MultiPlayer Rock Paper Scissors on FireBaseDB

2/26/2016
Abe Getzler

The objective of this exercise is to test FireBase DB’s suitability as an Al2 vehicle to run a
multiplayer game like Rock Paper Scissors (Rochambeau).

MultiPlayer Rock Paper Scissors on FireBaseDB

GameTypes
Design methodology

Server contents:
PlayerNames
Matches
FireBaseDB Tags and Subtags

TinyDB tags
App Dialogs
Initialization
globals
Screeni.Initialize
flush_all_fdbs

set_PlayerlD
get PlayerlD
Status header: current playerlD, newsfeed, selected matchID,
Player Login Designer
Login / Regqister
Designer Dialog for Registering
btnReqister.Click
scrub procedure
fdbGetlogin.GotValue
new_PlayerlD
log_signin
login date tag values

btnHideReqister
Menu button

HaveGames
Designer Menu arrangement
tnM mes.Click

IpkSelectGame.BeforePicking

IpkSelectGame.AfterPicking
Reference: setMatchID

tnJdoin.Click

fdbGetAllPending.GotValue
IvwJoinGame.AfterPicking
btnNewGame.Click
Running Matches awaiting your move
Running matches awaiting other player moves

Join a pending match
Monitor a match

f meMonitor.GotVal
fdbGameMonitor.DataChanged
showJSONmatch
summary
clause
playByPlay
extract_players
rounds
get_winning_moves
round
announce_round

announce_incomplete round

[tsMyMove
didHePlay

announce_complete round
whatDidHePlay

Rules
Rules - RPS
Rules - RPSSL

Initiate a match
select game type, target rounds, target wins

Designer layout - Initiate a match
Designer components - Initiate a match

lect me T

Game Type List Picker blocks
Game Type Blurb Lookup

neratin ni melD for a new gam
createMatchID
yvyvyMMDDhhmmss
setMatchID
matchBucket
getMatchID
Saving a pending match to FireBaseDB
pendingMatchfdbKey
hostMatchFDBKey
putPendingMatch
putHostMatch
btninitiate
putPendingMatch
joinMatch
add_game
hostMatchfdbKey
hostPID
fdbPostJoin.GotValue
enoughPlayers
matchJoined
alertPlayers

alertPlayer
make first move

Review closed matches

quit
GameTypes
o RPS

m name: “Rock Paper Scissors”

m blurb

m moves : [Rock, Paper, Scissors]

® winning moves
e Rock

o Scissors : crushes

e Paper

o Rock : covers
e Scissors

o Paper: cuts
o RPSSL
m name: “Rock Paper Scissors Spock Lizard”
m blurb
m moves : [Rock, Paper, Scissors, Spock, Lizard]]
® winning moves
e Rock
o Scissors : crushes
o Lizard: crushes
e Paper
o Rock : covers
o Spock: disproves
e Scissors
o Paper: cuts
o Lizard : decapitates
e Spock
o Scissors : smashes
o Rock : vaporizes
e Lizard
o Paper: eats
o Spock : poisons

Game Types could be kept on the server, to allow for new game types being introduced from the
server side. (Not implemented yet.)

Design methodology

To avoid conflicts from simultaneous updates; we will try to follow these rules on the server side

never store summaries (counts, maxima, sums, analyses)

never update anything in place unless you own it and no one else reads it.
never keep lists, only subtags.

only insert.

Also, because a FirebaseDB query with a unique tag will return as a value the JSON of
everything under that tag (but not the tag), we will include a duplicate of the unique parent ID
under the subtag ID, to make it accessible through the lookup-in-pairs block.

http://www.samkass.com/theories/RPSSL.html

Server contents:

PlayerNames

o Player name (unique, scrub blanks and quotes)

ID : playerlD
last login datetime
current match ID
challenge question (not yet implemented)
answer (not yet implemented)
newsfeed
o matchID1 : last move YYYYMMDDHHmMmMss
o matchID2 : last move YYYYMMDDHHmMmss
matches
o match ID YYYYMMDDHHmMmss-Initiator
m matchID : matchlD (duplicated for convenience in
JSON extract handling)
game type
target rounds : 3
target players : 2
players
e player 11D : true
e player2ID : true

[J
current round : 3
last move YYYYMMDDHHmMmss (for cleanup)

rounds
o 1
player 1 ID: move
player 2 ID: move
o 2

player 1 ID: move
player 2 ID: move

Players get to choose their own name, mirrored in TinyDB. Names must be registered on the
FireBaseDB server to insure uniqueness. The challenge question and answer are filled in at

registration time to allow the player to reclaim his Player Name into TinyDB on a new device
without being rejected as a duplicate on the server side.

Players get to play multiple matches simultaneously, since opponents might be scattered
world-wide.

(TODO: The newsfeed system might be unnecessary, if players monitor their current game
directly in its host player subtree.)

To allow each player to have to monitor only one FirebaseDB key, the newsfeed subkey of
each player ID has subkeys for each match that might require his attention. Other players’ apps
insert match IDs and last move timestamps into the news feeds of their opponents after they
make moves, to trigger opponents’ Data Changed events. This is a broadcast model.

Matches
e pending
m match ID YYYYMMDDHHmMmss-Initiator
game type (RPS/RPSSL)
e targetrounds:3
e target players: 2
e players
o player 11D :true
O
[]
e running

o match ID YYYYMMDDHHmmss-Initiator : true

o match ID YYYYMMDDHHmmss-Initiator : true

o ..
There are two legs to the Matches branch: pending and running, of interest to people who want
to join or watch a match, respectively.

Match IDs are designed to insure uniqueness (no guids are available), for chronological
cleanup, and for possible filtering by initiator player ID. Pending matches do not yet have the
required minimum number of players to start. Once a pending match has enough players, the
app of the last player to join transfers it to the Running section and removes it from the Pending
section.

Once a match completes, the last player to move removes it from the running branch.

The Initiator of a match stores the match information under his PlayerID, and he and the other
Players insert their moves into that match tree as the game progresses, and monitor that
subtree if they are playing or watching that match.

FireBaseDB Tags and Subtags

To allow FirebaseDB to return JSON strings for tags with subtags (/ separator),
we have to exclude spaces from our Firebase tags. Here | have used underscores and
CamelCase to highlight the words in my tags.

initialize global [
initialize global [
initialize global
initialize global |
initialize global |
initialize global [

initialize global [

initialize global [

initialize global

initialize global [Jto [° :

TinyDB tags

e CURRENTPLAYERID
CURRENTMATCHID
MATCHES - a list of this owner’s matchIDs, hosted or not

initialize global | JGNE CURRENTMATCHID N

initialize global | LN CURRENTPLAYERID i

initialize global | NG MATCHES

App Dialogs

Initialization

globals

Screen1.Initialize

when Initialize

call
“1 global Bucket - | I fdbPutLogin - J§
call
set : to

« |l getMatchlD ~

At Initialization time, we want to show the current PlayerID from TinyDB. If there isn’t one, show
the Registration fields. We need to save the base FirebaseDB project bucket so that we can
extend it later for newsfeed monitoring.

References: set PlayerlID, flush all fdbs

flush_all_fdbs

do | call Unauthentic ate
call [EEEREETT RS -Unauthenticate
call [REEEINMGE] -Unauthenticate

call _Unauthentic ate

call [REFTIGHIE] - Unauthenticate
call _Unauthenticate

call GRS Unauthenticate
b

set_PlayerID

1 ey harRegister - Ji Visible - G
LS.

This user’s PlayerID is kept in TinyDB. If there is no PlayerID available, expose the Register
Horizontal Arrangement.

get_PlayerID

B &) get PlayerlD

result w1l TiInyDB1 ~ e VEITS
=BG 8 global CURRENTPLAYERID_TAG -

valuelfTagMotThere

Status header: current playerlD, newsfeed, selected matchiD,

Player Login Designer

i MIT App Inventor 2 Projects - Connect- Build- Help~ My Projects ~ Guide Reportanissue English- agetzler@gmail.com -
o= Beta

Palette Viewer Components Properties
User Interface Upisplay hidden components in Viewer =] Sereenl fdbPutLogin
Button 5 Check to see Preview on Tablet size. 2 [Hvarbialogs FirebaseToken
L] ’
1] TextBox 7 R e harHeader yJhbGeiOW Uzl NilsinRS
ock Paper Scissors =l ipkplayerip
= \Listview 0 HAREE FirehaseURL
=l IpkselectGame
DEFAULT
DatePicker 7 Login Waiting © Pramegister
#lUse Default
TimePicker z Register Hide L txtNewPlayerlD
7 ProjectBucket
&/ CheckBox Z = btnRegister - : N
ack_Pager_
A] Label 7 —btnHideRegister
ListPicker 7 = TinyDB1
8 fdbget
Wil Slider 7 tkogin
8 fdbPutLogin
%+ PasswordTextBox 7 A :
A Notifier1
/b, Notifier 7 3 Clockl
Image 7
) WebViewer 0
Spinner 7
Layout
Media Rename Delete
¥ 3
= harHeader

