neuron
models whose
parameters (e.g.,
ion channel
densities) can be
directly fit to
electrophysiology
data via gradient
descent.

NEU-0O7

Surrogate Models
for Detailed Neuron
Dynamics

Neuroscience

Build
computationally
cheap emulators of
complex,
multi-compartment
neuron models,
enabling the
simulation of
large-scale
networks of
realistic neurons.




NEU-08

Differentiable
Plasticity Rule
Learners

Neuroscience

Discover the
mathematical form
of synaptic
plasticity rules by
treating the rule
itself as a
parameterized,
differentiable
function and fitting
it to experimental
data.

NEU-09

Gradient-Based
Neuro-Compilation

Neuroscience

Automatically tune
the parameters of a
biophysically
detailed neural
circuit model to
make it perform a
specified cognitive
function (e.g.,
working memory).

NEU-10

Homeostatic
Activity Regulation
Solvers

Neuroscience

Model the
slow-acting
feedback
mechanisms that
allow neural circuits
to maintain stable
activity levels
despite ongoing
synaptic plasticity
and learning.

NEU-11

Spatiotemporal
Event-Based
Learning Rules

Neuroscience

Develop learning
algorithms for
spiking neural
networks that
depend on the
precise timing of
neural spikes,
enabling efficient




computation on
neuromorphic
hardware.

NEU-12

Energy-Efficient
Neuromorphic
Control Algorithms

Neuroscience

Design algorithms
for controlling
robotic or
prosthetic devices
that are optimized
for the low-power,
event-driven nature
of neuromorphic
chips.

NEU-13

On-Chip Learning
with Local Plasticity

Neuroscience

Create algorithms
that can learn
directly on
neuromorphic
hardware, using
only locally
available
information at each
synapse, mimicking
biological learning.

NEU-14

Hybrid
Spiking-Analog
Neuromorphic
Systems

Neuroscience

Combine the
efficiency of
event-based
spiking
communication
with the
computational
power of
continuous-valued
analog circuits in a
single algorithmic
framework.

NEU-15

Generative Models
of Neural Spike

Neuroscience

Learn the statistical
structure of neural
firing patterns to




Trains

generate synthetic,
realistic neural
activity or to
perform
"denoising” on
recorded data.

NEU-16

Hierarchical
Predictive Coding
Architectures

Cognitive Systems

Model perception
and cognition as a
process of
hierarchical
prediction error
minimization, where
higher brain areas
predict the activity
of lower areas.

NEU-17

Task-Performing
Cognitive Models

Cognitive Systems

Build integrated,
end-to-end
computational
models that can
perform a complex
cognitive task (e.g.,
decision-making
under uncertainty)
and whose internal
dynamics can be
compared to brain
data.

NEU-18

Neuro-Symbolic
Models of
Reasoning

Cognitive Systems

Bridge the gap
between neural
perception and
symbolic thought
by creating hybrid
models that can
learn from raw data
but also reason
with abstract
concepts and logic.




NEU-19

Generative Models
of Behavior and
Action Selection

Cognitive Systems

Learna
probabilistic model
of an animal's or
human's behavioral
repertoire to
predict future
actions and
understand the
principles of
decision-making.

NEU-20

Embodied
Reinforcement
Learning for
Neuroethology

Cognitive Systems

Understand the
neural basis of
behavior by training
artificial agents
with simulated
bodies and nervous
systems to solve
tasks in realistic
virtual
environments.

Part V:
Socio-Economic
and Adaptive
Systems

SOC-01

Generative Agent
Models for Social
Simulation

Socio-Economic
Systems

Create realistic
"artificial societies"
by populating
agent-based
models with agents
whose behaviors
are driven by the
rich, contextual
reasoning of large
language models.

SOC-02

LLM-Powered
Communication

Socio-Economic
Systems

Simulate the
spread of
information and




Network Simulators

misinformation by
modeling agents
who communicate
with each other
using natural
language,
influenced by their
individual beliefs
and biases.

SOC-03

Emergent Norm
and Convention
Solvers

Socio-Economic
Systems

Model how social
norms and
conventions (e.g.,
traffic rules,
language) can
emerge from the
repeated local
interactions of
individual agents
without central
planning.

SOC-04

Calibrated
Agent-Based
Models

Socio-Economic
Systems

Improve the realism
of agent-based
simulations by
continuously
calibrating agent
behaviors against
real-world data
streams (e.g., from
social media or
economic
indicators).

SOC-05

Digital Twin Models
of Social Systems

Socio-Economic
Systems

Build dynamic,
data-driven virtual
replicas of
real-world social
systems (e.g., a
city's
transportation




network) to test
policy interventions
in silico before
deployment.

SOC-06

Multi-Agent
Reinforcement
Learning for
Mechanism Design

Socio-Economic
Systems

Discover optimal
economic or social
mechanisms (e.g.,
auction rules, tax
policies) by
modeling
stakeholders as
strategic RL agents
and finding the
rules that lead to a
desirable
equilibrium.

SOC-07

Differentiable
Game Theoretic
Solvers

Socio-Economic
Systems

Find equilibria in
complex,
multi-player games
by representing the
game as a
differentiable
system, allowing for
gradient-based
discovery of
optimal strategies.

SOC-08

Heterogeneous
Agent
Macroeconomic
Models

Socio-Economic
Systems

Move beyond
representative-age
nt models in
economics by
simulating the
interactions of
millions of
heterogeneous
households and
firms, each with
their own learned
behaviors.




SOC-09

LLM-Augmented
Economic Agents

Socio-Economic
Systems

Enhance the
behavioral realism
of economic agent
models by using
LLMs to model
complex
decision-making,
expectation
formation, and
strategic
communication.

SOC-10

Inverse
Reinforcement
Learning for Policy
Inference

Socio-Economic
Systems

Infer the underlying
objectives and
preferences of
real-world actors
(e.g., consumers,
firms) by observing
their behavior and
finding the reward
function they are
likely optimizing.

SOC-1

Co-evolutionary
Models of Networks
and Opinions

Socio-Economic
Systems

Simulate the
feedback loop
where individuals'
opinions are
shaped by their
social network,
while the network
itself evolves as
people form and
break ties based on
their opinions.

SOC-12

Higher-Order
Network Diffusion
Models

Socio-Economic
Systems

Model complex
contagion
phenomena (e.g.,
the spread of
behaviors that
require social




reinforcement) by
considering
interactions within
groups, not just
pairs, of individuals.

SOC-13

Causal Inference on
Networked Data

Socio-Economic
Systems

Disentangle peer
effects from
homophily and
confounding
factors to
determine the true
causal influence of
social connections
on individual
outcomes.

SOC-14

Temporal Network
Algorithms for
Dynamic Processes

Socio-Economic
Systems

Analyze how the
timing and ordering
of interactions in a
social network
affect dynamic
processes like
disease spread or
information
diffusion.

SOC-15

Belief Propagation
and Message
Passing on Graphs

Socio-Economic
Systems

Model how
individual agents
update their beliefs
based on
information
received from their
neighbors in a
social network,
leading to
collective
consensus or
polarization.




SOC-16

Inverse Generative
Social Science
Solvers

Socio-Economic
Systems

Given an observed
macroscopic social
pattern (e.g.,
wealth inequality),
algorithmically
search for the
simplest set of
individual agent
rules that can
generate it.

SOC-17

Agent-Based
Models of Scientific
Discovery

Socio-Economic
Systems

Simulate the
process of
scientific progress
itself by modeling
scientists as agents
who collaborate,
compete, and build
upon each other's
work to explore a
knowledge
landscape.

SOC-18

Cultural Evolution
Simulators

Socio-Economic
Systems

Model the evolution
of cultural traits
(e.g., languages,
technologies) as
they are
transmitted and
modified across
generations of
learning agents.

SOC-19

Computational
Institutional Design

Socio-Economic
Systems

Use multi-agent
simulation and
optimization to
design and test the
rules of new social
or economic
institutions (e.g.,
voting systems,




markets) in silico.

SOC-20 Emergence Socio-Economic Develop formal
Detection and Systems methods to
Quantification automatically
Algorithms detect when a

multi-agent system
is exhibiting true
emergent,
collective behavior
that cannot be
explained by its
individual parts.

Part I: Algorithms for Simulating Physical and
Engineered Systems

The simulation of systems governed by the laws of physics and engineering represents a
foundational pillar of modern science. For decades, progress has been driven by increasing
computational power and the refinement of numerical methods for solving well-defined
differential equations. However, many frontier challenges—such as modeling turbulence,
designing complex materials, or controlling robotic systems in real-time—push the limits of
these traditional approaches. They are often computationally prohibitive, struggle with the
"curse of dimensionality," or fail to produce stable, long-term predictions when faced with
noisy or incomplete data.

The algorithmic paradigms outlined in this section represent a departure from purely
data-agnostic numerical solvers. They seek to create a new class of simulation tools that are
constrained, stabilized, and informed by the very physical laws they aim to model. This is
achieved by embedding principles like energy conservation, geometric symmetries, and the
structure of differential equations directly into the learning architecture. The result is a move
from brittle, black-box predictors to robust, physically-plausible models that can learn
efficiently from sparse data and generalize to new scenarios.

A key convergence point for these algorithmic categories is the creation of a new type of
software artifact: a "Digital Twin Physics Engine." Traditional solvers are static, hand-coded
implementations of known equations. In contrast, the integration of physics-informed learning



(for local laws), conservation-aware architectures (for global stability), efficient surrogate
models (for real-time performance), and uncertainty quantification (for decision-making

confidence) enables the construction of self-calibrating, differentiable models.’ Such an

engine would learn from both high-fidelity simulation data and sparse, real-world sensor

streams, continuously refining its internal representation of the physical world to create a
high-fidelity, predictive replica of a complex engineered system."

Furthermore, these approaches signal a profound shift in the fundamental goal of scientific
computing. The traditional paradigm focuses on solving a specific problem instance, such as
calculating the fluid flow over a single, fixed airfoil design. A more powerful and general
paradigm, exemplified by methods like Fourier Neural Operators, is to learn the entire solution
operator—the abstract mathematical mapping from any valid input (any airfoil shape, any flow
condition) to the corresponding solution.” This elevates the task from single-instance
computation to learning a continuous, reusable "solver function," with transformative
implications for design exploration, optimization, and control, where thousands or millions of
forward simulations are often required.”

Conservation-Aware Dynamics Solvers

These algorithms are designed for the long-term, stable simulation of dynamical systems.
Instead of directly learning the state transitions, which can accumulate errors and violate
physical laws over time, they learn a fundamental, conserved quantity of the system. The
dynamics are then derived from this learned quantity, guaranteeing that the simulation
remains physically plausible by construction.

1. PHY-01: Hamiltonian Symplectic Integrators. This approach parameterizes a system's
Hamiltonian—a scalar function representing its total energy—with a neural network.”® By
learning the energy landscape from trajectory data, the algorithm can use Hamilton's
equations to derive the time evolution of the system's position and momentum. Because
this formulation is inherently energy-conserving, it produces highly stable, long-term
predictions for systems like planetary orbits or molecular dynamics, avoiding the
diverging or decaying trajectories that plague standard recurrent models."

