CSE 332: Data Structures and Parallelism

Section 5: Hashing & Sorting

0. Hash... Browns?

For the following scenario, insert the following elements in this order: 7, 9, 48, 8, 37, 57
into the table on the left. For each table, TableSize = 10, and you should use the primary
hash function h(k) = k. If an item cannot be inserted into the table, please indicate this
and continue inserting the remaining values.

Once you have inserted the elements, delete the elements in this order: 37, 7, 57, and
show what the hash table will look like after this deletion on the right table.

a) Linear Probing (insertion) b) Linear Probing (deletion)
0|8 0|8
1|37 1| X
2 |57 2 | X
3 3
4 4
5 5
6 6
7|7 7 [x
8 |48 8 |48
9|9 9|9

c) Separate chaining hash table - Use a linked list for each bucket. Order elements
within buckets in any way you wish.

7 | 57377

8 | 8—48

9 (9

1. Let’s Hash Out Hashing

a) Describe double hashing.

Solution:

The first hash function determines the original location where we should try to place the
item. If there is a collision, then the second hash function is used to determine the
probing step distance as 1*h2(key), 2*h2(key), 3*h2(key) etc. away from the original
location.

b) Compare open hashing and separate chaining.

Solution:

Open Hashing
Deals with collisions by moving element to a different index
Uses less memory
Linear probing: easiest, but has primary clustering, need to resize a lot
Quadratic probing: secondary clustering, will find a spot if A < V2
Double hashing: low chance of clustering, but need another hash function
Separate Chaining
e Deals with collisions by putting all the elements in a “bucket” at that index
e Easier to implement
e More memory because needs “bucket” data structure
e Average runtime for insert/delete/find: O(1 + A)
o Best: O(1)
o Worst: O(n)

	0. Hash... Browns?
	
	
	1. Let’s Hash Out Hashing
	Solution:
	Solution:

