
CSE 332: Data Structures and Parallelism

Section 5: Hashing & Sorting

0. Hash... Browns?
For the following scenario, insert the following elements in this order: 7, 9, 48, 8, 37, 57
into the table on the left. For each table, TableSize = 10, and you should use the primary
hash function h(k) = k. If an item cannot be inserted into the table, please indicate this
and continue inserting the remaining values.

Once you have inserted the elements, delete the elements in this order: 37, 7, 57, and
show what the hash table will look like after this deletion on the right table.

a)​ Linear Probing (insertion)
0 8

1 37

2 57

3

4

5

6

7 7

8 48

9 9

b)​ Linear Probing (deletion)
0 8

1 X

2 X

3

4

5

6

7 X

8 48

9 9

c)​ Separate chaining hash table - Use a linked list for each bucket. Order elements
within buckets in any way you wish.

0

1

2

3

4

5

6

7 57→37→7

8 8→48

9 9

1. Let’s Hash Out Hashing
a)​ Describe double hashing.

Solution:
The first hash function determines the original location where we should try to place the
item. If there is a collision, then the second hash function is used to determine the
probing step distance as 1*h2(key), 2*h2(key), 3*h2(key) etc. away from the original
location.

b)​ Compare open hashing and separate chaining.

Solution:
Open Hashing

●​ Deals with collisions by moving element to a different index
●​ Uses less memory
●​ Linear probing: easiest, but has primary clustering, need to resize a lot
●​ Quadratic probing: secondary clustering, will find a spot if λ < ½
●​ Double hashing: low chance of clustering, but need another hash function

Separate Chaining
●​ Deals with collisions by putting all the elements in a “bucket” at that index
●​ Easier to implement
●​ More memory because needs “bucket” data structure
●​ Average runtime for insert/delete/find: O(1 + λ)

○​ Best: O(1)
○​ Worst: O(n)

	0. Hash... Browns?
	
	
	1. Let’s Hash Out Hashing
	Solution:
	Solution:

