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Objective

Enable flexible scalable Bayesian phylogenetic, phylodynamic, and phylogeographic modeling in Pyro.

Specific feature requests (prioritized)

+ Scale to the 250k-sample (and growing) COVID-19 dataset at gisaid.org.

+ Support phylogeographic modeling where each sample is timestamped and geotagged, and we have
weak prior information on inter-region transit rates.

+ Support scRNA-seq data where each read represents only a partially observed genome, sometimes
mixed.

+ Support within-host variants similar to (Miao et al. 2018).
Support superspreading / multifurcation models along the lines of (Hoscheit & Plybus 2019).

+ Support active learning / experimental design: "who should we sequence?"

Out of scope

- Modeling crossover, incomplete lineage sorting, diploid genetics, species trees.
- Selection pressure?
- Inhomogeneous mutation rate (e.g. cancer)?

Design Overview

We aim to implement as little new machinery as possible, and instead rely on existing Pyro machinery
composed in new ways and with a few new components and existing external tools. We will focus on four
stages of tasks, each building on the previous:

Prediction / Counting

Given a posterior distribution over trees and other variables, make it easy for users to answer novel queries
such as "what portion of my city's new infections have internal vs external source?", "when was the first


https://www.gisaid.org/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006117
https://academic.oup.com/ve/article/5/2/vez031/5556615

infection in my city?", or "what regional attributes correlate with superspreading?". Some of these tasks require
a little inference, but often they are simple aggregation operations. This effort will result in new tutorials and

possibly new helpers like Predictive, ForecastingModel.predict(), or CompartmentalModel.predict().

Inference given a fixed tree

In cases where the phylogeny is only loosely coupled to other latent variables, we would like to use Pyro to
infer latent variables conditioned on a fixed tree (or bag of trees) generated by another tool such as
Beast/Beast2. This is the approach taken by (Fourment and Darling 2019), who perform variational inference in
STAN. An early example of this in Pyro is the CoalescentRateLikelihood in contrib.epidemiology. This effort will
result in new tutorials, possibly new constraints e.g. for inferring branch lengths, possibly new likelihoods e.g.
for birth/death and branching processes, possibly new data structure wrappers to interface e.g. tskit objects
with PyTorch/JAX.

Joint inference involving trees

Build a new Coalescent distribution (or similar component) that is compatible with variational inference and
subsampling, and thus Pyro's most mature automatic inference algorithms. This should allow upstream
dependency on global parameters (e.g. GTR mutation model) and downstream dependency on other
observations (e.g. Pyro's CoalescentRatelL ikelihood).

Experimental design

Optimally allocate limited sequencing testing capacity among a population so as to most accurately answer
specific questions of interest to policymakers. Who should we sequence?

Work Plan

Work will be driven by a combination of tutorials, analyses, and experiments.

Inference given a fixed tree

Analysis: Region-dependent superspreading.

Split say COVID data into regions (e.g. countries, states, provinces) and use an existing tool to infer
phylogenies within each region. Then construct a joint model using contrib.epidemiology and
CoalescentRateLikelihood, and hierarchically share some parameters across regions. Infer both RO and
superspreading dispersion k across all regions. Optionally then extend the model to search for relevant
region-dependent covariates on which RO and k might depend (e.g. population density, policy, temperature),
where coefficients are fit via joint Bayesian regression.


http://docs.pyro.ai/en/stable/inference_algos.html#pyro.infer.predictive.Predictive
http://docs.pyro.ai/en/stable/contrib.forecast.html#pyro.contrib.forecast.forecaster.ForecastingModel.predict
http://docs.pyro.ai/en/stable/contrib.epidemiology.html#pyro.contrib.epidemiology.compartmental.CompartmentalModel.predict
https://www.biorxiv.org/content/10.1101/702944v1
http://docs.pyro.ai/en/stable/contrib.epidemiology.html#pyro.distributions.CoalescentRateLikelihood
http://docs.pyro.ai/en/stable/contrib.epidemiology.html#pyro.distributions.CoalescentRateLikelihood

Joint inference involving trees

Tutorial: Joint biogeographic inference.

Possible data source: Geo-tagged genomes from gsaid.org.

Tutorial: Jointly fit epidemiological parameters and a ftree.

Fit epidemiological parameters (Ry,=basic reproductive number, k=superspreader dispersion, possibly even a
a=Beta-coalescent stability) jointly with a phylogeny. Possible data source: Nextstrain COVID phylogenies.

User interviews

2020-08-03 applications to within-host single cell sequencing

Attendees: Mehrtash, Nick, Pyro folks
e What are the unique challenges of single cell sequencing?
o sample sequence reads are only very sparsely observed
o samples may be mixed within each cell (e.g. viruses)
e What are some open questions that could be resolved by phylogeny inference?
o Within a single host, are mutations completely random or under selective pressure?

2020-08-05 applications to virus tracking

Attendees: Sabeti lab folks, Pyro folks
e What do you do now?
o Run either Beast or faster ML tools.
o Beast requires expertise.
e What features do you require of existing tools?
o Existing datasets do not handle large datasets.
o Would like to handle multifurcation.
o We need easier ways to compute summary statistics on (bags of) trees.
m counting
m inference
e What new features would be useful?
o We'd like to estimate superspreader parameter k.
m Ideally per locally outbreak.
e Data scale?
o Typically 10s to 100s.
o 500-1000 samples, each in 10k samples (each 32kb in size)
e Does topological uncertainty matter? How much is there?
o There is a lot of uncertainty.


https://www.gisaid.org/
https://nextstrain.org/ncov/global

2020-08-06 applications to virus tracking
Attendees: CZ folks, Pyro folks

Does topological uncertainty matter? How much is there?

o There is a lot of uncertainty.

o What matters most is uncertainty at the root, or at a geographic region's root. We want the
distribution over the time of initial infection, globally and within each geographic region.

What is your biggest feature request?
o Scalability is a huge issue for phylogeny inference.
Do you need to model recombination / crossover?

o Yes, recombination can complicate models, e.g. polio can exchange among strains and even
among other polio-like viruses. Sometimes crossover is an issue, e.g. flu can exchange a
subset of its multiple segments. However there is as yet no evidence for crossover in COVID.

o Sometimes we handle this in preprocessing, restricting attention to a single gene and inferring a
gene genealogy.

Do you need to model selection pressure?

o We don't usually model selection pressure. Sometimes in flu.

o Birth-death processes can model selection, but also there may be ways to adapt coalescent
models under selection.

What kind of complex models do you consider?

o Phylogeographic models are currently important. We want to fuse mobility data with

phylogenetic data. E.g. Beast2 has a GML model where you can enter flight pattern data.
Does multifurcation matter?

o It may matter more in small populations. Coalescent models typically perform worse when
sample proportion is high; in that case birth-death models perform better. It may be that
multifurcating coalescent models may perform better in small-population high-sample-proportion
settings.

Background

Related tools

Domain-specific phylogenetic and phylodynamic tools

Beast (LGPL) - MCMC, robust

Beast2 (LGPL) - MCMC, has many custom modules

MrBayes (GPL3) - MCMC

PhyML (GPL3) - maximum likelihood phylogenetic inference

ExaML (GPL3) - maximum-likelihood phylogenetic inference on supercomputers
RAXML-NG (AGPL3) - maximum-likelihood phylogenetic inference (example)
IQ-TREE (GPL2) - maximum likelihood phylogenetic inference with ultrafast bootstrap



https://github.com/beast-dev/beast-mcmc
https://github.com/CompEvol/beast2
https://github.com/NBISweden/MrBayes
https://github.com/stephaneguindon/phyml
https://cme.h-its.org/exelixis/web/software/examl/index.html
https://github.com/amkozlov/raxml-ng
https://github.com/computations/porto2020_practical
http://www.iqtree.org/

e BitSeq - cancer
e PhyloWGS (GPL3) - cancer phylogenies
e PHYLIP - Joe Felsensein's phylogeny inference software

The Cyberinfrastructure for Phylogenetic Research hosts a number of scalable tools.

PPL-based phylogenetic and phylodynamic tools

e RevBayes (GPL3) - a phylogenetics-specific Bayes net modeling language + MCMC inference.
e Birch, WebPPL. Ronquist et al. (2020) develop SMC algorithms for phylodynamic inference.

Tree data structures and low-level libraries

Apache-compatible licenses:
e {skit (MIT) - low level data structure for multi-trees with crossover (MIA talk)
e ARGWeaver (MIT) - phylogeny inference with crossover
e LICHEE (MIT) - fast scalable maximum likelihood inference of cancer phylogenies (paper)

Inference algorithms

Scalable maximum likelihood, maximum parsimony, and bootstrap algorithms

Saitou and Nei (1987) defined the classic neighbor joining algorithm for greedily constructing phylogenies.
Guindon et al. (2010) describe PhyML, a maximum likelihood inference tool. Minh et al. (2013) and Hoang et
al. (2017) implement an "ultrafast" approximation to Efron's nonparametric bootstrap to estimate uncertainty in
phylogenetic reconstruction; their algorithm is implemented in the |Q-TREE system.

Joint Bayesian inference algorithms

Schiffman et al. (2018) define a tree model whose tree generalizes a Dirichlet diffusion tree and whose
observations (scRNA-seq transcriptomes) are noisy; their MCMC inference strategy uses belief propagation to
draw joint cell state samples condition on trees; after tree topology moves they sample state before MH
rejection, which empirically increases acceptance rate. Ronquist et al. (2020) express phylogenetic models as
probabilistic programs involving BirthDeath distributions, and implement SMC inference algorithms in two
different universal PPLs: WebPPL and Birch. Zhang and Matsen (2019) develop two full variational inference
strategies for inferring tree topology + branch time, both strategies restricting to a small support of


https://evolution.genetics.washington.edu/phylip.html
http://www.phylo.org/
https://github.com/revbayes/revbayes
https://www.biorxiv.org/content/10.1101/2020.06.16.154443v1
https://github.com/tskit-dev/tskit
https://www.youtube.com/watch?v=X1GEuQrF1jQ
https://github.com/mdrasmus/argweaver
https://github.com/viq854/lichee
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020047/
https://github.com/tskit-dev/msprime
http://molpopgen.github.io/fwdpp/
https://github.com/MesserLab/SLiM
https://tsinfer.readthedocs.io/en/latest/
https://github.com/xflouris/libpll
https://github.com/lh3/fastARG
https://github.com/HoseinT/BAMSE
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2824-3
http://igem.temple.edu/labs/nei/downloads/publications/1987%20Publications/1987-saitou-nei.pdf
https://academic.oup.com/sysbio/article/59/3/307/1702850
https://github.com/stephaneguindon/phyml
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670741/
https://academic.oup.com/mbe/article/35/2/518/4565479
https://academic.oup.com/mbe/article/35/2/518/4565479
http://www.iqtree.org/
https://arxiv.org/abs/1811.11790
https://www.biorxiv.org/content/10.1101/2020.06.16.154443v1
https://openreview.net/pdf?id=SJVmjjR9FX

high-probability topologies: (1) multi-sample KP(q,p) minimization using a VIMCO estimator for discrete- and
reparameterization for continuous- RVs, and (2) multi-sample KL(p,q) minimization using RWS; they find
VIMCO performs better. Corro and Titov (2019) develop a perturb-and-parse algorithm that generalizes the
Gumbel-softmax trick to projective dependency trees; they use this trick to define a semi-supervised VAE for
dependency parsing. Zhang (2020) enhances variational bayesian phylogenetic inference (VBPI) by
introducing permutation equivariant normalizing flows for the branch length distributions.

MCMC on trees

Alfaro et al. (2003) compare Bayesian MCMC with maximume-likelihood- and maximum-parsimony-bootstrap;
they find MCMC is slightly better than ML-bootstrap, which is much better than MP-bootstrap. Dinh et al.
(2017) adapt HMC to a non-euclidean space composed by gluing together many locally euclidean simplices;
they adapt this variant of HMC to infer tree structures. Palacios et al. (2019) perform MCMC over a space of
"Tajima trees" which are quotiented versions of Kingman's coalescent; while the hypothesis space is smaller, it
remains to be seen whether this allows scaling to thousands of observations. Yuan et al. (2015) (BitPhylogeny)
use MCMC to infer cancer evolution in a single host by solving a joint problem of clustering noisy samples and
inferring a phylogeny under a tree-structured stick breaking process model; they analyze both bulk tissue and
single cell data; their algorithm scale to ~100 samples and trees with 10s of nodes.

...many others...

Phylogeography / biogeography

Notohara (1990) introduces the structured coalescent model. Ree et al. (2005) introduce a phylogeographic
model where location is treated as a discrete variable (as a character) and unobserved locations marginalized
out in a continuous Markov process; the limiting cost was the matrix exponential for large numbers of states.
Landis et al. (2013) reduce the cost of Ree et al. (2005) by treating location as an auxiliary variable (at cost of
mixing speed).

