
Meta Title: MVC in PHP: Master Web Development
Meta Description: Discover the power of MVC in PHP web development! Our simplified
guide will walk you through this design pattern, enhancing your web development skills.

Table of content

1.​ Introduction
2.​ Prerequisites
3.​ Step 1: Project Initialization
4.​ Step 2: Structuring the Directory
5.​ Step 3: Construction of Core Elements
6.​ Step 4: Implementing a Sample Application
7.​ PHP Array Filter
8.​ Conclusion

Mastering MVC: A Simplified Guide to PHP Web
Development

Alt: Hands on laptop keyboard, program code in foreground

PHP is a powerful scripting language particularly suited for web development. Combining it with
the MVC design pattern can yield remarkable results. This comprehensive guide outlines how to
build an MVC framework from scratch using PHP. However, remember that applying MVC in
PHP web development requires a robust understanding of both PHP and the MVC pattern.

One cannot emphasize enough how a solid comprehension of the MVC framework can skyrocket
your value as a PHP developer or even if you aim to hire PHP developers. Mastery over MVC
lends you an edge as it not only reflects in the quality of your work, but it also equips you with the
knowledge to appreciate the architecture of popular PHP frameworks like Laravel and
CodeIgniter.

Prerequisites
Before immersing into this instructive guide, it’s essential to equip yourself with some
foundational knowledge. A rudimentary understanding of PHP and its object-oriented
programming components is crucial. Additionally, getting acquainted with the PHP package
manager, Composer, will certainly be of great assistance.

Step 1: Project Initialization
Kick-start your project by establishing a new directory for it and navigating to it via the terminal:

mkdir php-mvc-framework

cd php-mvc-framework

Next, initialize a new Composer project:

composer init

The system will guide you with a series of prompts to set your project parameters. You may leave
the sections asking for dependencies blank at this juncture.

Step 2: Structuring the Directory
A well-organized directory structure is crucial for streamlined project management. For your
project, execute the following structure:

src/

 Controllers/

 Models/

 Views/

Alt: Vector man parses code as part of folders

Step 3: Construction of Core Elements

Router

Start by crafting a new file titled ‘Router.php’ in the ‘src/’ directory. This crucial file will harbor the
main routing logic of your framework.

<?php

namespace MVC;

class Router {

 protected $routes = [];

 public function addRoute($route, $controller, $action) {

 $this->routes[$route] = ['controller' => $controller, 'action'
=> $action];

 }

 public function dispatch($uri) {

 if (array_key_exists($uri, $this->routes)) {

 $controller = $this->routes[$uri]['controller'];

 $action = $this->routes[$uri]['action'];

 $controller = new $controller();

 $controller->$action();

 } else {

 throw new \Exception("No route found for URI: $uri");

 }

 }

}

Base Controller

Following that, generate a new file named ‘Controller.php’ in the ‘src/’ directory. This file will
house the base controller class, which all other controllers will extend.

<?php

namespace MVC;

class Controller {

 protected function render($view, $data = []) {

 extract($data);

 include "Views/$view.php";

 }

}

Step 4: Implementing a Sample Application

Model Creation

To begin, construct a new file termed ‘User.php’ in the ‘src/Models/’ directory. This model will
symbolize a user within your application.

<?php

namespace MVC\Models;

class User {

 public $name;

 public $email;

 public function __construct($name, $email) {

 $this->name = $name;

 $this->email = $email;

 }

}

Controller Creation

Following this, generate a new file titled ‘UserController.php’ in the ‘src/Controllers/’ directory.
This controller will regulate user-related functions.

<?php

namespace MVC\Controllers;

use MVC\Controller;

use MVC\Models\User;

class UserController extends Controller {

 public function index() {

 $users = [

 new User('John Doe', 'john@example.com'),

 new User('Jane Doe', 'jane@example.com')

];

 $this->render('user/index', ['users' => $users]);

 }

}

View Creation

Then, develop a new file named ‘index.php’ in the ‘src/Views/user/’ directory. This view will
exhibit a list of users.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>User List</title>

</head>

<body>

 <h1>User List</h1>

 <?php foreach ($users as $user): ?>

 <?= $user->name ?> (<?= $user->email ?>)

 <?php endforeach; ?>

</body>

</html>

Routing Configuration

Craft another new file titled ‘routes.php’ in the ‘src/’ directory. This file will define your
application’s routing system.

<?php

use MVC\Router;

use MVC\Controllers\UserController;

$router = new Router();

$router->addRoute('/', UserController::class, 'index');

Application Testing

Lastly, create a new file named ‘index.php’ in your project’s root directory. This file will act as the
gateway to your application.

<?php

require 'vendor/autoload.php';

$uri = $_SERVER['REQUEST_URI'];

$router = require 'src/routes.php';

$router->dispatch($uri);

For application testing, run the built-in PHP web server:

php -S localhost:8000

Visit http://localhost:8000 in your preferred web browser to view the list of users.

PHP Array Filter
In PHP web development, particularly within MVC, the "PHP array filter" function is essential.
This function is crucial for filtering and manipulating data arrays, becoming an indispensable
tool for developers.

The PHP array filter enables developers to efficiently sort through arrays, selecting elements
that fulfill certain criteria. This is particularly useful when handling large datasets or
extracting specific data from an array.

Conclusion
Following this in-depth tutorial will assist you in enhancing your PHP skills and your
understanding of the MVC design pattern. MVC’s ability to separate the application logic, data,
and presentation makes it a favorite amongst developers. With a solid understanding of MVC
frameworks, you can streamline your projects, making them more efficient and scalable.

http://localhost:8000/
https://docs.google.com/document/d/1midL5cj8ZKBrxqA8AAsH0dwk4daXpP6VjHYB2sBJp-w/edit

	Mastering MVC: A Simplified Guide to PHP Web Development
	Prerequisites
	Step 1: Project Initialization
	Step 2: Structuring the Directory
	
	
	Step 3: Construction of Core Elements
	Router
	Base Controller

	
	
	Step 4: Implementing a Sample Application
	Model Creation
	Controller Creation
	View Creation
	Routing Configuration
	Application Testing

	PHP Array Filter
	Conclusion