Rock Paper Scissors = IpkPlayerlD

Logi Waii =l IpkSelectGame
ogin aiting
B [harRegister

Register Hide L ltxtNewPlayerlD

— btnRegister

— btnHideRegister

btnRegister.Click

when Click

o R txtNewPlayerlD - i Text - IURENE ccrub - Lo MR L txtNewPlayeriD - B Text -

call GetValue
tag IE:H join =18 global PlayerNames FDB TAG -

txtNewPlayerlD - &

valuelfTagNotThere

scrub procedure

result [(@] initialize local fE) to | “
inialize local G to |~ “@7
intialize local (S)to | @

in

40 | foreach ([from | 'g) | o length | get (D | by | @

do | set BB | segment text get- start getm- length

set A o || (o) join |} get (LD
T contains text get REICES
piece || get (8
then | get BB

S

result | get

Anything that isn’t an upper or lower case letter or number is replaced with * .

Registering a new PlayerlID is a two phase process. All PlayerlDs are trimmed of trailing blanks,
and retrieved from the PlayerNames branch of FirebaseDB.

fdbGetLogin.GotValue

=1l fdbGetlLogin ~ EVAEINE
tag value

do | [of if compare texis | get (E=RS SN0 ‘@

S N new PlayeriD - RUDIE ttNewPlayerlD - B Text «
||l set PlaverlD -
| S—

else call ShowMessageDialog
message | (@l join | get (EEED

title
buttonText

If the returned PlayerID from FireBaseDB is blank, it's a new ID, so we proceed to add it using
procedure new_PlayerID. Otherwise we alert the user.

new_PlayerlD

@R new PiayerD) oD

V=l fdbPutlogin = ESIGIETETS
tag BN +=8 global PlayerNames FDB TAG -
o b

valueToStore | LIRS

call QLIRS StoreValue
= MBS global CURRENTPLAYERID TAG -
valueToStore | get [HDES

=W log_signin - Jo Nl =4 piD -
v ||l set PlayerlD -

Player IDs are stored as subtags under a constant FireBaseDB tag, the global
PlayerNames_FDB_TAG. The “/” starts a new JSON subtree . The “true” value is a place
holder, to be replaced by subfields later on.

The new PlayerlD is taken as the current one, in TinyDB and through procedure log_signin.

References: log signin, set PlayerID.

log_signin

A last_login_date datetime value is kept to allow tracking and cleanup of dead PlayerIDs.

pid

||l fdbPutlogin - EEIGEENS
tag | (@l join +=d global PlayerNames FDB TAG -

=1 global last_login_date FDB TAG -
valueToStore o=l yyyyMMDDhhmmss -

login date tag values

T PlayerNames_FoB_1AG [JMEl PeyerNames |

All tags, both TinyDB and FireBaseDB, are accessed through global variables, to avoid typos
and to take advantage of typeblocking at block edit time.

btnHideRegister

=18 btnHideRegister - Bi# s §

+ 1 =S W harRegister - M Visible - [RGH

A Hide button in the Register Arrangement allows the user to hide it until he requests a new
PlayerlD.

Menu button

~) when (ZGIUZITR Click
do | foreach(Jinlist | [o| make a list
_btnJoin -

do sctButon.
of component | get 4K

o Bmot compare texts | call CEIEERE BB ‘9
set . o |l

2=y vavienu - J{ Visble - JL G ..

If the user hasn’t yet picked a Player Name, he can’t ask for his running games, join a pending
game, or start a new game. The Menu button exposes a Vertical Arrangement with more action

buttons. References: get_PlayerlD, HaveRunningGames.

HaveGames

(] to

result length of list list |l TinyDB1 ~ e {EINE

(= MBS =4 global MATCHES TAG -
valuelfTagNotThere || create empty list

The My Running Games button is disabled if the player has no running games. Since a list is
expected, we return a default value of an empty list.