TODO Lemey et al. (2014) ?

Vaughan et al. (2014) describe new MCMC kernels for the structured coalescent, as implemented in BEASTZ2;
they apply this to H3N2 migration; they echo the advice of Ewing et al. (2004) that phylogeographic inference
requires informative priors; their Supplementary Material clearly explains the differences between Kingman's
coalescent and the structured coalescent. De Maio et al. (2015) compare three phylogeographic inference
algorithms: multi-type tree (MTT) is an auxiliary variable MCMC method; discrete-trait analysis marginalizes
our latent histories, treating migration between discrete locations ("demes") as if it were mutation; and a new
method BASTA that approximates the MTT model; they show BASTA and MTT largely agree, whereas DTA is
subject to sampling bias (it assumes genetic samples are observed randomly in the population, which is
strongly violated in viral sequencing). Kihnert et al. (2016) define a multitype birth death process with
MCMC inference, similar to a compartmental model with multiple regions and migration and/or transmission
across regions; types can be interpreted as either geographic demes or other partitions like risk group; they
claim that discrete type analysis (DTA) models do not account for heterogeneous population size among
demes, and that structured coalescent approaches do not perform well in the early outbreak regime of
stochastic exponential growth. Muller et al. (2016) distinguish mugration approaches (that assume uniform
sampling and permit collapsed inference as with mutation-models) from structured coalescent approaches
(that allow non-uniform sampling but for which inference is more challenging); they implement an exact (but



https://arxiv.org/pdf/1807.09875.pdf
https://proceedings.neurips.cc/paper/2020/file/d96409bf894217686ba124d7356686c9-Paper.pdf
https://academic.oup.com/mbe/article/20/2/255/1003275
http://proceedings.mlr.press/v70/dinh17a/dinh17a.pdf
http://proceedings.mlr.press/v70/dinh17a/dinh17a.pdf
https://www.genetics.org/content/213/3/967
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0592-6
https://link.springer.com/content/pdf/10.1007/BF00173909.pdf
https://donoghuelab.yale.edu/sites/default/files/154_ree_evol05.pdf
https://academic.oup.com/sysbio/article/62/6/789/1708738
https://donoghuelab.yale.edu/sites/default/files/154_ree_evol05.pdf
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003932
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207426/
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/30/16/10.1093_bioinformatics_btu201/3/btu201_Supplementary_Data.zip?Expires=1601881318&Signature=zjIB7IAt6f9WMdl7CG0uJpYx7J85TUAv01X-PKuI5F7cUvpOvhdz3hX1bSdB7oE1h09l1e6aR6ZyDArzYySuGkboNRIT0puvUa5RrguQMVosa7fGOUKCs-Cr7PDz06UkBFJtpO~w-5zD14luS0K1viTcNhwRWZ7yVoxVf1InOzkkjCCJgixurWMMd0xkoNjmQSw1lqAMWLyLlDQp7h6EKzmJXGrscBu85QHWXhWKPkAzuXq7A4ILAxS0IF~i5GukAzG1nQYqMrS6DpaH~u8VKoaRxPjk07NTDvKDySD5sUId4HmAM2nGgIZBlf-xym7Rd4DLFPid7gY8MrhhXwwmNg__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://core.ac.uk/download/pdf/77003238.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948704/pdf/msw064.pdf
https://academic.oup.com/mbe/article/34/11/2970/3896419

slow) inference method for the structured coalescent and show that popular approximate approaches can yield
qualitatively wrong inferences. Volz and Siveroni (2018) demonstrate phylodynamic inference of
epidemiological parameters in Ebola and Influenza A, using BEAST2. Baele et al. (2018) survey software for
exact and approximate phylodynamics with applications to virology and epidemiology. Lundgren and Ralph
(2019) compare resistance-based and coalescent-based models of biogeography; they show that the two
classes are equivalent if the hitting-time matrix is symmetric (a stronger condition than symmetric dynamics),
but that in non-symmetric settings resistance-based models can be inaccurate. Lemey et al. (2020) analyze
COVID-19 spread by sampling phylogenies of 284 genomes from 28 countries, augmented with recent travel
history of each individual's genome; they find that the analysis is made difficult due to highly biased sampling
rates (e.g. much higher in UK than in China). Deshwar et al. (2015) describe their method PhyloWGS for
constructing small phylogenies (<=5 subpopulations) from bulk WGS samples; they account for simple somatic
mutations (SSMs), copy number variations (CNVs), structural variations (SVs), interactions among those three,
and the challenging statistical inference of mixture components under bulk sequencing.

A common issue among phylogeographic inference algorithms is how to integrate over migration histories.
Common approaches are: MCMC and variable elimination (for a small number of demes or Brownian motion).

Alignment free phylogeny inference

Zielezinski et al (2019) compare many alignment-free sequence comparison methods (with no focus on
phylogeny inference).

Sampling uniform random spanning trees

Schild (2017) proves that near-linear-time samplers exist. Harvey & Xu (2016) describe a practical algorithm
that samples in matrix multiply time O(n?**) and could probably be implemented in PyTorch. Pyro's
SpanningTree distribution implements an O(n®) algorithm on top of PyTorch, which parallelizes to O(n? log(n))
parallel time with perfect efficiency. Paulus et al. (2020) generalize the Gumbel-softmax trick to a variety of
structured discrete models including undirected spanning tree and rooted directed spanning tree; these permit
incorporation in VAEs as in Corro and Titov (2019).

Sampling random matchings

Conditioned on times and genetic sequences of internal nodes, the phylogeny problem reduces to a random
2-matching, for which there is much literature mostly focusing on the related problem of random 1-matchings
i.e. permutations. Huang & Jebra (2009) provide a fast Bethe approximation of the matrix permanent (i.e. the
partition function of the random perfect matching problem); while the exact partition function is #P-complete,
their algorithm scales as O(n?) per iteration and converges in an empirically constant number of iterations
(about 42 iterations to tolerance of 1e-10 on random matrices); it should be easy to adapt this algorithm to the
random 2-matching problem. Vontobel (2012) further explores the Bethe permanent, showing that it is a lower
bound of the true permanent (hence would provide a true ELBO in VI) and that it should converge quickly.
Chen (2018) applies the permanent approximations of Roos (2018) to multiple target tracking; these involve
both first and second-order approximations with known error bounds. Volkovs & Zemel (2012) define an



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006546
https://www.sciencedirect.com/science/article/abs/pii/S187962571830066X
https://www.biorxiv.org/content/biorxiv/early/2019/04/22/451328.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2019/04/22/451328.full.pdf
https://www.biorxiv.org/content/10.1101/2020.06.22.165464v1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0602-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1755-7?optIn=false
https://arxiv.org/abs/1711.06455
https://www.cs.ubc.ca/~nickhar/papers/RandomTrees/RandomTrees.pdf
http://docs.pyro.ai/en/stable/distributions.html#pyro.distributions.SpanningTree
https://arxiv.org/pdf/2006.08063.pdf
https://arxiv.org/pdf/1807.09875.pdf
https://arxiv.org/pdf/0908.1769.pdf
https://arxiv.org/pdf/1107.4196.pdf
https://arxiv.org/pdf/1807.06480v1.pdf
https://arxiv.org/pdf/1612.03702.pdf
http://www.cs.toronto.edu/~mvolkovs/nips2012_sampling.pdf

efficient MCMC sampler for bipartite matchings; this might be adapted to sample 2-matchings, perhaps
initialized to a MAP matching computed via max-product BP (Bayati et al. 2011), (Huang & Jebra 2011).

Complexity results

Computational complexity:

Sebastien Roch (2005) gives a short proof that maximum likelihood tree estimation is NP-hard and that ML is
even hard to approximate within a constant factor; however the latter claim seems weak since we instead
generally want to approximate to within a constant log-likelihood shift per datum.

Sample efficiency: how many characters (fix n, vary p)?

Mossel (2003), Daskalakis et al. (2006), and Daskalakis et al. (2011) identify a phase transition of phylogenetic
identifiability: when mutation rate is too high, identification requires polynomial(n)-many characters at each leaf
(variant sites), whereas mutation rate is sufficiently low, identification requires only O(log(n))-many characters;
however in virus tracking we are often limited by genome size and too-low mutation rate (relative to speed of
spreading). Roch and Sly (2018) tighten those bounds; they also define a combinatorial distance metric
between trees and use it to prove bounds on leaf character distributions. (Roch and Wang 2017) and Fan and
Roch (2018) characterize the difficulty of root reconstruction; a critical point is known as the Kesten-Stigum
threshold.