2. PHY-02: Lagrangian Variational Solvers. Operating on a related principle, these
algorithms learn a system's Lagrangian, the difference between its kinetic and potential
energy. The dynamics are then derived by solving the Euler-Lagrange equation, which
finds the trajectory that minimizes the "action.” This variational approach is powerful
because, via Noether's theorem, it naturally captures system symmetries and their
corresponding conservation laws (e.g., conservation of momentum from translational
symmetry).

3. PHY-03: Port-Hamiltonian Dissipative Learners. While standard Hamiltonian methods



are ideal for closed, energy-conserving systems, most real-world systems involve energy
dissipation (e.g., friction) and external inputs (e.g., control forces).® Port-Hamiltonian
neural networks extend the framework by explicitly modeling these energy flows. The
algorithm learns not only the internal Hamiltonian but also the dissipation and
input/output port structures, enabling accurate modeling of open, non-autonomous
systems like damped oscillators or controlled robotic arms.®

PHY-04: Constrained Gauge-Equivariant Field Learners. Many physical fields, such
as the magnetic field in electromagnetism, must satisfy intrinsic constraints (e.g., being
divergence-free). These algorithms are designed to learn the dynamics of such fields
while guaranteeing that these constraints are perfectly satisfied at every step. This is
achieved by designing the network's architecture to be equivariant to gauge
transformations, ensuring that the learned dynamics are physically meaningful and
well-behaved.

PHY-05: Lie Group Integrators for Symmetrical Systems. This class of algorithms is
designed for systems whose state space has the structure of a Lie group, such as the
rotational dynamics of a rigid body (SO(3) group) or a satellite. Instead of representing
the state with redundant coordinates (e.g., Euler angles), these methods perform
integration directly on the underlying geometric manifold of the group. This approach
avoids singularities and ensures that the system's inherent symmetries are perfectly
preserved throughout the simulation.

Physics-Informed Differential Operators

This category moves beyond black-box function approximation to create neural networks that
are explicitly aware of the partial differential equations (PDEs) that govern a physical system.
By incorporating the PDE structure into the training process, these models can learn from
sparse data, enforce physical laws, and solve both forward and inverse problems that are
intractable for traditional methods.

6. PHY-06: Physics-Informed Neural ODEs (PIN-ODEs). This is a specific application of

the broader Physics-Informed Neural Network (PINN) paradigm to systems of ordinary
differential equations (ODEs).” The algorithm represents the solution to the ODE system
as the output of a neural network that takes time as an input. The network is then trained
to minimize a loss function that includes not only the mismatch with any available data
points but also the "residual” of the ODE itself, effectively forcing the network to learn a
function that satisfies the differential equation.’

PHY-07: Inverse Problem Solvers via Differentiable Physics. A powerful application of
PINNs is solving inverse problems, where the goal is to infer unknown system parameters
from observed data. For example, one could infer the spatially varying thermal
conductivity of a material by measuring its temperature at a few points. By making the



unknown parameter a trainable variable in the PINN framework, the algorithm can use
automatic differentiation to compute the gradient of the data mismatch with respect to
the parameter and solve for it using gradient descent.*

8. PHY-08: Spatiotemporal Fourier Neural Operators. The Fourier Neural Operator (FNO)
is a novel architecture for learning the solution operators of PDEs." Instead of operating
in the spatial domain, the FNO applies the convolution theorem, performing the learning
of the integral kernel operator in the Fourier (frequency) domain. This approach is
remarkably efficient and, crucially, mesh-independent, meaning an FNO trained on a
low-resolution simulation can be evaluated on a high-resolution grid without retraining, a
property known as zero-shot super-resolution.™

9. PHY-09: Causal Spatiotemporal Graph Networks. For systems with complex,
interacting components, these algorithms model the system as a dynamic graph where
nodes represent physical locations or objects. The key innovation is to enforce causality
in the message-passing between nodes, ensuring that information cannot propagate
faster than a characteristic speed (e.g., the speed of sound or light). This architecture is
well-suited for learning the evolution of complex fields or multi-body systems where
interactions are local.

10. PHY-10: Discontinuity-Aware PDE Solvers. Many important physical phenomena, such
as shockwaves in fluid dynamics or phase transitions in materials, involve sharp
discontinuities that are notoriously difficult for standard neural networks to represent.
These algorithms address this by dynamically adapting the model architecture or
sampling strategy during training. They learn to identify regions of high gradients and
allocate more computational resources or use specialized activation functions to
accurately capture these sharp features.

Adaptive Multi-Fidelity Surrogate Models

For many engineering problems, a single high-fidelity simulation (e.g., a full computational
fluid dynamics run) is too expensive to be used within an optimization loop. Surrogate models,
also known as metamodels or emulators, are computationally cheap approximations of these
expensive simulations. The algorithms in this category focus on building the most accurate
surrogate model with the fewest possible calls to the expensive simulator.

11. PHY-11: Active Learning Multi-Fidelity Surrogates. This approach accelerates the
creation of a surrogate model by leveraging multiple levels of simulation fidelity (e.g., a
fast, coarse-mesh CFD model and a slow, fine-mesh one). The algorithm uses an active
learning strategy, often based on uncertainty, to intelligently decide at each step whether
to query the cheap, low-fidelity model to broadly explore the design space or the
expensive, high-fidelity model to refine the surrogate in a critical region. This balances
the trade-off between information gain and computational cost.
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PHY-12: Bayesian Optimization for Design Exploration. Bayesian optimization is a
powerful sequential strategy for finding the global optimum of an expensive black-box
function.’ It works by building a probabilistic surrogate model (typically a Gaussian
process) of the objective function, which provides not only a prediction of performance
but also a measure of uncertainty for any given design. An "acquisition function" then
uses this prediction and uncertainty to decide the next point to sample, efficiently
trading off between exploiting known good regions and exploring uncertain ones.
PHY-13: Generative Models for Topology Optimization. Topology optimization seeks
to find the optimal distribution of material within a design domain to maximize
performance (e.g., stiffness) for a given amount of material. These algorithms use
generative models, such as GANs or VAEs, to learn a low-dimensional latent space of
high-performing, manufacturable designs. Optimization can then be performed
efficiently in this latent space, allowing for the rapid generation of novel and complex
structures that would be difficult to discover with traditional methods.

PHY-14: Differentiable Engineering Simulators. This paradigm treats an entire
engineering simulation pipeline—including mesh generation, the numerical solver, and
post-processing—as a single, end-to-end differentiable program.’ By leveraging
automatic differentiation, it becomes possible to compute the exact gradient of a
performance metric (e.g., aerodynamic lift) with respect to every parameter of the design
(e.g., the coordinates defining an airfoil's shape). This enables highly efficient,
gradient-based optimization of complex engineering systems.

PHY-15: Control Co-Design Optimizers. Traditionally, the physical design of a system
(its "body") and its control system (its "brain") are optimized separately. Control
co-design algorithms break this paradigm by optimizing both simultaneously. This often
involves a nested optimization loop where the outer loop proposes a physical design and
the inner loop finds the optimal controller for it, or a fully joint optimization using
techniques like differentiable simulators, leading to synergistic designs that outperform
those from a sequential process.

Probabilistic Solvers with Uncertainty Quantification

Physical models and the data used to calibrate them are never perfect. Uncertainty
Quantification (UQ) is the science of rigorously tracking and propagating all sources of
uncertainty—from noisy measurements to unknown model parameters—through a simulation.
The goal is not a single, deterministic answer, but a probabilistic one that provides
decision-makers with crucial information about confidence and risk.°

16.

PHY-16: Probabilistic Graphical Models for System Reliability. These algorithms
model a complex engineered system as a graph where nodes represent components and
edges represent dependencies. By assigning conditional probability tables to each



component (e.g., the probability of pump failure given a certain temperature), the
framework can be used to efficiently compute the probability of cascading failures and
overall system reliability. This is particularly useful for risk assessment in critical
infrastructure like power grids or aerospace systems.

17. PHY-17: Bayesian Calibration of Simulation Models. This is a formal statistical
framework for the inverse UQ problem: using experimental data to reduce uncertainty in
a simulation model's parameters.'" Instead of finding a single "best-fit" value for each
parameter, Bayesian calibration infers the full posterior probability distribution for each
parameter, consistent with the observed data and any prior knowledge. This provides a
complete picture of parameter uncertainty and its correlations.

18. PHY-18: Forward Uncertainty Propagation via Polynomial Chaos. Running thousands
of Monte Carlo simulations to see how input uncertainties affect outputs can be
prohibitively expensive. Polynomial Chaos Expansion (PCE) is a powerful alternative that
approximates the model's output as a series of orthogonal polynomials of its random
inputs. By determining the coefficients of this expansion from a small number of model
evaluations, PCE can efficiently and accurately compute the statistical moments (mean,
variance) and even the full probability distribution of the output.

19. PHY-19: Physics-Constrained Data Assimilation Algorithms. Data assimilation is the
process of fusing sparse, noisy observations with a dynamic model to obtain the best
possible estimate of a system's state, a core task in weather forecasting and climate
modeling. These algorithms enhance classical methods (like Kalman filters) by
incorporating physics-informed neural networks or other machine learning models. The
physical constraints regularize the problem, allowing for more accurate state estimation
even when observational data is very limited.

Lagrangian and Mesh-Free Flow Solvers

While many simulation methods solve equations on a fixed grid (an Eulerian approach),
Lagrangian methods track the motion of individual fluid parcels or particles. These mesh-free
approaches are naturally adaptive and can be particularly effective for problems involving free
surfaces, large deformations, or complex moving boundaries.

20. PHY-20: Hybrid Particle-Mesh Solvers. These algorithms combine the advantages of
both Eulerian and Lagrangian methods. For example, in a fluid-structure interaction
problem, the fluid might be solved on a grid while the deforming structure is represented
by a set of Lagrangian particles. The algorithms focus on the robust and accurate
coupling and information transfer between the particle and mesh representations to
capture the complex physics at their interface.



Part Il: Algorithms for Inverse Design in Chemistry and
Materials Science

The forward problem in chemistry and materials science—predicting the properties of a
known substance—has seen tremendous progress. The grand challenge, however, is the
inverse problem: given a set of desired properties, design a novel molecule or material that
exhibits them.?' This requires a shift from predictive to generative algorithms. The categories
outlined in this section are dedicated to this task, moving beyond simple screening of existing
compounds to the

de novo construction of new chemical and material structures.

These algorithms are distinguished by their deep integration of domain-specific constraints. A
successful generative model for chemistry cannot simply produce an arbitrary collection of
atoms; it must respect the fundamental rules of geometry, topology, and quantum mechanics
that govern molecular and material stability. Therefore, a central theme is the use of
Geometric Deep Learning (GDL), which operates on representations like molecular graphs
and 3D point clouds, building in physical symmetries such as rotational and translational
invariance.?

A critical evolution in this field is the move from simple interpolation to compositional
extrapolation. Early generative models were adept at creating new molecules that were "in
between" examples seen during training, but they struggled to generate truly novel scaffolds
or material classes.” The next generation of algorithms addresses this through compositional
approaches. This involves first learning a "basis set" of fundamental, recurring chemical
motifs or material building blocks. A second, hierarchical algorithm then learns the "grammar"
for combining these blocks in novel ways to create complex structures that are locally
plausible but globally unprecedented, much like a human chemist combines known functional
groups to build a new molecule.”

Finally, a truly useful inverse design framework must consider not only the target structure
and its properties but also its accessibility. A wonder material that cannot be synthesized is of
little practical value. This points toward a "Generative Triad," where the algorithm co-designs
the material's Structure, its resulting Properties, and a viable synthesis or manufacturing
Process simultaneously.? This requires a multi-objective optimization framework that can
balance predicted performance against metrics of synthesizability, such as thermodynamic
stability or the complexity of precursor reactions, thus bridging the gap between
computational discovery and experimental realization.



Geometric Generative Models for Molecular Structures

These algorithms generate new molecular and material structures directly in 2D (graph) or 3D
(coordinate) space, with architectures that are specifically designed to respect the geometric
and topologic constraints of chemistry.
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CHE-01: SE(3)-Equivariant Generative Networks for 3D Molecules. These models
generate the 3D coordinates of atoms for new molecules. Their key feature is SE(3)
equivariance, which means that if the input is rotated or translated, the output is rotated
or translated in exactly the same way. This is a fundamental physical symmetry that is
built directly into the network architecture, ensuring that the model learns the intrinsic
geometry of the molecule, not its arbitrary orientation in space, leading to much more
data-efficient and robust generation.?*

CHE-02: Hypergraph Neural Networks for Reaction Pathways. Standard graphs
represent pairwise relationships, but chemical reactions often involve multi-body
interactions (e.g., two reactants forming one product). Hypergraph networks can
naturally represent these many-to-many relationships. This class of algorithms models an
entire reaction network as a hypergraph, allowing it to learn the complex transformations
involved in chemical synthesis and predict plausible reaction pathways, yields, and side
products.

CHE-03: Quantum Graph Neural Networks for Electron Dynamics. Going beyond
classical representations, these algorithms aim to directly approximate the solutions of
the Schrodinger equation on a molecular graph. The messages passed between nodes
(atoms) in the graph are not just scalar features but representations of atomic orbitals or
electron density. This allows the model to learn quantum-mechanical properties like
electronic excitation energies or charge distributions, which are critical for applications
in photochemistry and electronics.

CHE-04: Differentiable Molecular Dynamics Simulators. These algorithms treat an
entire molecular dynamics (MD) simulation as a differentiable program. This allows for
backpropagation through time to optimize parameters. For example, one could learn a
force field (the function describing inter-atomic forces) by minimizing the difference
between the simulated trajectory and an experimental one, or one could design an initial
molecular configuration that is optimized to self-assemble into a desired final structure.
CHE-05: Generative Models for Crystal Structure Design. These algorithms are
tailored for designing new crystalline solids. They generate not just the positions of
atoms within a unit cell but also the lattice vectors that define the cell and the symmetry
operations of the crystal's space group. By building in these crystallographic constraints,
the models can efficiently search the vast space of possible periodic structures to
discover new, thermodynamically stable materials.



Compositional and Constrained Inverse Design Frameworks

This category focuses on the high-level strategy for inverse design. Instead of relying on a
single, monolithic generative model, these frameworks treat inverse design as a constrained
optimization problem, often operating in the compressed latent space of a generative model,
allowing for greater control, flexibility, and novelty.
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CHE-06: Compositional Generative Models for Material Design. These algorithms
learn to generate complex materials by first learning a vocabulary of simpler, reusable
building blocks (e.g., molecular fragments or crystal motifs).”' A second, higher-level
model then learns the rules for combining these blocks into larger, hierarchical
structures. This compositional approach allows the model to generate materials that are
significantly more complex and novel than those in the training set, enabling true
extrapolation beyond known material classes.”’

CHE-07: Latent Space Optimization for Inverse Property Design. This is a common
and powerful framework for inverse design using models like Variational Autoencoders
(VAEs) or Generative Adversarial Networks (GANs).? First, a generative model is trained
to learn a compressed, continuous latent representation of the chemical space. Then, an
optimization algorithm (like Bayesian optimization) is used to search this latent space for
points that, when decoded, produce molecules or materials with the desired properties
as predicted by a separate property model.

CHE-08: Property-Constrained Diffusion Models. Diffusion models are powerful
generative models that work by learning to reverse a noise-injection process. For inverse
design, this process can be guided. During the denoising (generation) process, the
model is steered at each step not only to produce a valid structure but also to move
towards a region of the chemical space that satisfies a specific property constraint,
ensuring the final generated output has the desired characteristic.

CHE-09: Multi-Objective Inverse Design Algorithms. Real-world materials design
rarely involves a single objective; typically, there is a trade-off between competing
properties (e.g., a material needs to be both strong and lightweight, or a drug needs to
be potent but non-toxic). These algorithms use multi-objective optimization techniques
to explore these trade-offs, aiming to discover the entire Pareto front of optimal
materials, giving designers a range of choices rather than a single solution.

CHE-10: Generative Models for Amorphous and Disordered Systems. While crystal
design is highly constrained by symmetry, designing amorphous materials like glasses or
polymers is much harder as there is no repeating unit cell. These algorithms tackle this
challenge by learning the statistical distributions of local atomic environments (e.g.,
radial distribution functions, bond angle distributions). The generation process then
becomes one of constructing a large structure that satisfies these local statistical
constraints on average.



Symbolic and Rule-Based Materials Discovery Engines

This category represents a move towards more interpretable and trustworthy Al for chemistry.
Instead of producing a black-box model that predicts properties, these neuro-symbolic
algorithms aim to discover the underlying rules, equations, or causal mechanisms that govern
chemical and material behavior.
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CHE-11: Neuro-Symbolic Equation Discovery for QSAR. Quantitative
Structure-Activity Relationship (QSAR) modeling is a cornerstone of drug discovery. This
class of algorithms uses symbolic regression techniques to find simple, human-readable
mathematical equations that relate molecular descriptors to biological activity.? By
combining the search power of genetic programming or neural networks with the
interpretability of symbolic expressions, these tools can uncover novel scientific insights,
not just make predictions.’

CHE-12: Automated Synthesis Planning via Graph Rewriting. A key challenge in
chemistry is retrosynthesis: figuring out how to make a target molecule. These algorithms
frame this as a search problem on a graph of possible chemical reactions. Chemical
reactions are encoded as formal graph rewriting rules, and the algorithm searches for a
sequence of rule applications that transforms simple, commercially available starting
materials into the desired complex target molecule.

CHE-13: Causal Inference for Mechanistic Chemistry. In high-throughput
experimentation, it can be difficult to disentangle which experimental parameter is the
true cause of an observed outcome. These algorithms apply causal discovery methods to
experimental datasets to build a causal graph of the system. This allows researchers to
distinguish between mere correlations and true cause-and-effect relationships, leading
to a deeper mechanistic understanding of the reaction.

CHE-14: Hybrid Quantum-Classical Solvers for Catalysis. Modeling catalysis is
computationally demanding because it requires high-accuracy quantum mechanics (QM)
at the active site, but the surrounding catalyst support and solvent can often be treated
with cheaper classical or machine learning (ML) models. These algorithms provide a
framework for seamlessly coupling these different levels of theory, partitioning the
system and managing the information flow across the QM/ML boundary to achieve a
balance of accuracy and computational cost.

. CHE-15: Interpretable Chemical Rule Induction Systems. This approach aims to

extract human-understandable knowledge from large chemical datasets in the form of
logical "if-then" rules. For example, a system might learn rules like "IF a molecule
contains a nitro group AND an aromatic ring, THEN it is likely to be explosive." These
algorithms, often based on decision trees or logic programming, provide transparent
models that can be easily validated by human chemists.



Active Learning Algorithms for Materials Property Exploration

Experimental synthesis and characterization, as well as high-fidelity computational
simulations, are expensive and time-consuming. Active learning algorithms address this
bottleneck by creating a closed loop where the model intelligently decides which data point to
acquire next, aiming to learn as much as possible about the chemical space with a minimal
number of experiments.

36. CHE-16: Bayesian Experimental Design for Materials Discovery. This is a formal
approach to active learning where the algorithm maintains a probabilistic (Bayesian)
model of the material property landscape.?’ At each step, it calculates the expected
information gain from performing any possible experiment (e.g., synthesizing a new
compound). It then selects the experiment that is predicted to be most informative for
reducing the model's overall uncertainty or for finding an optimum, thus guiding the
discovery process in the most efficient way possible.

37. CHE-17: Uncertainty-Aware Active Learning for Force Fields. Machine learning force
fields (MLFFs) can achieve near-quantum accuracy at a fraction of the cost, but they
require large training sets of expensive quantum chemistry calculations. These
algorithms build MLFFs iteratively. The model is trained on a small initial dataset, and
then used to run a simulation; the algorithm identifies the molecular configurations
where the model is most uncertain about its predictions and requests new quantum
calculations only for those specific points, rapidly improving the model's accuracy where
it is most needed.

38. CHE-18: Transfer Learning for Sparse Materials Data. Many novel materials classes
have very little experimental data available, making it difficult to train a model from
scratch.” Transfer learning algorithms address this by first pre-training a large model on
a massive database of diverse materials (e.g., the Materials Project database). The
learned chemical and physical representations are then transferred and fine-tuned on
the small, specific dataset of interest, leading to significantly better predictive
performance than training on the small dataset alone.”

39. CHE-19: Federated Learning for Proprietary Chemical Data. A major challenge in
industrial chemistry is that valuable data is often siloed in proprietary corporate
databases. Federated learning provides a solution by allowing a central model to be
trained collaboratively without any raw data ever leaving the local servers. Each
organization trains the model on its own data and sends only the model updates
(gradients) to a central aggregator, which combines them to create an improved global
model that benefits all participants while preserving data privacy.

40. CHE-20: Closed-Loop Synthesis and Characterization Algorithms. This category
represents the pinnacle of automated discovery: the "self-driving laboratory." An Al



algorithm, often using active learning, is connected to a robotic platform capable of
chemical synthesis and characterization. The Al proposes a new molecule or material to
test, the robot makes and measures it, and the results are fed back to the Al in a closed
loop, enabling autonomous, round-the-clock scientific discovery with minimal human
intervention.°

Part Ill: Algorithms for Decoding Biological Complexity

Biological systems present a unique and formidable set of challenges for computational
modeling. Unlike the often-deterministic and well-described laws of physics, biology is
characterized by staggering complexity, emergent phenomena, stochasticity, and intricate
feedback loops operating across vast spatial and temporal scales—from nanoseconds in
protein dynamics to years in organismal development.®' Data is frequently sparse, noisy, and
observational, making the inference of mechanism from correlation a central difficulty. The
algorithms in this section are designed to tackle these challenges head-on, moving beyond
simple predictive models to frameworks that can infer causality, simulate multi-scale
dynamics, and actively guide experimental discovery.

A dominant theme emerging from this domain is the necessity of a "Causal Scaffolding"
approach. Purely data-driven machine learning models applied to biological data are
notoriously brittle, often latching onto spurious correlations that do not generalize or provide
mechanistic insight.** The strong emphasis on causal inference suggests a new algorithmic
paradigm. This process would begin by using causal discovery algorithms on large-scale
observational data (e.g., genomics, proteomics) to generate a putative "causal scaffold"—a
sparse, directed graph of high-confidence regulatory or signaling relationships.*
Subsequently, more detailed machine learning models, such as differentiable simulators,
would be trained

within the constraints of this scaffold to learn the quantitative dynamics along these
established causal pathways."” This two-stage approach leverages the strengths of both
methodologies: causal discovery for finding the structure and differentiable programming for
learning the parameters, mitigating the risk of discovering biologically nonsensical models.

This integration of causality and dynamic simulation paves the way for a transformative
application: the end of the "N of 1" problem in medicine through the creation of
patient-specific, differentiable digital twins. The convergence of multi-scale modeling, which
connects genomics to organ-level function, with the parameter-fitting power of differentiable
programming, enables the construction of dynamic, personalized biological simulations.*’
Such a "digital twin" would be initialized with an individual patient's data (genomics, clinical



labs, imaging) to parameterize a generic physiological model. This personalized, differentiable
program could then be used to run in-silico experiments, allowing clinicians to optimize
treatments by asking questions like, "What is the optimal chemotherapy schedule to minimize
this virtual patient's tumor growth while keeping predicted liver toxicity below a critical
threshold?" This represents a paradigm shift from reactive, population-based medicine to a
predictive, deeply personalized standard of care.

Causal Inference and Network Reconstruction Algorithms

The central challenge in biology is often distinguishing correlation from causation. These
algorithms provide a formal framework for inferring cause-and-effect relationships from data,
which is essential for understanding disease mechanisms and identifying effective
intervention points.
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BIO-01: Causal Graph Discovery for Gene Regulatory Networks. Given large
datasets of gene expression levels across many samples, these algorithms aim to
reconstruct the underlying gene regulatory network as a directed acyclic graph (DAG),
where a directed edge from gene A to gene B implies that A causally regulates B.*°
Methods like the PC algorithm or gradient-based approaches search over the space of
possible graphs to find the one that best explains the conditional independence
relationships observed in the data. This provides a systems-level, mechanistic map of
cellular control.

BIO-02: Mendelian Randomization as an Instrumental Variable Solver. Mendelian
Randomization (MR) is a powerful technique that leverages the random assortment of
genes from parents to offspring as a "natural experiment".** To determine if a modifiable
risk factor (e.g., blood pressure) causes a disease, MR uses genetic variants associated
with that risk factor as an instrumental variable. Because the genes are assigned
randomly at conception, they are not subject to the confounding factors that plague
traditional observational studies, allowing for much stronger causal claims about the risk
factor's effect on the disease.®

BIO-03: Interventional Causal Structure Learning. While observational data can often
only identify causal structures up to a certain equivalence class (i.e., some edge
directions may be ambiguous), interventional data (e.g., from gene knockout or drug
treatment experiments) can resolve these ambiguities.* These algorithms provide a
unified framework for learning a causal graph from a combination of observational and
interventional datasets. They systematically use the results of interventions to prune the
space of possible causal models, converging on a more accurate and detailed
mechanistic picture.

BIO-04: Counterfactual Estimators for Personalized Medicine. A key causal question
in medicine is, "What would have been the outcome for this patient if they had received a
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different treatment?" These algorithms, rooted in the potential outcomes framework, use
data from clinical trials or observational studies to estimate these counterfactual
quantities. This allows for the estimation of individualized treatment effects, moving
beyond population averages to predict which treatment is likely to be best for a specific
patient given their unique characteristics.

BIO-05: Latent Causal Variable Discovery. Often, an observed correlation between
two biological variables (e.g., two genes) is not due to a direct causal link but is caused
by a third, unmeasured confounding factor (e.g., the activity of a master regulator).
These algorithms are designed to detect the presence of such hidden confounders and
infer their properties from the statistical signatures they leave in the observed data. This
is crucial for avoiding incorrect causal conclusions and for identifying novel, previously
unknown biological players.

Differentiable Biology Simulators

This paradigm treats complex biological processes as programs that can be differentiated
from end-to-end. By leveraging automatic differentiation, these models can be efficiently
fitted to experimental data using gradient-based optimization, enabling precise
parameterization, sensitivity analysis, and in-silico design of biological interventions.
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BIO-06: Differentiable Cellular Automata for Morphogenesis. Morphogenesis, the
process by which organisms develop their shape, involves complex local interactions
between cells. These algorithms model a developing tissue as a grid of cells (a cellular
automaton), where each cell's state changes according to a set of rules based on its
neighbors. By making these rules differentiable, the system can be optimized to find the
specific local cell behaviors that successfully "grow" the target macroscopic structure,
providing insight into the mechanisms of development.

BIO-07: Neural Pharmacokinetic/Pharmacodynamic (PK/PD) Models. PK/PD models
describe what the body does to a drug (PK) and what the drug does to the body (PD).
Traditionally, these are built using simple compartmental models. Neural PK/PD models
replace or augment these with neural networks, allowing them to learn the complex,
nonlinear dynamics of drug absorption, distribution, metabolism, and effect directly from
sparse and noisy clinical data, leading to more accurate dosing predictions.*°

BIO-08: Differentiable Models of Metabolic Networks. A cell's metabolism can be
represented as a large system of coupled ordinary differential equations (ODEs)
describing the rates of biochemical reactions.*' By implementing this system within a
differentiable programming framework, it becomes possible to fit the hundreds or
thousands of kinetic parameters of the network to experimental metabolomics data. The
resulting model can be used to predict how the cell will respond to genetic mutations or
drug treatments that target specific enzymes.*



49. BIO-09: End-to-End Differentiable Protein Folding & Docking. While models can
predict a protein's static structure, its function is determined by its dynamics and
interactions. This class of algorithms aims to create a single, unified, differentiable model
that can predict a protein's 3D conformational ensemble and simultaneously predict how
a small molecule (a drug) will bind to it. Because the entire system is differentiable, one
can directly optimize the structure of the small molecule to maximize its predicted
binding affinity, greatly accelerating structure-based drug design.

50. BIO-10: Probabilistic Programming for Systems Biology. Biological processes are
inherently stochastic, or noisy. Probabilistic programming languages allow researchers to
write models that explicitly include this randomness. These algorithms then use Bayesian
inference methods (like Markov Chain Monte Carlo) to fit the full probability distributions
of the model's parameters to experimental data, providing a rigorous way to quantify
uncertainty and compare competing hypotheses about the system's structure.*

Hierarchical Multi-Scale Biological Models

Biological function emerges from interactions that span scales from molecules to whole
organisms. These algorithmic frameworks are designed to bridge these scales, creating
integrated models that capture how phenomena at one level of organization give rise to
behavior at another.

51. BIO-11: Hierarchical Agent-Based Models for Immunology. The immune response is a
classic multi-scale problem. These algorithms use an agent-based modeling (ABM)
approach where individual immune cells are the agents.*” Crucially, the behavior of each
agent is not governed by simple rules but by an internal model of its own subcellular
signaling pathways. This hierarchical structure allows the simulation to capture how
molecular-level events (e.g., a T-cell receptor binding an antigen) lead to cellular
decisions (e.g., proliferation) and ultimately to population-level emergent phenomena
(e.g., clearance of an infection).

52. BIO-12: Multi-Scale Physiological Digital Twins. This is the concept of creating a
comprehensive, patient-specific computational model that integrates data and simulates
processes across multiple biological scales.’” For example, a model of the heart would
link a patient's genetic variants to changes in ion channel function (molecular scale),
which alters the electrical activity of single cardiomyocytes (cellular scale), which in turn
affects the propagation of the electrical wave across the heart tissue (organ scale),
ultimately predicting the patient's ECG and arrhythmia risk (organism scale).

53. BIO-13: Spatiotemporal Graph Networks for Tissue Dynamics. These algorithms
model a biological tissue as a dynamic graph, where cells are nodes and their physical or
signaling connections are edges. The state of each cell and the graph's structure evolve
over time according to learned rules. This framework is ideal for modeling processes like
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wound healing, tumor growth, or embryonic development, where both the internal states
of the cells and their spatial relationships are constantly changing.

BIO-14: Information Bottleneck for Biomarker Discovery. In high-dimensional
biological data (e.g., transcriptomics), the goal of biomarker discovery is to find a small
subset of features (e.g., genes) that is maximally predictive of an outcome (e.g., disease
status). The information bottleneck principle provides a formal way to do this. It trains a
model to compress the input data into a minimal "bottleneck" representation that retains
as much information as possible about the outcome, effectively discovering the most
concise and powerful set of biomarkers.

BIO-15: Cross-Scale Information Transfer Models. A major theoretical challenge in
multi-scale modeling is how to rigorously link models at different scales. These
algorithms focus on developing formal methods for this “"coarse-graining" and
"fine-graining." For example, they might develop methods to take the output of a detailed
molecular dynamics simulation of a protein and systematically derive the parameters for
a simpler, more abstract model of that protein's function to be used in a higher-level cell
simulation.

Active Learning for Drug and Biomarker Discovery

The search space for new drugs and biomarkers is astronomically large, and experimental
testing is a major bottleneck. Active learning algorithms optimize the experimental process
itself, using a model to intelligently select the next experiment to run in order to learn as
quickly as possible.
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BIO-16: Goal-Conditioned Generative Models for Drug Design. Standard generative
models for drug discovery produce molecules similar to a training set. Goal-conditioned
models add a control input, allowing a user to specify a desired property profile (e.g.,
"high affinity for protein X, low liver toxicity, good oral bioavailability"). The model then
generates novel molecules that are optimized to meet this specific, multi-objective
design goal, focusing the search on the most promising regions of chemical space.”'
BIO-17: Reinforcement Learning for Adaptive Clinical Trials. Traditional clinical trials
have a fixed design. Adaptive trial designs, powered by reinforcement learning (RL), can
learn and modify the trial as it progresses. For instance, an RL agent can analyze
incoming data and learn to preferentially assign new patients to the treatment arm that
appears most effective for their specific subgroup, a process known as
response-adaptive randomization, potentially leading to more efficient trials and better
patient outcomes.

BIO-18: Self-Supervised Learning for Biomedical Imaging. Labeled medical data is
scarce, but unlabeled data is abundant. Self-supervised learning algorithms leverage this
unlabeled data by creating "pretext" tasks. For example, a model might be trained to



predict a missing patch of a histology image or to recognize if two augmented versions of
an image are the same. By solving these tasks, the model learns powerful visual
representations that can then be fine-tuned for a diagnostic task with a very small
number of labeled examples, dramatically improving performance.

59. BIO-19: Automated Experiment Design for Mechanism Elucidation. When faced with
several competing hypotheses about a biological pathway, these algorithms determine
the single most informative experiment to perform next. The algorithm simulates the
expected outcome of every possible experiment under each hypothesis. It then selects
the experiment whose predicted outcomes show the greatest difference between the
hypotheses, thus providing the maximal power to discriminate between them and
accelerating the process of scientific discovery.

60. BIO-20: Generative Models for Synthetic Biology Circuit Design. Synthetic biology
involves engineering novel functions into cells by designing custom genetic circuits.
These algorithms use generative models to design the DNA sequences for these circuits.
The model is trained on a database of existing circuits and their observed behaviors (e.g.,
oscillating gene expression) and can then be tasked to generate a new DNA sequence
that is predicted to produce a novel, desired dynamic behavior.

Part IV: Algorithms for Modeling Neuroscience and
Cognitive Systems

The brain is arguably the most complex system known to science, with intricate structures and
dynamic processes spanning scales from single molecules to global brain states and
observable behavior. Computational neuroscience and cognitive science seek to understand
the principles of neural computation that give rise to perception, action, and thought.** The
algorithmic categories in this section are designed to bridge the vast explanatory gaps
between these scales: from the biophysics of individual neurons to the emergent dynamics of
large-scale networks, and from neural activity to the abstract functions of the mind.

A key direction for future research is to move beyond viewing the brain as a passive
information processing device and instead model it as an active, multi-scale control system.
Much of computational neuroscience has focused on representation—how the brain encodes
sensory information.*> An emerging perspective, however, is to view the brain's primary
function as one of predictive control: maintaining the body's internal homeostasis while
selecting actions to achieve goals in a complex environment. This control problem is
inherently multi-scale, linking genomics to neural dynamics and ultimately to behavior.*® This
perspective implies a need for algorithms based on control theory and reinforcement learning,
capable of modeling how neural circuits maintain stable internal states while pursuing external
objectives, a core challenge in fields like neuroethology which studies the neural basis of



natural behavior.*®

Another profound challenge is the gap between the "software" of cognition (the abstract,
functional models from cognitive science) and the "wetware" of the brain (the biophysically
detailed models of neurons and circuits). This points to the need for a new class of algorithm
that can be described as a "neuro-compiler." Such a system would tackle the inverse problem
of implementation: given a high-level functional specification for a cognitive process, like
working memory, it would automatically search for and assemble a plausible, biophysically
detailed neural circuit that performs that function.** This would likely involve a combination of
generative models to propose circuit motifs, differentiable simulators to test their function,
and evolutionary or reinforcement learning algorithms to optimize the circuit's structure and
parameters.*® The development of such "neuro-compilers" would revolutionize the ability to
test cognitive theories in a biologically grounded manner, truly integrating the fields of
cognitive science and computational neuroscience.

Multi-Scale Neuro-Glia-Vascular Simulators

These algorithms recognize that the brain is more than just a network of neurons. They aim to
create integrated models that capture the critical interplay between neurons, supportive glial
cells, and the brain's vascular system, which provides metabolic resources.

61. NEU-01: Coupled Neuron-Glial-Vasculature Network Models. These are integrated
simulation frameworks that model the tripartite synapse and neurovascular coupling.
They simulate not only the electrical activity of neurons but also how that activity triggers
responses in nearby glial cells (like astrocytes) and how those glial cells, in turn,
modulate local blood flow to meet metabolic demand.** Such models are essential for
understanding brain energy metabolism and diseases where this coupling breaks down,
such as stroke or Alzheimer's.

62. NEU-02: Biophysically Detailed Multi-Compartment Neuron Solvers. Going beyond
the simple "point neuron” abstraction, these algorithms simulate a single neuron as a
complex, branching tree of compartments, each with its own electrical properties. They
solve the cable equation across this structure to model how synaptic inputs at different
locations on the dendritic tree are integrated to produce the neuron's output. This is
crucial for understanding the computational power of individual neurons.*?

63. NEU-03: Stochastic lon Channel Simulators. The action potential, the fundamental
unit of neural signaling, is generated by the opening and closing of thousands of
individual ion channel proteins. At this scale, the process is inherently stochastic. These
algorithms use methods like Gillespie simulations to model the probabilistic behavior of
individual channels, allowing researchers to understand how this molecular-level noise
contributes to the variability and reliability of neural computation.



64. NEU-04: Whole-Brain Effective Connectivity Models. While functional connectivity
measures simple correlations between brain regions, effective connectivity aims to infer
the causal, directed influences one region exerts on another. These algorithms, such as
Dynamic Causal Modeling (DCM), fit a generative model of neural dynamics to
neuroimaging data (fMRI, EEG/MEG). By testing different model structures, they can infer
the most likely underlying circuit diagram that produced the observed brain activity.

65. NEU-05: Multi-Scale Brain Atlasing Algorithms. Brain data comes in many forms, from
micrometer-resolution histology to millimeter-resolution MRI. These algorithms aim to
fuse these disparate data types into a single, coherent, multi-scale probabilistic atlas.
They solve a massive registration and alignment problem, mapping different data sources
into a common coordinate framework to create a comprehensive reference for brain
structure, connectivity, and gene expression across all scales.

Differentiable Biophysical Neuron Models

This category focuses on bridging the gap between realistic biophysical modeling and the
powerful optimization tools of deep learning. By creating neuron and network models that are
fully differentiable, parameters can be directly fitted to experimental data, and circuits can be
"trained" to perform functions.

66. NEU-06: Differentiable Hodgkin-Huxley Models. The classic Hodgkin-Huxley model
describes the dynamics of ion channels that produce action potentials.*® These
algorithms implement this model and its modern variants within a differentiable
programming framework.*’ This allows the model's parameters, such as the densities and
kinetics of various ion channels, to be automatically fitted to experimental voltage-clamp
or current-clamp recordings from real neurons using gradient descent.

67. NEU-07: Surrogate Models for Detailed Neuron Dynamics. Simulating large networks
of biophysically detailed multi-compartment neurons is computationally prohibitive.
These algorithms create computationally efficient "surrogate" models that capture the
complex input-output function of a detailed neuron model without the high simulation
cost.”® This is often done by training a simpler model, like a small neural network or a
polynomial function, to emulate the detailed model, enabling the simulation of
large-scale yet biophysically plausible brain circuits.

68. NEU-08: Differentiable Plasticity Rule Learners. Synaptic plasticity, the process by
which connections between neurons strengthen or weaken, is the basis of learning and
memory. These algorithms aim to discover the mathematical laws governing plasticity
from data. They represent a potential plasticity rule as a flexible, parameterized function
(e.g., a small neural network) and then use differentiable simulation to find the
parameters that best reproduce experimentally observed changes in synaptic strength.

69. NEU-09: Gradient-Based Neuro-Compilation. This is the inverse problem to model
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fitting: instead of asking what a circuit does, it asks how to build a circuit that does
something specific. The algorithm starts with a biophysically detailed but randomly
parameterized neural circuit. It then uses gradient-based optimization to tune the
circuit's parameters (e.g., synaptic weights, neuronal properties) until the circuit's activity
performs a target computation or matches a target pattern of activity, effectively
"compiling" a function into a neural implementation.

NEU-10: Homeostatic Activity Regulation Solvers. Neural networks with plasticity can
be unstable, leading to runaway excitation or quiescence. Biological brains solve this with
homeostatic mechanisms that regulate overall activity levels over slow timescales. These
algorithms model these homeostatic feedback loops, simulating how neurons adjust their
intrinsic properties or scale their synaptic inputs to maintain a stable yet plastic
operating regime, which is crucial for robust learning.

Neuromorphic and Spiking Learning Algorithms

Inspired by the brain's architecture and communication style, neuromorphic computing uses
hardware with massive parallelism and event-driven (spiking) communication to achieve
extreme energy efficiency. This requires a new class of algorithms that can learn and compute
using sparse, timed spikes rather than the continuous values of traditional Al.
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NEU-11: Spatiotemporal Event-Based Learning Rules. These are learning algorithms
designed for Spiking Neural Networks (SNNs). Unlike standard backpropagation, these
rules are typically local, meaning a synapse updates its weight based only on the activity
of its pre- and post-synaptic neurons. They are critically dependent on the precise timing
of spikes, implementing forms of Spike-Timing-Dependent Plasticity (STDP) to learn
temporal patterns in data.*”

NEU-12: Energy-Efficient Neuromorphic Control Algorithms. A key application for
neuromorphic computing is in autonomous, power-constrained systems like drones or
brain-computer interfaces.’® These algorithms are designed to perform real-time control
tasks (e.g., navigation, motor control) on neuromorphic hardware. They leverage the
sparse, event-based nature of the hardware to minimize power consumption, processing
sensor data and generating motor commands only when new information is available.
NEU-13: On-Chip Learning with Local Plasticity. To enable true edge intelligence,
learning must happen directly on the neuromorphic chip without requiring connection to
a powerful external computer. These algorithms are designed to be implemented directly
in hardware, often using local plasticity rules that do not require a global error signal. This
allows neuromorphic systems to continuously adapt and learn from their environment in
real-time.

NEU-14: Hybrid Spiking-Analog Neuromorphic Systems. This category explores
algorithms that combine the strengths of different neuromorphic approaches. For
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example, a system might use digital, event-based spikes for long-range communication
(for energy efficiency) but perform local computations using subthreshold analog circuits
(for computational density and power). The algorithms must manage the interface
between these discrete-event and continuous-time processing paradigms.

NEU-15: Generative Models of Neural Spike Trains. These algorithms learn the
complex statistical dependencies in the firing patterns of populations of neurons. By
training models like recurrent neural networks or temporal point process models on
recorded neural data, they can generate new, synthetic spike trains that are statistically
indistinguishable from real ones. These generative models are crucial tools for
benchmarking analysis methods and for understanding the coding principles of neural
populations.

Cognitive Architecture Assemblers

This category aims to bridge the gap between the low-level details of neuroscience and the
high-level functions of cognitive science. The goal is to build computational models that can
actually perform cognitive tasks, providing a mechanistic link between neural implementation
and psychological phenomena.
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NEU-16: Hierarchical Predictive Coding Architectures. Predictive coding is a
prominent theory of brain function which posits that the brain is constantly generating
predictions about incoming sensory information and only processing the "error" between
its prediction and the actual input. These algorithms implement this theory in hierarchical
models, where higher levels of the hierarchy predict the activity of lower levels. This
framework provides a unified account of perception, learning, and attention.

NEU-17: Task-Performing Cognitive Models. Following the argument that "you can't
play 20 questions with nature and win," these algorithms focus on building integrated,
end-to-end models that can perform a complete cognitive task, such as making a
decision based on visual evidence or navigating a maze.** The goal is to create models
whose internal components and dynamics can be directly compared with behavioral and
neural data from humans or animals performing the same task, providing a strong test of
our understanding.”’

NEU-18: Neuro-Symbolic Models of Reasoning. Human intelligence combines the
powerful pattern recognition of neural systems with the abstract, logical reasoning of
symbolic thought. Neuro-symbolic algorithms aim to replicate this synergy. They typically
consist of a neural component that learns from raw perceptual data and a symbolic
component that can perform logical inference, planning, or causal reasoning, with a
well-defined interface for communication between the two.

NEU-19: Generative Models of Behavior and Action Selection. These algorithms learn
a probabilistic model over an organism's entire behavioral repertoire. By analyzing



long-term recordings of an animal's movements and actions, these models can identify
discrete behavioral "syllables" and the grammatical rules for sequencing them. This
provides a quantitative, data-driven way to understand decision-making and the
principles that govern how an organism chooses its next action.

80. NEU-20: Embodied Reinforcement Learning for Neuroethology. Neuroethology
studies the neural basis of natural animal behavior.*® These algorithms support this field
by creating realistic simulations of an animal's body and its environment. A reinforcement
learning agent, whose architecture is constrained to resemble the animal's known neural
circuits, is then trained to solve ecologically relevant tasks (e.g., foraging, navigation)
within this simulation, providing a powerful platform for testing hypotheses about how
neural circuits generate behavior.

Part V: Algorithms for Simulating Socio-Economic and
Adaptive Systems

The final frontier for computational modeling lies in complex adaptive systems: systems
composed of numerous interacting, intelligent, and often strategic agents, whose collective
behavior gives rise to emergent, macroscopic patterns. This is the domain of computational
social science, economics, epidemiology, and ecology.*” Traditional modeling approaches in
these fields often rely on simplifying assumptions, such as the "representative agent" in
economics or simple heuristic rules in agent-based models (ABMs), which fail to capture the
rich complexity of human and animal behavior. The algorithms in this section leverage recent
advances in Al to create more realistic, nuanced, and powerful simulations of these systems.

A paradigm-shifting development is the augmentation of agent-based models with Large
Language Models (LLMs).>* Instead of programming agents with simple rules, each agent can
be endowed with an LLM, allowing it to reason, communicate in natural language, and exhibit
more human-like, context-aware decision-making. This enables the creation of “artificial
societies" where complex social phenomena, like the spread of narratives or the formation of
social norms, can be "grown" from the bottom up in silico, fulfilling the vision of generative
social science.*

However, this increased realism presents a critical challenge: the simulation-to-reality gap.
The behavior of Al agents, whether driven by RL or LLMs, may be optimal within the confines
of the simulation but fail to reflect actual human behavior, limiting the real-world applicability
of policy recommendations derived from them.*’ This necessitates the development of
"Calibrated Multi-Agent Reinforcement Learning (MARL)" algorithms. Such frameworks would
regularize the learning process by incorporating a "realism loss," penalizing agent policies that
diverge from the statistical patterns of behavior observed in large-scale, real-world datasets



from computational social science.>® This calibration grounds the simulation in empirical
reality, making its outputs far more credible and transferable.

The convergence of these powerful simulation tools enables a new and ambitious scientific
endeavor: "Computational Institutional Design." The goal shifts from merely simulating existing
social systems to actively designing and testing the rules of entirely new ones.”’ By modeling
an economy or society as a multi-agent system, a higher-level optimization algorithm can
search not over agent strategies, but over the very rules of the environment—the tax code,
the market structure, the voting system—to find institutions that produce desirable societal
outcomes like fairness, efficiency, and stability. This transforms computational modeling from
a descriptive tool into a normative one for exploring solutions to humanity's most complex
collective challenges.

LLM-Augmented Agent-Based Models (ABMs)

This new class of ABM replaces simple, hard-coded agent rules with the sophisticated
reasoning and communication capabilities of Large Language Models, enabling far more
realistic social simulations.

81. SOC-01: Generative Agent Models for Social Simulation. This is the foundational
concept of creating "believable" digital personae by equipping each agent in a simulation
with an LLM, a memory module, and a capacity for reflection and planning.”* These
generative agents can engage in complex social behaviors, form relationships, and
coordinate activities, leading to the emergence of complex social dynamics from simple
initial conditions, as famously demonstrated in the "Stanford Smallville" simulation.®

82. SOC-02: LLM-Powered Communication Network Simulators. These algorithms model
the spread of information, opinions, and narratives through a social network where
agents communicate using natural language. Each LLM-agent can generate and interpret
messages, update its beliefs based on the content it receives, and decide what
information to share with its neighbors. This allows for nuanced simulations of
phenomena like echo chambers, polarization, and the differential spread of true versus
false information.

83. SOC-03: Emergent Norm and Convention Solvers. Social norms (e.g., which side of
the sidewalk to walk on) often emerge without centralized enforcement. These algorithms
model this process by simulating LLM-agents who must repeatedly coordinate to solve a
common problem. Through interaction and observing the behavior of others, the agents
can converge on a shared convention, providing a mechanistic model for the bottom-up
formation of social order.

84. SOC-04: Calibrated Agent-Based Models. To ensure that LLM-agent simulations are
grounded in reality, these algorithms continuously calibrate agent behaviors against
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real-world data streams. For example, the distribution of opinions expressed by agents in
a political simulation could be compared to real-time data from social media, and the
agents' internal models or prompts could be adjusted to minimize the divergence. This
creates a feedback loop that keeps the simulation from drifting into unrealistic behavioral
regimes.

SOC-05: Digital Twin Models of Social Systems. This concept extends the engineering
digital twin to social systems. It involves creating a high-fidelity, real-time, agent-based
model of a specific real-world system, such as a city's transportation network or an
organization's communication patterns, constantly updated with real data.” This "digital
twin" can then be used as a safe, virtual testbed for evaluating the potential impacts of
policy changes or interventions before they are implemented in the real world.

Multi-Agent Reinforcement Learning (MARL) for Economic Policy
Design

These algorithms model economic systems as games played by self-interested, learning
agents. This framework allows for the study of emergent market phenomena and the design
of policies that are robust to the strategic behavior of participants.
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SOC-06: Multi-Agent Reinforcement Learning for Mechanism Design. This is a
powerful framework for discovering optimal policies or rules (mechanisms) in a
multi-agent setting.”” For example, in the Al Economist project, a central "planner" agent
uses reinforcement learning to set tax rates, while multiple "worker" and "firm" agents
learn to maximize their own utility in response to those taxes.”” The planner's reward is
based on a combination of productivity and equality, allowing it to learn a tax policy that
balances these objectives in the emergent equilibrium.>’

SOC-07: Differentiable Game Theoretic Solvers. For games with continuous action
spaces, these algorithms represent the payoff functions and agent policies as
differentiable functions (e.g., neural networks). This allows for the use of gradient-based
methods to find Nash equilibria, where no agent has an incentive to unilaterally change
its strategy. This approach can be more efficient than traditional equilibrium-finding
algorithms, especially in high-dimensional games.

SOC-08: Heterogeneous Agent Macroeconomic Models. Traditional macroeconomic
models often assume a single "representative" household and firm, which fails to capture
the crucial role of inequality and heterogeneity. These algorithms overcome this by using
MARL to simulate economies with millions of distinct agents, each with their own
characteristics and learned policies.”” This allows for the study of how macroeconomic
phenomena and policies are shaped by the distribution of wealth and income.

SOC-09: LLM-Augmented Economic Agents. This category enhances the behavioral



90.

realism of MARL-based economic models by incorporating LLMs into the agents'
decision-making process.* For example, an LLM could be used to model how firms form
narrative-based expectations about the future economy or how consumers make
complex purchasing decisions based on product descriptions and reviews, moving
beyond simple utility maximization.

SOC-10: Inverse Reinforcement Learning for Policy Inference. Instead of specifying
what agents should optimize, Inverse Reinforcement Learning (IRL) infers their objectives
from their observed behavior. In an economic context, IRL algorithms can be used to
analyze real-world market data and infer the underlying preferences and reward
functions of consumers or firms. This provides a data-driven way to build more realistic
models of economic behavior.

Network Algorithms for Opinion Dynamics and Information Diffusion

These algorithms model how things spread through networks of interacting agents. They go
beyond simple contagion models to capture the complex dynamics of social influence, belief
updating, and the co-evolution of network structure and agent states.
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SOC-11: Co-evolutionary Models of Networks and Opinions. These models capture
the crucial feedback loop between social structure and individual beliefs. They simulate
two intertwined processes: opinion dynamics, where agents' opinions become more
similar to their neighbors', and network evolution, where agents are more likely to form or
maintain links with others who hold similar opinions (homophily). This can explain the
emergence of polarized echo chambers and fragmented social structures.

SOC-12: Higher-Order Network Diffusion Models. Many social phenomena, like
adopting a risky new behavior, require reinforcement from multiple peers, not just one.
Simple contagion models on graphs (pairwise interactions) cannot capture this.
Higher-order models, using structures like simplicial complexes or hypergraphs, can
explicitly model group interactions, leading to more realistic simulations of complex
contagion processes.

SOC-13: Causal Inference on Networked Data. A key challenge in social science is
determining whether an outcome is due to peer influence (e.g., my friends made me
adopt a behavior) or homophily (e.g., | chose friends who were already like me). These
algorithms use advanced statistical methods, often leveraging temporal data or
instrumental variables, to disentangle these effects and estimate the true causal impact
of social ties on individual behavior.*?

SOC-14: Temporal Network Algorithms for Dynamic Processes. Most real-world
social networks are not static; the timing and order of interactions matter. Temporal
network algorithms are designed to analyze and model these dynamic networks. They
can identify critical time windows for influence or uncover how the specific sequence of
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interactions affects the speed and reach of a diffusion process, like a disease outbreak
or the spread of a viral video.®®

SOC-15: Belief Propagation and Message Passing on Graphs. This is a class of
distributed algorithms where agents in a network iteratively update their beliefs by
passing "messages" to their neighbors. Each message summarizes an agent's current
belief about a state of the world. This process can be used to model how a group
converges on a collective consensus or to solve decentralized inference problems on the
network.®°

Generative Social Science and Emergence Solvers

This category focuses on the core question of generative social science: how do macroscopic
social patterns emerge from the local interactions of individual agents? These algorithms aim
to solve the inverse problem: to discover the micro-level rules that generate observed
macro-level phenomena.
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SOC-16: Inverse Generative Social Science Solvers. Given an observed macroscopic
social pattern (e.g., the power-law distribution of city sizes, patterns of residential
segregation), these algorithms search for the simplest possible set of agent-level rules
that can generate this pattern in a simulation.>® This is often framed as an optimization
problem, where techniques like genetic algorithms or reinforcement learning are used to
search the space of possible agent rules to find a set that minimizes the difference
between the simulated and real-world outcomes.

SOC-17: Agent-Based Models of Scientific Discovery. These algorithms model the
process of science itself as a complex adaptive system. Scientists are modeled as agents
who choose research problems, perform experiments, and publish results on a
"knowledge landscape." The simulation can explore how different institutional structures
(e.g., funding mechanisms, collaboration networks) affect the efficiency and trajectory of
collective scientific progress.

SOC-18: Cultural Evolution Simulators. These algorithms model how cultural
traits—such as languages, technologies, or social norms—are transmitted and evolve
over time. They simulate a population of agents who learn from others, innovate, and
pass on modified traits to the next generation. This allows researchers to test hypotheses
about the mechanisms driving cultural change and the evolution of human societies.
SOC-19: Computational Institutional Design. This is a normative extension of
generative social science. Instead of just explaining existing social structures, these
algorithms aim to design new ones. An outer optimization loop proposes a set of rules for
a social or economic system (the "institution"), and an inner loop runs a multi-agent
simulation to see what collective behavior emerges under those rules. The outer loop
then uses the outcome to propose a better set of rules, searching for institutions that
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produce desirable societal outcomes like fairness or efficiency.

SOC-20: Emergence Detection and Quantification Algorithms. A fundamental
concept in complex systems is emergence, but it is often defined loosely. These
algorithms aim to formalize and automate its detection. They use tools from information
theory to measure the synergy and statistical dependencies between the micro-level
states of agents and the macro-level state of the system, providing a quantitative score
for whether a system is exhibiting true collective behavior that cannot be reduced to the
sum of its parts.

Conclusion: Synthesizing a Generative Framework for
Scientific Al

The 100 algorithm categories detailed in this report, while diverse and domain-specific, are
not isolated concepts. They are interconnected components of a broader, emergent paradigm
for computational science. When synthesized, they point toward a future where the process
of scientific discovery itself is augmented and accelerated by a new class of Al systems. This
conclusion draws together the cross-cutting themes that have appeared across all five
domains and outlines a vision for an integrated, generative framework for Scientific Al.

Three fundamental principles have consistently surfaced as critical for the next generation of
scientific algorithms:

1.

Principle-Informed Learning: Across physics, chemistry, and biology, there is a clear
and urgent move away from purely data-driven, black-box models. The most promising
and robust algorithms are those that embed fundamental domain knowledge directly into
their architecture. This includes everything from enforcing conservation laws in dynamics
solvers ', to building geometric symmetries into molecular generative models %%, to using
causal structures to constrain biological network inference.® This represents a
fundamental recognition that in data-scarce or high-stakes scientific domains, inductive
biases derived from established theory are not a limitation but a prerequisite for success.
The Generative/Inverse Paradigm: In every design-oriented field, from materials
science to drug discovery to economic policy, the primary goal is shifting from prediction
(the forward problem) to generation (the inverse problem).? The core task is no longer to
ask "What are the properties of this thing?" but "What thing has these properties?" This
has propelled the development of sophisticated generative models, constrained
optimization frameworks, and active learning strategies that are designed not just to
analyze the world but to create novel solutions within it.

Multi-Scale and Multi-Agent Integration: From the brain to the economy, from a
developing tissue to a turbulent fluid, the most challenging scientific problems are



characterized by interactions that span vast scales and involve heterogeneous, adaptive
agents.* This has driven the need for hierarchical and hybrid modeling frameworks that
can couple simulations at different levels of abstraction and capture the emergent
behavior that arises from the collective actions of many individual components.

These principles are not independent; they are deeply intertwined. A multi-scale model of a
biological system is only credible if it is constrained by causal scaffolding. A generative model
for a new material is only useful if it respects the physical principles of thermodynamics and
geometry. The true power of these concepts lies in their integration.

This leads to a final, forward-looking vision: the assembly of a unified Scientific Discovery
Engine. The 100 algorithm categories in this report should not be viewed as a simple laundry
list, but as a potential component library for such an engine. Inspired by systems like
AlphaEvolve, this framework would integrate multiple Al paradigms to automate and augment
the scientific method.?' Its core components would be:

e The Generator: An evolutionary or large-scale search algorithm that proposes novel
hypotheses, models, and even new algorithmic structures to solve a given problem.®’ This
component would explore the vast space of possibilities, generating candidate solutions.

e The Verifier: A suite of high-fidelity, domain-specific simulators and models—drawn
from the very categories detailed in this report—that act as the "virtual laboratory." This
is the environment where the hypotheses generated are rigorously tested for physical
plausibility, predictive accuracy, and consistency with known data.

e The Interpreter: A neuro-symbolic component that takes the complex, often inscrutable
models that succeed in the verification stage and attempts to distill them into simple,
human-understandable laws, equations, or causal rules, using techniques like symbolic
regression or rule induction.’

Building this integrated Scientific Discovery Engine represents a grand challenge for the next
decade of Al research. It requires a strategic pivot away from the singular pursuit of scaling
general-purpose models and toward a deep, collaborative, and principle-driven engagement
with the fundamental structures of each scientific domain. The algorithmic frontier is not a
single peak to be scaled, but a vast and varied landscape that demands a diverse and
specialized set of tools to explore. The paradigms outlined in this report are a map to that
frontier.

Works cited

1. Symbolic Regression for Scientific Discovery - Yoshitomo Matsubara, accessed
September 28, 2025, https://yoshitomo-matsubara.net/projects/srsd/

2. SRSD: Rethinking Datasets of Symbolic Regression for Scientific Discovery -
OpenReview, accessed September 28, 2025,

https://openreview.net/pdf?id=oKwyEqClgkb
3. Al-Hilbert is a new way to transform scientific discovery - IBM Research,


https://yoshitomo-matsubara.net/projects/srsd/
https://openreview.net/pdf?id=oKwyEqClqkb

10.

11.

12.

13.

14.

15.

16.

17.

18.

accessed September 28, 2025,
https://research.ibm.com/blog/ai-hilbert-algorithm-automating-scientific-discove
ry

Hamiltonian neural networks for solving equations of motion - Harvard University,
accessed September 28, 2025,
https://scholar.harvard.edu/files/marios_matthaiakis/files/hamiltoniannetworkssolv
ingode_pre.pdf

Port-Hamiltonian neural networks for learning explicit time-dependent dynamical
systems, accessed September 28, 2025,
https://link.aps.org/doi/10.1103/PhysRevE.104.034312

(PDF) A Review of Physics-Informed Neural Networks - ResearchGate, accessed
September 28, 2025,
https://www.researchgate.net/publication/388357372_A_Review_of Physics-Infor
med_Neural _Networks

Physics-informed neural networks for physiological signal processing and
modeling: a narrative review - PMC - PubMed Central, accessed September 28,
2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC12308510/

Simpler models can outperform deep learning at climate prediction | MIT News,
accessed September 28, 2025,

https://news.mit.edu/2025/simpler-models-can-outperform-deep-learning-clima

te-prediction-0826
Complexity Science for Digital Twins - UCL Discovery, accessed September 28,

2025,

https://discovery.ucl.ac.uk/id/eprint/10170896/3/Arcaute_Batty-Digital Twins-6.pdf
What is Digital Twin Technology? - AWS, accessed September 28, 2025,
https://aws.amazon.com/what-is/digital-twin/

Uncertainty quantification - Wikipedia, accessed September 28, 2025,
https://en.wikipedia.org/wiki/Uncertainty_gquantification

Al-Augmented Turbulence and Aerodynamic Modelling: Accelerating
High-Fidelity CFD Simulations with Physics-informed Neural Netwo - ijircst.org,
accessed September 28, 2025,

https://www.ijircst.org/DOC/14-Al-Augmented-Turbulence-and-Aerodynamic-Mo

deling-Accelerating-High-Fidelity-CFD-Simulations-with-Physics-informed-Neur
al-Networks.pdf

Fourier Neural Operator - Zongyi Li, accessed September 28, 2025,
https://zongyi-li.github.io/blog/2020/fourier-pde/

Fourier Neural Operator - acemate, accessed September 28, 2025,
https://acemate.ai/glossary/fourier-neural-operator
erik-norlin/Fourier-Neural-Operator - GitHub, accessed September 28, 2025,
https://github.com/erik-norlin/Fourier-Neural-Operator

Hamiltonian Neural Networks - Natural Intelligence, accessed September 28,
2025, https://greydanus.qgithub.io/2019/05/15/hamiltonian-nns/

Hamiltonian Neural Networks - NIPS, accessed September 28, 2025,

http://papers.neurips.cc/paper/9672-hamiltonian-neural-networks.pdf
Surrogate model - Wikipedia, accessed September 28, 2025,



https://research.ibm.com/blog/ai-hilbert-algorithm-automating-scientific-discovery
https://research.ibm.com/blog/ai-hilbert-algorithm-automating-scientific-discovery
https://scholar.harvard.edu/files/marios_matthaiakis/files/hamiltoniannetworkssolvingode_pre.pdf
https://scholar.harvard.edu/files/marios_matthaiakis/files/hamiltoniannetworkssolvingode_pre.pdf
https://link.aps.org/doi/10.1103/PhysRevE.104.034312
https://www.researchgate.net/publication/388357372_A_Review_of_Physics-Informed_Neural_Networks
https://www.researchgate.net/publication/388357372_A_Review_of_Physics-Informed_Neural_Networks
https://pmc.ncbi.nlm.nih.gov/articles/PMC12308510/
https://news.mit.edu/2025/simpler-models-can-outperform-deep-learning-climate-prediction-0826
https://news.mit.edu/2025/simpler-models-can-outperform-deep-learning-climate-prediction-0826
https://discovery.ucl.ac.uk/id/eprint/10170896/3/Arcaute_Batty-Digital_Twins-6.pdf
https://aws.amazon.com/what-is/digital-twin/
https://en.wikipedia.org/wiki/Uncertainty_quantification
https://www.ijircst.org/DOC/14-AI-Augmented-Turbulence-and-Aerodynamic-Modeling-Accelerating-High-Fidelity-CFD-Simulations-with-Physics-informed-Neural-Networks.pdf
https://www.ijircst.org/DOC/14-AI-Augmented-Turbulence-and-Aerodynamic-Modeling-Accelerating-High-Fidelity-CFD-Simulations-with-Physics-informed-Neural-Networks.pdf
https://www.ijircst.org/DOC/14-AI-Augmented-Turbulence-and-Aerodynamic-Modeling-Accelerating-High-Fidelity-CFD-Simulations-with-Physics-informed-Neural-Networks.pdf
https://zongyi-li.github.io/blog/2020/fourier-pde/
https://acemate.ai/glossary/fourier-neural-operator
https://github.com/erik-norlin/Fourier-Neural-Operator
https://greydanus.github.io/2019/05/15/hamiltonian-nns/
http://papers.neurips.cc/paper/9672-hamiltonian-neural-networks.pdf

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

https://fen.wikipedia.org/wiki/Surrogate_model
Differentiable programming - Wikipedia, accessed September 28, 2025,

https://fen.wikipedia.org/wiki/Differentiable_programming
Uncertainty Quantification in Scientific Computing, accessed September 28,

2025, https://www.nist.gov/document/woco10-conference-book-2pdf
Compositional Generative Inverse Design - Stanford Computer Science,
accessed September 28, 2025,
https://cs.stanford.edu/people/jure/pubs/compositional-iclr24.pdf

(PDF) Molecular geometric deep learning - ResearchGate, accessed September
28, 2025,

https://www.researchgate.net/publication/374929013_Molecular_geometric_deep

_learning
[PDF] Geometric deep learning on molecular representations - Semantic Scholar,

accessed September 28, 2025,
https://www.semanticscholar.org/paper/Geometric-deep-learning-on-molecular-
Atz-Grisoni/41¢c3624512a6b249444b374e5767c108fb240650

Geometric Deep Learning for Molecular Discoveries - OAKTrust, accessed
September 28, 2025,

https://oaktrust.librarytamu.edu/items/e17e4d79-226f-4b3a-92d56-ea31015f02ac
Materials informatics - Wikipedia, accessed September 28, 2025,

https://en.wikipedia.org/wiki/Materials_informatics

Generative models for inverse design of inorganic solid materials - OAE
Publishing Inc., accessed September 28, 2025,
https://www.oaepublish.com/articles/jmi.2021.07

Generative Deep Neural Networks for Inverse Materials Design Using
Backpropagation and Active Learning - PMC - PubMed Central, accessed
September 28, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC7055566/
Symbolic regression for scientific discovery: an application to wind speed
forecasting - arXiv, accessed September 28, 2025,
https://arxiv.org/pdf/2102.10570

Materials Informatics: The Al-Designed Materials Revolution | IDTechEx Research
Article, accessed September 28, 2025,
https://www.idtechex.com/en/research-article/materials-informatics-the-ai-desig
ned-materials-revolution/30643

Simulations and active learning enable efficient identification of an
experimentally-validated broad coronavirus inhibitor - PMC, accessed September
28, 2025, https://pmc.ncbi.nim.nih.gov/articles/PMC12307812/

Modelling biological systems - Wikipedia, accessed September 28, 2025,
https://en.wikipedia.org/wiki/Modelling_biological_systems

. Computational Systems Biology - MIT Department of Biological Engineering |,

accessed September 28, 2025,
https://be.mit.edu/research/computational-systems-biology/

Machine Learning for Causal Inference in Biological Networks: Perspectives of
This Challenge - PMC - PubMed Central, accessed September 28, 2025,

https://pmc.ncbi.nlm.nih.gov/articles/PMC92581010/



https://en.wikipedia.org/wiki/Surrogate_model
https://en.wikipedia.org/wiki/Differentiable_programming
https://www.nist.gov/document/woco10-conference-book-2pdf
https://cs.stanford.edu/people/jure/pubs/compositional-iclr24.pdf
https://www.researchgate.net/publication/374929013_Molecular_geometric_deep_learning
https://www.researchgate.net/publication/374929013_Molecular_geometric_deep_learning
https://www.semanticscholar.org/paper/Geometric-deep-learning-on-molecular-Atz-Grisoni/41c3624512a6b249444b374e5767c108fb240650
https://www.semanticscholar.org/paper/Geometric-deep-learning-on-molecular-Atz-Grisoni/41c3624512a6b249444b374e5767c108fb240650
https://oaktrust.library.tamu.edu/items/e17e4d79-226f-4b3a-9d56-ea31015f02ac
https://en.wikipedia.org/wiki/Materials_informatics
https://www.oaepublish.com/articles/jmi.2021.07
https://pmc.ncbi.nlm.nih.gov/articles/PMC7055566/
https://arxiv.org/pdf/2102.10570
https://www.idtechex.com/en/research-article/materials-informatics-the-ai-designed-materials-revolution/30643
https://www.idtechex.com/en/research-article/materials-informatics-the-ai-designed-materials-revolution/30643
https://pmc.ncbi.nlm.nih.gov/articles/PMC12307812/
https://en.wikipedia.org/wiki/Modelling_biological_systems
https://be.mit.edu/research/computational-systems-biology/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9581010/

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Application of Causal Inference to Genomic Analysis: Advances in Methodology -
Frontiers, accessed September 28, 2025,
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00238/f
ull

Causal Inference in Genetics: Latest developments and New Directions, accessed
September 28, 2025, https://lestreilles.hypotheses.org/10680

Python Unleashed on Systems Biology - James Sethna, accessed September 28,
2025, https://sethna.lassp.cornell.edu/pubPDF/PythonUnleashed.pdf
Computational Models in Systems Biology: Standards, Dissemination, and Best
Practices, accessed September 28, 2025,
https://pmc.ncbi.nlm.nih.gov/articles/PMC9177621/

Differentiable Programming: The Future of Machine Learning? | by Amit Yadav |
Biased-Algorithms | Medium, accessed September 28, 2025,
https://medium.com/biased-algorithms/differentiable-programming-the-future-o
f-machine-learning-8ab3214a8b85

Causal Inference with Genetic Data: Past, Present, and Future - PMC - PubMed
Central, accessed September 28, 2025,
https://pmc.ncbi.nim.nih.gov/articles/PMC8886738/

Emerging Chemistry & Machine Learning - PMC, accessed September 28, 2025,
https://pmc.ncbi.nim.nih.gov/articles/PMC8965829/

Al-Driven Drug Discovery: A Comprehensive Review | ACS Omega, accessed
September 28, 2025, https://pubs.acs.org/doi/10.1021/acsomega.5c00549
Revolutionizing Drug Discovery: A Comprehensive Review of Al Applications -
MDPI, accessed September 28, 2025, https://www.mdpi.com/2813-2998/3/1/9
Computational neuroscience - Wikipedia, accessed September 28, 2025,
https://en.wikipedia.org/wiki/Computational_neuroscience

Cognitive computational neuroscience - PMC - PubMed Central, accessed
September 28, 2025, https://pmc.ncbi.nim.nih.gov/articles/PMC6706072/

Models of neural computation - Wikipedia, accessed September 28, 2025,
https://en.wikipedia.org/wiki/Models_of neural_computation

Multiscale modeling in the clinic: diseases of the brain and nervous system - PMC,
accessed September 28, 2025,

https://pmc.ncbi.nim.nih.gov/articles/PMC5709279/
Multiscale Modelling - Human Brain Project, accessed September 28, 2025,

https://www.humanbrainproject.eu/en/brain-simulation/multiscale-modelling/
Multiscale Modeling in Neuroethology: The Significance of the Mesoscale - -
Scholars@UK, accessed September 28, 2025,
https://scholars.uky.edu/es/publications/multiscale-modeling-in-neuroethology-th
e-significance-of-the-meso

Multiscale brain modeling: bridging microscopic and macroscopic brain dynamics
for clinical and technological applications - PMC - PubMed Central, accessed
September 28, 2025, https://pmc.ncbi.nim.nih.gov/articles/PMC11879965/
Neuromorphic algorithms for brain implants: a review - Frontiers, accessed
September 28, 2025,

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.157



https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00238/full
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00238/full
https://lestreilles.hypotheses.org/10680
https://sethna.lassp.cornell.edu/pubPDF/PythonUnleashed.pdf
https://pmc.ncbi.nlm.nih.gov/articles/PMC9177621/
https://medium.com/biased-algorithms/differentiable-programming-the-future-of-machine-learning-8ab3214a8b85
https://medium.com/biased-algorithms/differentiable-programming-the-future-of-machine-learning-8ab3214a8b85
https://pmc.ncbi.nlm.nih.gov/articles/PMC8886738/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8965829/
https://pubs.acs.org/doi/10.1021/acsomega.5c00549
https://www.mdpi.com/2813-2998/3/1/9
https://en.wikipedia.org/wiki/Computational_neuroscience
https://pmc.ncbi.nlm.nih.gov/articles/PMC6706072/
https://en.wikipedia.org/wiki/Models_of_neural_computation
https://pmc.ncbi.nlm.nih.gov/articles/PMC5709279/
https://www.humanbrainproject.eu/en/brain-simulation/multiscale-modelling/
https://scholars.uky.edu/es/publications/multiscale-modeling-in-neuroethology-the-significance-of-the-meso
https://scholars.uky.edu/es/publications/multiscale-modeling-in-neuroethology-the-significance-of-the-meso
https://pmc.ncbi.nlm.nih.gov/articles/PMC11879965/
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1570104/full

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61

62.

0104/full
A How-to-Model Guide for Neuroscience - PMC - PubMed Central, accessed

September 28, 2025, https://pmc.ncbi.nim.nih.gov/articles/PMC7031850/
Computational Social Science and Sociology - PMC - PubMed Central, accessed

September 28, 2025, https://pmc.ncbi.nim.nih.gov/articles/PMC8612450/
Generative science - Wikipedia, accessed September 28, 2025,
https://en.wikipedia.org/wiki/Generative_science

Large language models empowered agent-based modeling and simulation: a
survey and perspectives - ResearchGate, accessed September 28, 2025,
https://www.researchgate.net/publication/384400295_Large_language_models_e
mpowered_agent-based_modeling_and_simulation_a_survey and_perspectives
GenSim: A General Social Simulation Platform with Large Language Model based
Agents - ACL Anthology, accessed September 28, 2025,
https://aclanthology.org/2025.naacl-demo.15/

Generative Social Science - PhiloComp.net, accessed September 28, 2025,
https://www.philocomp.net/models/genscience.htm

Learning Solutions in Large Economic Networks using Deep Multi-Agent
Reinforcement Learning - University of Southampton, accessed September 28,
2025, https://www.southampton.ac.uk/~eg/AAMAS2023/pdfs/p2760.pdf

Review of Alvarez, R. Michael: Computational Social Science (Analytical Methods
for Social Research) - JASSS, accessed September 28, 2025,
https://www.jasss.org/20/4/reviews/1.html

Multi-Agent Deep Reinforcement Learning for Economic Policy Simulation -
SUERF, accessed September 28, 2025,
https://www.suerf.org/wp-content/uploads/2024/05/Tohid-Atashbar-_IMF.pdf
Information diffusion and opinion dynamics in social networks | Request PDF,
accessed September 28, 2025,

https://www.researchgate.net/publication/293201136_Information_diffusion_and
opinion_dynamics_in_social_networks

. ShinkaEvolve: Evolving New Algorithms with LLMs, Orders of Magnitude More

Efficiently, accessed September 28, 2025, https://sakana.ai/shinka-evolve/
AlphaEvolve: A Gemini-powered coding agent for designing advanced
algorithms, accessed September 28, 2025,
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-a

gent-for-designing-advanced-algorithms/



https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1570104/full
https://pmc.ncbi.nlm.nih.gov/articles/PMC7031850/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8612450/
https://en.wikipedia.org/wiki/Generative_science
https://www.researchgate.net/publication/384400295_Large_language_models_empowered_agent-based_modeling_and_simulation_a_survey_and_perspectives
https://www.researchgate.net/publication/384400295_Large_language_models_empowered_agent-based_modeling_and_simulation_a_survey_and_perspectives
https://aclanthology.org/2025.naacl-demo.15/
https://www.philocomp.net/models/genscience.htm
https://www.southampton.ac.uk/~eg/AAMAS2023/pdfs/p2760.pdf
https://www.jasss.org/20/4/reviews/1.html
https://www.suerf.org/wp-content/uploads/2024/05/Tohid-Atashbar-_IMF.pdf
https://www.researchgate.net/publication/293201136_Information_diffusion_and_opinion_dynamics_in_social_networks
https://www.researchgate.net/publication/293201136_Information_diffusion_and_opinion_dynamics_in_social_networks
https://sakana.ai/shinka-evolve/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/

	Algorithmic Frontier: Domain-Specific Computational Paradigms 
	Beyond Transformers—Domain-Specific Algorithms 
	Executive Summary Table 
	Part I: Algorithms for Simulating Physical and Engineered Systems 
	Conservation-Aware Dynamics Solvers 
	Physics-Informed Differential Operators 
	Adaptive Multi-Fidelity Surrogate Models 
	Probabilistic Solvers with Uncertainty Quantification 
	Lagrangian and Mesh-Free Flow Solvers 

	Part II: Algorithms for Inverse Design in Chemistry and Materials Science 
	Geometric Generative Models for Molecular Structures 
	Compositional and Constrained Inverse Design Frameworks 
	Symbolic and Rule-Based Materials Discovery Engines 
	Active Learning Algorithms for Materials Property Exploration 

	Part III: Algorithms for Decoding Biological Complexity 
	Causal Inference and Network Reconstruction Algorithms 
	Differentiable Biology Simulators 
	Hierarchical Multi-Scale Biological Models 
	Active Learning for Drug and Biomarker Discovery 

	Part IV: Algorithms for Modeling Neuroscience and Cognitive Systems 
	Multi-Scale Neuro-Glia-Vascular Simulators 
	Differentiable Biophysical Neuron Models 
	Neuromorphic and Spiking Learning Algorithms 
	Cognitive Architecture Assemblers 

	Part V: Algorithms for Simulating Socio-Economic and Adaptive Systems 
	LLM-Augmented Agent-Based Models (ABMs) 
	Multi-Agent Reinforcement Learning (MARL) for Economic Policy Design 
	Network Algorithms for Opinion Dynamics and Information Diffusion 
	Generative Social Science and Emergence Solvers 

	Conclusion: Synthesizing a Generative Framework for Scientific AI 
	Works cited 



