
MultiPlayer Rock Paper Scissors on FireBaseDB
2/26/2016
Abe Getzler

The objective of this exercise is to test FireBase DB’s suitability as an AI2 vehicle to run a
multiplayer game like Rock Paper Scissors (Rochambeau).

MultiPlayer Rock Paper Scissors on FireBaseDB

GameTypes
Design methodology
Server contents:

PlayerNames
Matches
FireBaseDB Tags and Subtags

TinyDB tags
App Dialogs

Initialization
globals

Screen1.Initialize
flush_all_fdbs
set_PlayerID
get_PlayerID

Status header: current playerID, newsfeed, selected matchID,
Player Login Designer

Login / Register
Designer Dialog for Registering
btnRegister.Click

scrub procedure
fdbGetLogin.GotValue
new_PlayerID
log_signin
login date tag values
btnHideRegister

Menu button

HaveGames
Designer Menu arrangement
btnMyGames.Click
lpkSelectGame.BeforePicking
lpkSelectGame.AfterPicking
Reference: setMatchID
btnJoin.Click

fdbGetAllPending.GotValue
lvwJoinGame.AfterPicking

btnNewGame.Click
Running Matches awaiting your move
Running matches awaiting other player moves
Join a pending match

Monitor a match
fdbGameMonitor.GotValue
fdbGameMonitor.DataChanged

showJSONmatch
summary

clause
playByPlay

extract_players
rounds
get_winning_moves

round
announce_round
announce_incomplete_round

ItsMyMove
didHePlay

announce_complete_round
whatDidHePlay

judge
Rules

Rules - RPS
Rules - RPSSL

Initiate a match
select game type, target rounds, target wins

Designer layout - Initiate a match
Designer components - Initiate a match
Select a Game Type

Game Type List Picker blocks
Game Type Blurb Lookup

Generating a unique gameID for a new game
createMatchID
yyyyMMDDhhmmss
setMatchID

matchBucket
getMatchID

Saving a pending match to FireBaseDB
pendingMatchfdbKey
hostMatchFDBKey
putPendingMatch
putHostMatch
btnInitiate

putPendingMatch
joinMatch

add_game
hostMatchfdbKey

hostPID
fdbPostJoin.GotValue

enoughPlayers
matchJoined
alertPlayers
alertPlayer

make first move
Review closed matches
quit

GameTypes
○​ RPS

■​ name: “Rock Paper Scissors”
■​ blurb
■​ moves : [Rock, Paper, Scissors]
■​ winning moves

●​ Rock
○​ Scissors : crushes

●​ Paper
○​ Rock : covers

●​ Scissors

○​ Paper : cuts
○​ RPSSL

■​ name: “Rock Paper Scissors Spock Lizard”
■​ blurb
■​ moves : [Rock, Paper, Scissors, Spock, Lizard]]
■​ winning moves

●​ Rock
○​ Scissors : crushes
○​ Lizard: crushes

●​ Paper
○​ Rock : covers
○​ Spock: disproves

●​ Scissors
○​ Paper : cuts
○​ Lizard : decapitates

●​ Spock
○​ Scissors : smashes
○​ Rock : vaporizes

●​ Lizard
○​ Paper : eats
○​ Spock : poisons

Game Types could be kept on the server, to allow for new game types being introduced from the
server side. (Not implemented yet.)

Design methodology
To avoid conflicts from simultaneous updates; we will try to follow these rules on the server side

●​ never store summaries (counts, maxima, sums, analyses)
●​ never update anything in place unless you own it and no one else reads it.
●​ never keep lists, only subtags.
●​ only insert.

Also, because a FirebaseDB query with a unique tag will return as a value the JSON of
everything under that tag (but not the tag), we will include a duplicate of the unique parent ID
under the subtag ID, to make it accessible through the lookup-in-pairs block.

http://www.samkass.com/theories/RPSSL.html

Server contents:

PlayerNames
○​ Player name (unique, scrub blanks and quotes)

●​ ID : playerID
●​ last login datetime
●​ current match ID
●​ challenge question (not yet implemented)
●​ answer (not yet implemented)
●​ newsfeed

○​ matchID1 : last move YYYYMMDDHHmmss
○​ matchID2 : last move YYYYMMDDHHmmss

●​ matches
○​ match ID YYYYMMDDHHmmss-Initiator

■​ matchID : matchID (duplicated for convenience in
JSON extract handling)

■​ game type
■​ target rounds : 3
■​ target players : 2
■​ players

●​ player 1 ID : true
●​ player 2 ID : true
●​ ...

■​ current round : 3
■​ last move YYYYMMDDHHmmss (for cleanup)
■​ rounds

●​ 1
○​ player 1 ID: move
○​ player 2 ID: move

●​ 2
○​ player 1 ID: move
○​ player 2 ID: move

●​ …

○​ ...

Players get to choose their own name, mirrored in TinyDB. Names must be registered on the
FireBaseDB server to insure uniqueness. The challenge question and answer are filled in at

registration time to allow the player to reclaim his Player Name into TinyDB on a new device
without being rejected as a duplicate on the server side.

Players get to play multiple matches simultaneously, since opponents might be scattered
world-wide.

(TODO: The newsfeed system might be unnecessary, if players monitor their current game
directly in its host player subtree.)

To allow each player to have to monitor only one FirebaseDB key, the newsfeed subkey of
each player ID has subkeys for each match that might require his attention. Other players’ apps
insert match IDs and last move timestamps into the news feeds of their opponents after they
make moves, to trigger opponents’ Data Changed events. This is a broadcast model.

Matches
●​ pending

■​ match ID YYYYMMDDHHmmss-Initiator
●​ game type (RPS/RPSSL)
●​ target rounds : 3
●​ target players : 2
●​ players

○​ player 1 ID : true
○​ ...

●​ ...
●​ running

○​ match ID YYYYMMDDHHmmss-Initiator : true
○​ match ID YYYYMMDDHHmmss-Initiator : true
○​ ...

There are two legs to the Matches branch: pending and running, of interest to people who want
to join or watch a match, respectively.

Match IDs are designed to insure uniqueness (no guids are available), for chronological
cleanup, and for possible filtering by initiator player ID. Pending matches do not yet have the
required minimum number of players to start. Once a pending match has enough players, the
app of the last player to join transfers it to the Running section and removes it from the Pending
section.
Once a match completes, the last player to move removes it from the running branch.

The Initiator of a match stores the match information under his PlayerID, and he and the other
Players insert their moves into that match tree as the game progresses, and monitor that
subtree if they are playing or watching that match.

FireBaseDB Tags and Subtags

To allow FirebaseDB to return JSON strings for tags with subtags (/ separator),
we have to exclude spaces from our Firebase tags. Here I have used underscores and
CamelCase to highlight the words in my tags.

TinyDB tags
●​ CURRENTPLAYERID
●​ CURRENTMATCHID
●​ MATCHES - a list of this owner’s matchIDs, hosted or not

App Dialogs

Initialization

globals

Screen1.Initialize

At Initialization time, we want to show the current PlayerID from TinyDB. If there isn’t one, show
the Registration fields. We need to save the base FirebaseDB project bucket so that we can
extend it later for newsfeed monitoring.
References: set_PlayerID, flush_all_fdbs

flush_all_fdbs

set_PlayerID

This user’s PlayerID is kept in TinyDB. If there is no PlayerID available, expose the Register
Horizontal Arrangement.

get_PlayerID

Status header: current playerID, newsfeed, selected matchID,

Player Login Designer

Login / Register

Designer Dialog for Registering

btnRegister.Click

scrub procedure

Anything that isn’t an upper or lower case letter or number is replaced with ‘_’.

Registering a new PlayerID is a two phase process. All PlayerIDs are trimmed of trailing blanks,
and retrieved from the PlayerNames branch of FirebaseDB.

fdbGetLogin.GotValue

If the returned PlayerID from FireBaseDB is blank, it’s a new ID, so we proceed to add it using
procedure new_PlayerID. Otherwise we alert the user.

new_PlayerID

Player IDs are stored as subtags under a constant FireBaseDB tag, the global
PlayerNames_FDB_TAG. The “/” starts a new JSON subtree . The “true” value is a place
holder, to be replaced by subfields later on.

The new PlayerID is taken as the current one, in TinyDB and through procedure log_signin.

References: log_signin, set_PlayerID.

log_signin

A last_login_date datetime value is kept to allow tracking and cleanup of dead PlayerIDs.

login date tag values

All tags, both TinyDB and FireBaseDB, are accessed through global variables, to avoid typos
and to take advantage of typeblocking at block edit time.

btnHideRegister

A Hide button in the Register Arrangement allows the user to hide it until he requests a new
PlayerID.

Menu button

If the user hasn’t yet picked a Player Name, he can’t ask for his running games, join a pending
game, or start a new game. The Menu button exposes a Vertical Arrangement with more action
buttons. References: get_PlayerID, HaveRunningGames.

HaveGames

The My Running Games button is disabled if the player has no running games. Since a list is
expected, we return a default value of an empty list.

Designer Menu arrangement

btnMyGames.Click

lpkSelectGame.BeforePicking

lpkSelectGame.AfterPicking

Reference: setMatchID

btnJoin.Click

The Menu Join button does not itself do a join. It prompts FirebaseDB for a list of pending
matches that he can select from and join.

fdbGetAllPending.GotValue

When Firebase comes back with the JSON tree of all pending games, we decode the JSON and
load it into a ListView, and make it visible for selection. The Web1.JSONTextDecode block is
explained at the MIT web site,
http://ai2.appinventor.mit.edu/reference/components/connectivity.html#Web and also see this
link for how to navigate a tree: http://ai2.appinventor.mit.edu/reference/other/xml.html.

http://ai2.appinventor.mit.edu/reference/components/connectivity.html#Web
http://ai2.appinventor.mit.edu/reference/other/xml.html

lvwJoinGame.AfterPicking

A ListView Selection is forced to be text, so it has to be split and stripped to extract the gameID.
References: joinMatch, get_PlayerID.

btnNewGame.Click

Running Matches awaiting your move
○​ view completed rounds
○​ make your move for the current round

Running matches awaiting other player moves
○​ refresh button

Join a pending match
○​ view pending matches by type
○​ select a match

○​ join the match

Monitor a match

fdbGameMonitor.GotValue

fdbGameMonitor.DataChanged

showJSONmatch

Called by: fdbGameMonitor.GotValue, fdbGameMonitor.DataChanged.

References: summary, playByPlay, getMatchID.

summary

Called by: showJSONmatch.
References: clause.

clause

A game summary consists of series of clauses, each with its own subkey of a match tree and a
description.

Called by: summary.

playByPlay

Called by: showJSONmatch.
References: extract_players,

extract_players

Called by: playByPlay.

rounds

Called by: playByPlay

get_winning_moves

Called by: playByPlay.

round

Called by: playByPlay.

announce_round

Called by: playByPlay.

announce_incomplete_round

Called by: playByPlay.

ItsMyMove

Called by: announce_incomplete_round

didHePlay

Called by: announce_incomplete_round

announce_complete_round

Called by: announce_round

whatDidHePlay

Called by: announce_complete_round

judge

Called by: announce_complete_round

Rules

Rules - RPS

Rules - RPSSL

Initiate a match

select game type, target rounds, target wins

Designer layout - Initiate a match

Designer components - Initiate a match

Select a Game Type

Game Type List Picker blocks

Game Type Blurb Lookup

Game Type blurbs tell the moves in English. They are stored with the rules for each game type
in a list of pairs structure designed for use with the lookup in pairs block.

The Blurb lookup is packaged in a value procedure, because it will probably happen again when
it’s time to choose a move. Notice how the lookup proceeds in opposite order (inner to outer) to
the nesting of the lookup table (Rules).

Generating a unique gameID for a new game

(See createMatchID)

For lack of a proper guid provider, we use a sortable datetimestamp combined with the current
PlayerID, which should be unique.

We will use this as the new current match ID, accessed through set and get procedures:

createMatchID

yyyyMMDDhhmmss

setMatchID

To set the current match, we update TinyDB, identify it on the Text of it ListPicker, and set the
project bucket of the FirebaseDB Game Monitor to watch the match in its owner’s matches area.

matchBucket

This bucket value homes in our db monitor to the current match.

getMatchID

Saving a pending match to FireBaseDB

pendingMatchfdbKey

The pending matches FireBaseDB path, based on RPSSL.

hostMatchFDBKey

This assumes a base bucket of RPSSL.

putPendingMatch

For each pending match, we store its game type, target rounds, and target players, all under its
matchID in the Matches/pending/ branch. references: pendingMatchfdbKey

putHostMatch

references: hostMatchFDBKey

btnInitiate

A pending match is stored temporarily in the Matches/pending section as well as under the
matches subsection of the initiating player. References: getMatchID, createMatchID,
putPendingMatch, putHostMatch, get_PlayerID, joinMatch

putPendingMatch

References: pendingMatchfdbKey

joinMatch

Joining a match is done both at the pending match section and at the home copy of the match
under the originating player, and in TinyDB1 tag MATCHES. After joining the match, we double
check if the match has enough players to commence in fdbPostJoin.GotValue.
References: pendingMatchfdbKey, hostMatchfdbKey, add_game

add_game

This adds a matchID to the app’s TinyDB list of matches, for display in the matchID list picker.

hostMatchfdbKey

Reference:
hostPID

hostPID

The host player ID of a match is kept after the “-” in the matchID.

fdbPostJoin.GotValue

After joining a match, the match is checked if it has enough players to start its first round. The
newly looked up match is gotten from Firebase as the entire JSON string under the joined
pending matchID. The JSON is decoded into a tree rooted at the matchID. If enough players
have joined the match, the pending match is erased from the Matches/pending leg, and added
to the Matches/running leg for people who want to watch matches in progress. All the players in
this match are alerted by updating their newsfeed timestamp for this match. References:
enoughPlayers, matchJoined , alertPlayers,

enoughPlayers

matchJoined

alertPlayers

alertPlayer

This serves to alert a player by inserting a matchID and timestamp into his newsfeed.

make first move

Review closed matches
○​ delete closed matches

quit

	MultiPlayer Rock Paper Scissors on FireBaseDB
	
	GameTypes
	
	Design methodology
	Server contents:
	PlayerNames
	
	Matches
	FireBaseDB Tags and Subtags

	TinyDB tags
	TinyDB Tags.png

	
	App Dialogs
	Initialization
	globals
	Screen1.Initialize
	flush_all_fdbs
	set_PlayerID
	get_PlayerID

	Status header: current playerID, newsfeed, selected matchID,
	Player Login Designer

	
	Login / Register
	Designer Dialog for Registering
	
	
	btnRegister.Click
	scrub procedure

	fdbGetLogin.GotValue
	
	new_PlayerID
	log_signin
	login date tag values
	btnHideRegister

	Menu button
	HaveGames
	Designer Menu arrangement
	
	
	btnMyGames.Click
	lpkSelectGame.BeforePicking
	lpkSelectGame.AfterPicking
	Reference: setMatchID
	
	btnJoin.Click
	fdbGetAllPending.GotValue
	lvwJoinGame.AfterPicking

	btnNewGame.Click
	

	Running Matches awaiting your move
	Running matches awaiting other player moves
	Join a pending match
	
	

	Monitor a match
	fdbGameMonitor.GotValue
	fdbGameMonitor.DataChanged
	showJSONmatch
	summary
	clause

	playByPlay
	extract_players
	rounds
	get_winning_moves
	round
	round.png

	announce_round
	announce_incomplete_round
	ItsMyMove
	didHePlay

	announce_complete_round
	whatDidHePlay

	judge
	Rules
	Rules - RPS
	Rules - RPSSL

	Initiate a match
	select game type, target rounds, target wins
	Designer layout - Initiate a match
	Designer components - Initiate a match
	Select a Game Type
	
	Game Type List Picker blocks
	Game Type Blurb Lookup

	Generating a unique gameID for a new game
	createMatchID
	
	yyyyMMDDhhmmss
	setMatchID
	matchBucket

	getMatchID

	Saving a pending match to FireBaseDB
	pendingMatchfdbKey
	hostMatchFDBKey
	putPendingMatch
	putHostMatch
	btnInitiate

	putPendingMatch
	joinMatch
	add_game
	hostMatchfdbKey
	hostPID

	fdbPostJoin.GotValue
	enoughPlayers
	matchJoined
	alertPlayers
	alertPlayer

	make first move

	Review closed matches
	quit