Sample efficiency: how many taxa (vary n, fix p)?

Zwickl (2002) and Heath et al. (2008) basically argue that "more data leads to better inferences", in particular,
increasing the number of taxa = samples = leaves n reduces errors; they classify types of errors. Guten et al.
(2007) and Susko and Roger (2012) refine these observations by asking "which taxa would improve inference"
in the framework of experimental design, with objective functions including Fisher information and
probability-of-correct-ML-estimate.

Inference in combinatorial spaces

Bouchard-Cote and Jordan (2010) develop variational inference algorithms (BP, MF, tree-reweighted) for
approximate inference in a wide class of combinatorial models with linear binary potentials and local tractable
hard constraints on sets thereof; they apply this framework to bipartite matchings and multiple sequence
alignment. Tarlow et al (2012) develop fast exact inference algorithms for binary combinatorial models with
arbitrary cardinality potentials. Djolonga. Jegelka, and Kraus (2018) develop variational inference algorithms
with provable upper bounds on an inclusive Renyi divergence, for a wide class of combinatorial models
obeying a submodularity property; however their bounds . Kuleza and Taskar (2012) apply determinantal point
processes to machine learning problems, covering a wide class of models that include negative local potentials
including some soft-constrained combinatorial problems.

Hyperbolic VAEs and Tree-VAEs

Vikram, Hoffman. & Johnson (2018) define a LORACSs prior and subsampling strategy for undirected
tree-structured data, whereby they learn an "inducing point tree" (200-2000 nodes) conditioned on which real
data is independent; this could be adapted to large-scale phylogeny inference by learning a "latent induced
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phylogeny" conditioned on which all observations are independent; their geometry is euclidean. Nickel & Kiela
(2018) propose to use Lorentz coordinates of hyperbolic space for learning hierarchical structured data; they
provide computations for exponential maps and use these for Riemannian gradient updates. Nagano et al.
(2019) define an exponential-map transported Gaussian distribution on hyperbolic space, and provide
algorithms for reparametrized sampling and log_density computations (including log-abs-det-jacobian of the
exponential map), which could be implemented as a Transform. Mathieu et al. (2019) propose Poncare VAEs
whose latent space has hyperbolic geometry and is thus suitable as a continuous representation of
hierarchical structures; this would be an appropriate geometry for variational tree posteriors based on
embeddings; they develop a hyperbolic decoder that can serve as a template for a neural net layer that inputs
points in hyperbolic space. Bose et al. (2020) develop normalizing flows on hyperbolic space, which could
serve as more expressive variational posteriors than the warped Gaussians of Mathieu et al. (2019).

Covid-specific data characteristics

Skums et al. (2020) observe that (as of March 2020) Sars-CoV-2 samples exhibited few deviations from a
perfect phylogeny (violations of the 4-gamete rule); they handle these cases specially and then construct
Camin-Sokal phylogenies, which allow each mutation to occur independently at most twice.

Misc

Fourment and Darling (2019) implement a complex model of many phylogenetic parameters conditioned on a
fixed tree, and compare different continuous inference strategies including VI in Stan and existing MCMC
methods; they cite Zhang and Matsen (2019) as interesting future work. Gavryushkin and Drummond (2016)
define a number of distance metrics on trees, and show they result in different mean (consensus, summary)
trees (see Roch and Sly (2018) for another metric). David Duvenaud's course surveys methods of learning
discrete structures. De Maio et al. (2018) leverage within-host genetic variants of viruses to improve the
accuracy of transmission inference; this assumes a weak bottleneck so that multiple strains can simultaneously
transmit across hosts; they use simulations on an Ebola outbreak. Minka (2004) describes the Dirichlet-tree
distribution which serves as a conjugate prior to observations of tree-structured categoricals. El-Kebir et al.
(2015) pose the perfect phylogeny reconstruction problem as the optimization of a certain binary matrix. Qi,
Pradhan. and El-Kebir (2019) provide a number of complexity results and an approximation algorithm for
phylogenetic deconvolution of bulk cancer samples. He et al (2019) define VAEs with learned structure among
latent variables.

TODO relaxed perturb-and-MAP https://arxiv.org/abs/2001.04437
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