3-D Performance Assessment

Performance Expectation: **HS-PS1-2**Grade Level: **High School**

Title	Metal in the Fish Tank							
Designed by	Cookie, Kate, Tim, Sonal & Ashley Course(s) Chemistry							
Performanc Expectation								
Science and Engineering Practice								
Disciplinary Core Ideas	·							
Crosscutting Concept	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. 							
Student Performance	1. Articulating the explanation of phenomena 2. Evidence 3. Reasoning							

4. Revising the explanation

Performance Assessment

Phenomenon

Your friend steals a piece of Aluminum from the chem lab and tells you to put in Ms. Barker's fish tank because "it reacts just like Sodium, since they are both metals."

Stimulus

Video of Sodium in pond

https://www.youtube.com/watch?v=NTFBXJ3Zd_4

Period 3 Bohr Diagrams

Periodic Table

hydrogen	· · · · ·		2350	10500	1050	::0	1.858	-6	11852	6.75	6750	(1 	0.70		656	(20)	60 0	helium 2
Ĥ																		He
1.0079																		4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
1.1	Be												В	C	N	O	F	Ne
													1100-000		1.17407.0441.	100-00	1.1340	
6.941 sodium	9,0122 magnesium											-1	10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20,180 argon
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	Р	S	CI	Ar
22.990	24.305					T							26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
						1 - M												
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
				100000000000000000000000000000000000000				100	.00000000000000000000000000000000000000	1750000000000		1.00	300000000000000000000000000000000000000	110000000000000000000000000000000000000				
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver 47	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78,96 tellurium	79.904 lodine	83.80 xenon
39.098 rubidium 37 Rb 85.468	40.078 strontium 38 Sr 87.62		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224	50.942 niobium 41 Nb 92.906	51.996 molybdenum 42 Mo 95.94	54.938 technetium 43 TC [98]	55.845 ruthenium 44 Ru 101.07	58.933 rhodium 45 Rh 102.91	58.693 pallaclium 46 Pd 106.42	63.546 silver 47 Ag 107.87	65.39 cadmium 48 Cd 112.41	69.723 indium 49 In 114.82	72.61 tin 50 Sn 118.71	74.922 antimony 51 Sb 121.76	78.96 tellurium 52 Te 127.60	79.904 lodine 53	83.80 xenon 54 Xe 131.29
39.098 rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium	57-70	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	55.845 ruthenium 44 Ru 101.07 osmium	58.933 rhoclium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 lodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55	40.078 strontium 38 Sr 87.62 barium 56	57-70	44.956 yttrium 39 Y 88.906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75	55.845 ruthenium 44 Ru 101.07 osmium 76	58,933 rhodium 45 Rh 102,91 iridium 77	58.693 palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82	72.61 tin 50 Sn 118.71 lead 82	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs	strontium 38 Sr 87.62 barium 56 Ba	57-70 *	44.956 yttrium 39 Y 88.906 lutetium 71 Lu	47.867 zirconium 40 Zr 91.224 hafnlum 72 Hf	50.942 niobium 41 Nb 92.906 tantalum 73 Ta	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75 Re	ruthenium 44 Ru 101.07 osmium 76 Os	58.933 rhodium 45 Rh 102.91 iridium 77	pallaclium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79 Au	65.39 cadmium 48 Cd 112.41 mercury 80 Hg	69,723 indium 49 In 114.82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 l 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33	1. milk) 1. milkon	44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hatmium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95	51.996 molybdenum 42 MO 95.94 tungsten 74 W 183.84	54.938 technetium 43 TC [98] rhenium 75 Re 186.21	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22	58,693 palladium 46 Pd 106,42 platinum 78 Pt 195,08	63.546 silver 47 Ag 107.87 gold 79 Au 196.97	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59	69,723 Indium 49 In 114,82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs	strontium 38 Sr 87.62 barium 56 Ba	1. milk) 1. milkon	44.956 yttrium 39 Y 88.906 lutetium 71 Lu	47.867 zirconium 40 Zr 91.224 hafnlum 72 Hf	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75 Re	ruthenium 44 Ru 101.07 osmium 76 Os	58.933 rhodium 45 Rh 102.91 iridium 77	pallaclium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79 Au	65.39 cadmium 48 Cd 112.41 mercury 80 Hg	69,723 indium 49 In 114.82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 l 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 CS 132.91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	× 89-102	44.956 yttrium 39 Y 88.906 lutettum 71 Lu 174.97 lawrenctum 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	technetium 43 TC [98] rhenium 75 Re 186.21 bohrium 107	55,845 ruthenium 44 Ru 101,07 osmium 76 Os 190,23 hassium 108	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meltnerium 109	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununlum 111	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 l 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrendum	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	technetium 43 TC [98] rhenium 75 Re 186.21 bohrium	55,845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meltnerium	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununlum	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thailium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 l 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn

 * Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Prompt
Describe the mechanism that causes the sodium to behave the way it did in the video.
Mechanism
Sodium Atom + Water Explosion!!
2. a. Name another element that shares the same outer electron state as sodium.
b. Describe its reactivity compared to sodium.
3. Explain to your friend, in terms of patterns of subatomic particles, why sodium and aluminum have different chemical properties. Use evidence from the models in the stimulus to support your answer.
Pattern: Evidence:

	Assessment Rubric* - Question 1									
	Emerging	Developing	Approaching Proficiency	Excelling						
Description of performance										
Sample student responses										

	Assessment Rubric* - Question 2								
	Emerging	Developing	Approaching Proficiency	Excelling					
Description of performance									
Sample student responses									

*Assessment rubric adapted from the Stanford NGSS Assessment Project http://snapgse.stanford.edu/ 'Wiggins, G. P. (1993). Assessing student performance. San Francisco: Jossey-Bass Publishers.