
GSOC 2018 : Implement scipy.spatial.rotation

- Samyak Jain

Sub-Org Info

I am applying for GSOC’18 under the sub org Scipy of Python Software

Foundation.

Personal Information

Name Samyak Jain

Country India

Institution International Institute of Information Technology, Hyderabad

Degree B.Tech in Computer Science and Research.

Current Year 2nd

Email smkjain8@gmail.com

samyak.j@research.iiit.ac.in

Phone +91-8179658068

Time Zone UTC + 5:30 (IST)

Social Profile Github: https://github.com/samyak0210

https://www.iiit.ac.in/
mailto:smkjain8@gmail.com
https://github.com/samyak0210

About Me

I am Samyak Jain, currently studying at The International Institute of

Information Technology, Hyderabad. I am a 2nd-year student pursuing

B.Tech in Computer Science and MS in Research. I have had prior experience

with web-development making different web-apps like a model of currently

working bookmyshow and implementing a web quiz game on Ruby-on-rails. I

am good at various languages - Python, C, C++, Javascript and PHP. I am a

new open source contributor and very keen towards contributing to it.

Contributions towards SciPy

I tried to understand the various modules of scipy through solving some

issues.

● Added examples of scipy.integrate.dblquad

This PR deals with the addition of example related to double integration

in the integration module of scipy.

● Added examples of scipy.integrate.tplquad

This PR deals with the addition of example related to triple integration in

the integration module of scipy.

● Improved Docstring of various modules

This PR deals with changing variables named I, O and l (small L), as

followed by pep8/pycodestyle E741, in integrate and matlab module of

scipy.

https://github.com/samyak0210/BookMyShow
https://github.com/samyak0210/QuizGame
https://github.com/scipy/scipy/pull/8440
https://github.com/scipy/scipy/pull/8447
https://github.com/scipy/scipy/pull/8454

Why choose Scipy?

I chose to contribute to python software foundation because of my great

interest in python. I have made various projects in python - a Bomberman

game in python and a small working client-server model along with a proxy

server in python. I chose scipy as mathematics will never stop fascinating me.

I got both in a nutshell in scipy and Rotation Formalism project was quite

interesting. By contributing towards this project I will be able to learn newer

ways and algorithms to perform rotations in two and three-dimensions. I have

a good knowledge about two and three-dimensional rotations as I have

experience working with OpenGL 3.0. Also, I would love to learn new

representations of rotations apart from Euler angles like quaternions and

DCMs. Developing a new package for scipy organization will be a good

exposure for me.

Time Clash

I may not be available from 18 June to 1 July, as there is a planned vacation

trip, due to loss of any internet source. But if I could get the internet

connection, I will continue doing my project and will devote 12-15 hours per

week during those 2 weeks.

Time Commitments

I will work for 35 hours per week. But I could work more during weekends as

per the need of mentors and also cover over my time lost during the time

clash.

https://github.com/samyak0210/BomberMan-without-pygame
https://github.com/samyak0210/BomberMan-without-pygame

Proposal Title

SciPy: Rotation Formalism in 3 dimensions

This proposal is regarding the implementation of a new module Rotation in

scipy which helps to describe, apply and compose rotations.

Project Abstract

This project aims at implementing and expressing rotations in three

dimensions which are extensively used in computer vision and is a missing

module in SciPy.

There are various ways to represent a rotation- Euler angles, Quaternions,

Direction Cosines Matrices. The main part of the project is to implement

conversions between one form of representation to any other form of

representation.

Description

There are different ways to represent a rotation. The representations mostly

used are -

https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Direction_cosine

❏ Euler Angles: According to Euler's rotation theorem any rotation can be

represented using three angles. The three angles giving the three

rotation matrices are called Euler angles. (ø,ፀ,ψ) are Euler angles

representing rotations about x,y and z-axis. The rotation matrices are

multiplied to a single transformation matrix. There exists twelve possible

sequences of rotations axes which are divided into two groups :

❏ Proper Euler angles : (z-x-z, x-y-x, y-z-y, z-y-z,

x-z-x, y-x-y)

❏ Tait-Bryan angles : (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x,

y-x-z)

a. Pros: Euler angles can be extended to higher dimensions as well.

b. Cons: These do not solve the problem of “Gimbal Lock”. Also

computationally three 3x3 matrix multiplications are done for

every rotation made.

❏ Direction Cosine Matrices (DCM): The Direction Cosines of a vector

are the cosines of the angles between the vector and the three

coordinate axes. Direction cosines of the vector v (vx, vy, vz) are

represented by α,β,𝛄 is given by -

α = vx / (vx + vy + vz)

β = vy / (vx + vy + vz)

𝛄 = vz / (vx + vy + vz)

a. Pros: Computationally speaking it is quite cheap as a single 3x3

matrix multiplication occurs.

b. Cons: It doesn’t cover the edge cases and doesn’t solve the

problem of “Gimbal Lock”.

https://en.wikipedia.org/wiki/Gimbal_lock

❏ Quaternions: These are a number system that extends the complex

numbers. They are represented as -

a + bi + cj + dk

where a, b, c, and d are real numbers, and i, j, and k are the

fundamental quaternion units. Any vector v can be represented as

quaternion as (0,v) where 0 is the scalar part and v is the vector part.

a. Pros: Quaternions takes care of all edge cases of Euler angles

and solves the problem of “Gimbal Lock”. Spherical interpolation

of quaternions gives better results than interpolation of Euler

angles.

b. Cons: Due to their non-commutative nature, it becomes

mathematically tough to compute the rotation using this

representation. Talking computationally, 4x4 matrix multiplications

takes place which is quite expensive.

In this context, quaternions seem to be the best option to represent the

vectors and compute the rotation matrix.

Quaternions in 3 dimension is represented as a 4-tuple - (a,b,c,d)

Multiplication of two quaternions (a,b,c,d) and (e,f,g,h) in matrix

domain is given by -

[a -b -c -d] [e]

[b a -d c] * [f]

[c d a -b] [g]

[d -c b a] [h]

https://en.wikipedia.org/wiki/Quaternion

We can perform rotations using quaternions as follows -

v is the vector about which rotation is to be performed in 3d and is theα

angle of rotation then -

u = cos + sin * v/α/2 α/2 𝑣| |

To perform rotation of the vector q represented by (a,b,c) then the

rotated vector is given by -

u*(ai + bj + ck)*u-1

where -

i*j = k,

j*k = i,

k*i = j,

i2 = j2 = k2 = i*j*k = -1

Vector (a,b,c) can be represented as quaternion as (0,a,b,c) and

usual matrix multiplication can be used to compute the rotated vector.

Alternatively, a single transformation matrix can also be used to

compute the rotation.

The rotated vector is

q’ = Rq.q

where q is homogenized vector (a,b,c,1).

In this context to perform rotations using quaternions, I will use

numpy.array function to define the matrix and perform fast vectorized

multiplications to enhance the cost of computation.

API Structure Design

The Rotation class internal structure will use Quaternions to represent

rotations as they are easy to compute and have a simple 4-tuple

representation.

The vector to be rotated by convention is taken to be a column vector but in

certain conditions, it is given as row vector. Internally computations will be

done considering it a column vector.

Initializers

The following are the methods for initializing the rotation matrix and defining

the internal representation of the rotation -

● euler2quat(choice=’zyx’,pitch=0.0, roll=0.0, yaw=0.0):

Convert Euler form to quaternion form

Parameters -

a. choice: String

It represents about which axis the rotation needs to be performed

in sequence.

b. pitch, roll, yaw: Float

These represent the Euler angles about which the rotation

matrices are formed.

Returns normalized quaternion.

● dcm2quat(matrix=numpy.array):

Convert direction cosines matrix to quaternion 4-tuple.

Parameters -

a. matrix: numpy.array/numpy.ndarray

The direction cosines matrix can be represented as a numpy

array instance.

Returns normalized quaternion.

Converters

The Class will also have different conversion methods -

● quat2euler(): This function will return the yaw, pitch, roll (Euler

Angles) of the quaternion used internally. There will be some

problems-

○ There are two ways to represent the same rotation using

Euler angles which has to be gracefully handled.

○ The problem of “Gimbal Lock” also has to be taken care

of.

● quat2dcm(): This function will return a numpy.array instance.

The matrix will represent the direction cosines of the rotated

vector.

Class Methods

Various other class methods defined are-

● __init__(): It will initialize our class with a 4-tuple quaternion

which will be a private object of our class.

● __mul__(): Overloading the multiplication operator to define

multiplication between two quaternions.

● axis_rotate(axis=’z’,angle=0.0): The function will rotate

about the given axis with the given angle.

Parameters-

a. axis: String

This argument represents the axis about which the rotation

is to occur. It can be {‘x’,’y’,’z’}.

b. angle: Float

This argument represents the angle of rotation.

Returns normalized quaternion for internal representation.

● rotate(vector=numpy.array): The function will perform the

actual rotation between the internally computed quaternion tuple

and the vector to be rotated. The vector is assumed to be a

column vector.

Parameters-

a. vector: numpy.array/numpy.ndarray

This will be a (3,n) vector to perform rotation to all ‘n’ points

in space.

● slerp(quat1, quat2, num): It will define the interpolation

between different orientations.

Parameters-

a. quat1 , quat2: 4-tuple

The arguments represents the quaternions for interpolation.

b. num: int

It represents the number of rotations between the given

quaternions.

Returns normalized quaternion wrapped in the Rotation instance.

● random_sample(): This function will be used for uniform random

sampling of rotations.

● spline(quat, ws, we): It will perform the cubic interpolation

between the set of rotations.

Parameters-

a. quat: 4-tuple

The set of rotations represented by quaternion.

b. ws, we: float

It defines the angular rates at the end points.

● wahba_estimate(p1, p2): It will return the estimate of rotation

between the set of points.

Parameters-

a. p1, p2: numpy.array/numpy.ndarray

The set of 3 dimensional vectors to get the estimate

rotation of the given points.

Prior Available Implementations

1. Conversion Algorithms: The conversions between direction cosines,

Euler angles, quaternion and axis angles currently exists in matlab.

Functions to convert DCMs to quaternion, Euler to quaternion and

vice-versa.

2. SLERP Algorithm: Interpolations between quaternions is already

defined in matlab, quatinterp function defines quaternion interpolation

between two normalized quaternions.

These available implementations can form the basis for further

development. Increasing accuracy and correctness of the algorithms

used in the functions is a major concern here. These implementations in

matlab can be used to verify our results and improve the accuracy of

the class methods.

https://in.mathworks.com/help/aerotbx/ug/dcm2quat.html
https://in.mathworks.com/help/robotics/ref/eul2quat.html
https://in.mathworks.com/help/aerotbx/ug/quatinterp.html

Code Snippets

● __init__: Initializes the class with an arbitrary private tuple.

def __init__(self):

self._quat = tuple([0, 0, 0, 0])

● __mul__: Defines multiplication between two quaternions.

def __mul__(self, other):

a = self._quat[0]; b = self._quat[1]

c = self._quat[2]; d = self._quat[3]

e = other._quat[0]; f = other._quat[1]

g = other._quat[2]; h = other._quat[3]

q1 = np.array([

[a, -b, -c, d],

[b, a, -d, c],

[c, d, a, -b],

[d, -c, b, a]

])

q2 = np.array([e, f, g, h]).reshape((4,1))

return tuple(np.matmul(q1,q2).reshape(1,4))

● euler2quat: Conversion of Euler angles to quaternions.

def euler2quat(self, choice = 'zyx', pitch=0.0,

roll = 0.0, yaw = 0.0):

""" Implemented for a single case of zyx

Pitch, yaw, roll are in radians"""

cy = math.cos(yaw * 0.5); sy = math.sin(yaw * 0.5)

cr = math.cos(roll * 0.5); sr = math.sin(roll * 0.5)

cp = math.cos(pitch * 0.5); sp = math.sin(pitch *

0.5)

w = cy * cr * cp + sy * sr * sp

x = cy * sr * cp - sy * cr * sp

y = cy * cr * sp + sy * sr * cp

z = sy * cr * cp - cy * sr * sp

return tuple([w,x,y,z])

● quat2euler: Conversion of quaternions to Euler angles

def quat2euler(self):

w = self._quat[0]

x = self._quat[1]

y = self._quat[2]

z = self._quat[3]

a = 2.0*(w * x + y * z)

b = 1.0 - 2.0*(x**2 + y**2)

pitch = math.degrees(math.atan2(a, b))

a = 2.0 * (w * y - z * x)

a = 1.0 if a > 1.0 else a

a = -1.0 if a < -1.0 else a

roll = math.degrees(math.asin(a))

a = 2.0 * (w * z + x * y)

b = 1.0 - 2.0 * (y**2 + z**2)

yaw = math.degrees(math.atan2(a, b))

return [pitch,roll,yaw]

Timeline

Dates Work to be done

Community Bonding Phase

Week-1

April 24 - May 1

● Interaction with the mentors discussing about the

meetings.

● Discussion about weekly updates.

Week-2

May 2 - May 9

● Complete setup of scipy(if anything extra is

required) and of the blog as per the mentor.

Week-3

May 10 - May 17

● Finalising the design with the mentors.

● Gain more knowledge about Euler angles, DCMs,

and quaternions.

● Also focus more on the various conversion

algorithms available.

Coding Phase - I

Week-4

May 18 - May 24

● Rotation class will be initialized with all the required

parameters after discussing it with the mentors.

● Rotations will be defined internally as quaternions.

~ Week-5

May 25 - May 31

● Implement initializing methods for the Rotation

class.

● Implement __mul__, rotate methods for the class.

● Add tests, examples, and docstrings.

Week-6

June 1 - June 7

● Read about conversion algorithms for converting

Euler angles to/from quaternion.

● Implement quat2euler , euler2quat functions for

conversion of quaternion to/from euler.

● Add tests, examples, and docstrings.

~Week-7 ● Read about conversion algorithms for converting

June 8 - June 13 DCMs to/from quaternion.

● Implement quat2dcm , dcm2quat functions for

conversion of quaternion to/from DCMs.

● Add tests, examples, and docstrings.

June 14 - June 17 ● Buffer period

● Discuss the project status with the mentor for the

first evaluation.

Week 8,9

June 18 - July 1

● Buffer period.

● Planned vacation trip.

Coding Phase - II

~Week 10

July 2 - July 8

● Implement axis_rotate function to define rotations

about a given axis.

● Add tests, examples, and docstrings.

July 9 - July 12 ● Buffer period.

● Discuss the project status with the mentor for the

second evaluation.

Week 11

July 13 - July 19

● Have a thorough reading about the SLERP

algorithm and uniform random sampling of rotations.

● Implement the slerp and random_sample.

● Add tests, examples, and docstrings.

Week 12

July 20 - July 27

● Implement the wahba_estimate to estimate rotation

between two quaternions..

● Add tests, examples, and docstrings

Week 13

July 28 - August 3

● Implement spline using cubic spline interpolation.

● Add tests, examples, and docstrings.

Integration Phase

https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

~ Week 14

August 4 - August 10

● Refactor the code according to current PEP8

codestyle , final integration of the code.

● Compatibility testing with other modules.

● Updating docstrings, adding more examples at the

integration phase.

● Final evaluation of the code with the mentors and

code submission.

References

1. https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

2. https://en.wikipedia.org/wiki/Quaternion#Matrix_representations

3. Understanding Various Rotation Formalisms in 3 dimensions

4. https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

5. https://en.wikipedia.org/wiki/Gimbal_lock

6. https://matthew-brett.github.io/transforms3d/

7. http://qspline.sourceforge.net/qspline.pdf

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Quaternion#Matrix_representations
https://hal9k.ifsc.usp.br/~smaira/Gradua%C3%A7%C3%A3o/8%C2%BA%20Semestre/Maple/Aulas/Rotation-formalisms-in-three-dimensions.pdf
https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp
https://en.wikipedia.org/wiki/Gimbal_lock
https://matthew-brett.github.io/transforms3d/
http://qspline.sourceforge.net/qspline.pdf

