var injector = new Injector (function (export) {

export.listPromiseFactory = function ($q) {

return $g.defer (function (defer) {
defer.resolve([]);

1)

}

export.MyController = function(list) {

}s

export.Foo = function(list, curry a, curry b)

1)

// fails since we need promise
injector.get ('myController');

// works returns promise
injector.get ('myControllerPromise') .then(...);

// You can ask for promise
injector.get ('listPromise') .then(...);

// You can ask for factory
injector.get ('listPromiseFactory"') ()

// You can ask for Type
injector.get ('MyControllerFactory');

Rules:
e instance: constant
instanceFactory: factory which creates constant

instance.

InstanceFactory: a curyable factory which produces instances.
InstanceFactoryPromise: a curyable factory which produces promise instances.

Built in Instances:
e Sinjector:
® StickQueue:
e $g: promise API

{1

Instance: class which when instantiated will create an instance
instancePromise: A promise which will resolve to instance
instancePromiseFactory: A factory which produces a promise which will resolve to