Designer Menu arrangement

Display hidden components in Viewer

Rock Paper Scissors

Menu

Ny Running Games

Join a Game

Mew Game

I Waiting

=]

=]

Screen

varDialogs

— btnMenu

varMenu

— btnMyRunningG

— btnJoin

— btnMewGame

harHeader

lblPlayerlD
IpkSelectRunnin

varJoinGame

harRegister

L txtNewPlayerID

— btnRegister

— btnHideRegister

btnMyGames.Click

when Click

do set - to | call GetValue
VNPT global MATCHES TAG -
valuelfTagNotThere | [o| create empty list
==Y varivienu - Ji Visble - JCR faise
aal Open

IpkSelectGame.BeforePicking

1= IpkSelectGame » JES b= gle .1y

do [set . to | call QEDTEIED GelValue
(=BG S8 global MATCHES TAG -
valuelfTagNotThere | (@] create empty list

Eventto raise when the button of the component is clicked

IpkSelectGame.AfterPicking

T =1l IpkSelectGame ~ A G aTe .10y
o ECl IpkSelectGame - Ji Text - JRCHE IpkSelectGame - B Selection -

call WA IpkSelectGame - B Selection -

Reference: setMatchlID

btnJoin.Click

-1y varMenu - I Visible - JRCRLE false -
=N fdbGetAllPending - BeEVET

tag '+ =1 global Matches pending FDB TAG -
valuelfTagMNotThere

The Menu Join button does not itself do a join. It prompts FirebaseDB for a list of pending
matches that he can select from and join.

fdbGetAllPending.GotValue

TS fdbGetAllPending = JETE]NE
tag value

do fLolif . compare texts || get (ETCRD ‘S”

then set : to | call Q5D -JsonTextDecode
jsonText

get REITENS

s varJoinGame - I Visible - JRCR true
L —

When Firebase comes back with the JSON tree of all pending games, we decode the JSON and
load it into a ListView, and make it visible for selection. The Web1.JSONTextDecode block is
explained at the MIT web site,
http://ai2.appinventor.mit.edu/reference/components/connectivity.html#Web and also see this
link for how to navigate a tree: http://ai2.appinventor.mit.edu/reference/other/xml.html.

http://ai2.appinventor.mit.edu/reference/components/connectivity.html#Web
http://ai2.appinventor.mit.edu/reference/other/xml.html

IvwdoinGame.AfterPicking

when -AfterPicking
do (ol initialize local | NGRS AT N S split - Rl vw.JoinGame - B Selection -

in | set [GENIA® to | replace all text

segment

replacement

cal playeriD | call CENZEENRD | matchiD || get GELTED

set

—

A ListView Selection is forced to be text, so it has to be split and stripped to extract the gamelD.
References: joinMatch, get PlayerID.

btnNewGame.Click

when Click
do set

set

L,

Running Matches awaiting your move

o view completed rounds
o make your move for the current round

Running matches awaiting other player moves

o refresh button

Join a pending match

o view pending matches by type
o select a match

o join the match

Monitor a match

fdbGameMonitor.GotValue

U=l fdbGameMonitor = e VENE
tag |

o call JSONtext | get (EITRS
., T—

fdbGameMonitor.DataChanged

when DataChanged
R g value
(2} call _ShowMessageDialog
message | [©] join » value= &
] value -
3 ‘nbucket= &
:
title | get (ZFED
buttonText g OK &

call JSONtext |/ get (ZITED

for debugging

showJSONmatch

R showJSONmatch i JSONtext
do | set : Loy | frue -
o] initialize local [EE to | cqy WIE3E JsonTextDecode jsonText | get WEN= %S
: LT NN o T S global matchlD FDB_TAG - |
pairs
notFound
(= - YT getMiatchiD -
set [EEENEENED - (D to | (9] join | oo FEYEIEETED match “=1 match -

call [EMUIERES match | get [UECIES

Called by: fdbGameMonitor.GotValue, fdbGameMonitor.DataChanged.

References: summary, playByPlay, getMatchID.

summary

121 join (| get €XD ¥ selectlistitem list | get CETEED
(o] join || gel X

call LS 5 global game_type_FDB_TAG - |
ol join || gel D

call LB 4 global target players FDB_TAG - |
(ol join || get D

call LS o global target_rounds FDB_TAG -

desc

e Povers RIGIGE: | match - |

desc

(=4 match -

(@] join

call LEMENL =T global players_FDB_TAG - RGN Players: - MW MENG =1 match - |
result | get EE

Called by: showJSONmatch.

References: clause.

clause

look up in pairs key = get LE83
get [1KJ
notFound “@°

A game summary consists of series of clauses, each with its own subkey of a match tree and a
description.

Called by: summary.

playByPlay

BRC playByPlay [match
result [(@] initialize local | | to
initialkze local (20EEY to |, call match { get ([ETEED
nitiakize local QLY o | ca match (| get GECRD

in

-1 i global winning_moves - RERBINII get winning_moves - Rz ime i =] match -

foreach() from | [§) | to [length oflist list | get [EVICCES by | ED
g0 | (o] infisize local (LTL) o |, call (VIR rounds (| get CEMIEERD | r (] ot G

in | set XD 10 | (0] join oot D | (| D) " | ¢ oot B
2 result - RN RSN announce round - |

round | get [0LEES

players | get [EEERS

Called by: showJSONmatch.
References: extract_players,

extract_players

(0] to “match

do fﬁreachl_’ DN O 1o To VT 9y B =1 =T = 8 global players FDB TAG -
pairs

result | | ol initialize local Jto | [©| create empty list

in

notFound | [©| create empty list
do [(o] additemstolist list | get FEECES
itern select list tem list | get EINEES

Called by: playByPlay.

rounds

G rounds,

result look up in pairs key

pairs
notFound

Called by: playByPlay

get_winning_moves

(] to

result look up in pairs key

|o| create empty list

pairs look up in pairs key look up in pairs key

notFound

Called by: playByPlay.

round

(€ to m

result look up in pairs key
pairs
notFound

Called by: playByPlay.

pairs
notFound
BT global Rules -

notFound | (@] create empty list

| 2| create empty list

announce_round

1

(o] to “round J players

result ([©] initialize local (=51 to | “ (1)~
in if length of list list | get [EIGED
length of list list | get [UEEERS
then cal
round | get [[CVEES
(JEVEIENEY o players -+
call
round | get [LVLES

players || get (EEERD

Called by: playByPlay.

announce_incomplete_round

53 &1 announce_incomplete_round _
result [(@) initialize local | o | ‘ED°

in

go8 set (MMIVETERD - AEESE o || cal (ELESEES round | get (RILGED

foreach (- - inlist | get CECEED
do | set =& to | (o) join | get (=NED
=l didHePlay -
player | get CETEES
round | get [EEES

—

result | get

Called by: playByPlay.

ltsMyMove

EIRL] ltshyMove Jf round
result | isempty | lookupinpairs key call CENEETEIES

pairs | get (UAD
notFound “@°

Called by: announce_incomplete round

didHePlay

BRG] didHePlay B | _round

result | (@] join

look up in pairs key | get [ZETEHS | pairs | get [[EINGEE) notFound ‘@@

Called by: announce_incomplete_round

announce_complete round

@Y arnouince_complete_round J round J players

result | (@] initialize local

et UM
for each (2} inlist | get (YK
do | set to | (@ join | get [CENE3
||l whatDidHePla move [get [CRS
(1=-+\| counterMove | \| = I round - |
do | set[E=NEPto ([join | get [EED
N judge - |
move (get [UEERS
counterMove | get [ENIENSTERS

Called by: announce round

whatDidHePlay

G WhaDidHerTay Jj move

resut | (@ join | “)"

call (EEEED move | get G

call D move || get (TR

Called by: announce_complete_round

judge

@Y judge | move W counteriiove
resutt [[o initialize local | J1o | cal ETED move

initialize local LISt | call LT counterfviove

initialize local | | to
N do [set to | look upin pairs key
pairs | lookupin pairs key | get EEMGEEEED
pairs L+ =1 global winning_moves -

notFound | [@| create empty list

notFound
isempty | get [EEVIED
=4 result -+
(@] join | get REES

2 counterplay -

Called by: announce complete round

Rules

initialize global to [(0] makealist | (o] make alist

make a list

make a hst make a list

makealist make a list make a list“ R i

| make a list

make a list

make a list make a list

make a list

a| make a list) make a list

make a list

Rules - RPS

. . . to putPendingMatch matchl. ..
make a list
el o/ makealist * : : to putHostMatch matchlD ...

make alist ° ©| make a list make alist * (@] make a list @ make a list

make alist * @) make a list o

make a hst

make alist * [o] makealist | (9] oke alist

Rules - RPSSL

) make a list

- make a list

) make a list

) make a list

make a list

make a list

make a list

make a list

make a list

&

make a list

make a list

make a list

make a list

make a list

make a list

make a list

make a list

make a list

make a list

atchlD do in...

Initiate a match

select game type, target rounds, target wins

Designer layout - Initiate a match

Rock Paper Scissors

Login Waiting

Fock Paper Scissors

FRounds per Game : | 3

Flayers per Game: 2

Initiate Game

Designer components - Initiate a match

-

= varlnitiateGame
IpkGameType
= harTargetRounds
'I|blTargetRounds
! txiTargetRounds
= harTargetPlayers
UlbITargetPlayers
L ltxtTargetPlayers

= bininitiate

Select a Game Type

% 01200

Downtown Abie Waiting

Rock Paper Scissors Spock Lizard

Rock smashes Scissors cuts Paper covers Rock
crushes Lizard poisons Spock smashes Scissors

decapitates Lizard eats Paper disproves Spock
vaporizes Rock

Rounds per Game:: 3

Players per Game:

Initiate Game

Game Type List Picker blocks

when [REEENEINERS BeforePicking

global Game_Types - |

when [REEEGEN=R8 AfterPicking
do set . (0l IpkGameType - | Selection - |
set : to | cal 2 S Game Type - J Selection -

.

initialize global to | |2 make a list

Game Type Blurb Lookup

initialize global to @] makealist | [make a list
2] make a list make a list
makealist * . make a list make a list* R... 1‘
|2 make a list

2] make a list make a list

IELCE

make a list make a list* R...

(o] to
result look up in pairs key
pairs | lookupin pairs key | get
pairs | get

notFound |©| create empty list

notFound

Game Type blurbs tell the moves in English. They are stored with the rules for each game type
in a list of pairs structure designed for use with the lookup in pairs block.

The Blurb lookup is packaged in a value procedure, because it will probably happen again when
it's time to choose a move. Notice how the lookup proceeds in opposite order (inner to outer) to
the nesting of the lookup table (Rules).

) to “gameType

result look up in pairs key
pairs | look up in pairs key =8 gamelype -

pairs + =1 global Rules -

notFound | [©| create empty list

notFound

Generating a unique gamelD for a new game

(See createMatchID)

For lack of a proper guid provider, we use a sortable datetimestamp combined with the current
PlayerlID, which should be unique.

We will use this as the new current match ID, accessed through set and get procedures:

createMatchID

Do It Result: -
28le813186l6a3- [
! Downtown_Abie

-

BEY ceatehiaichiD.

result | (o] (2)"5in (call ETIIBIGEEE ‘@ ~ N get PlayeriD -

yyyyMMDDhhmmss

B yyyyMMDDhhmmss
result | call ‘FormatDateTime

instant | call Now
= R vyyyVIMD Dhhmmss

setMatchID

B] setMatchiD B matchlD
1l TinyDB1 ~ S GIEATETS
EW AN =1 global CURRENTMATCHID_TAG -

valueToStore | get
set : to) get QUEEIVAS
set : to | cal
matchlD | get Uz S

.
To set the current match, we update TinyDB, identify it on the Text of it ListPicker, and set the
project bucket of the FirebaseDB Game Monitor to watch the match in its owner’s matches area.

L —

matchBucket

B 1 matchBucket | matchlD

result | (o join |, get[RlELET e i

» =1 global PlayerMames FDB TAG -

call matchiD | get =G

[+ =4 matchlD ~

This bucket value homes in our db monitor to the current match.

getMatchID

g N gethlatchlD
result call QEAREERS Getalue
1= BB - global CURRENTMATCHID _TAG -

valuelfTagMotThere

Saving a pending match to FireBaseDB

pendingMatchfdbKey
The pending matches FireBaseDB path, based on RPSSL.

BN pendinghatchfdbKey I matchiD |
resut | ' (o) join | * (EEESETIED

+ =8 matchlD -

hostMatchFDBKey

@] join v =8 global PlayerNames FDB TAG -
call matchiD | get Gk

This assumes a base bucket of RPSSL.

putPendingMatch

initialize local ([[Z7)to | matchiD | get (RECIDE
N | call (FEEEGGEES StoreValue tag | get (&8 | valueToStore [(RS

ol fdbPending ~ ISIGEENE
tag | (9 joi -1 global game_type FDB_TAG -

valueToStore

v=| |l fdbPending =~ BSIGUHAETE
tag | (9] joi =¥ global target_rounds FDB TAG -

valueToStore

v=| |l fdbPending =~ BSIOHAETE
tag | (9] "“1 global target_players FDB TAG -

valueToStore

For each pending match, we store its game type, target rounds, and target players, all under its
matchlID in the Matches/pending/ branch. references: pendingMatchfdbKey

putHostMatch

R put-osiaich Ji maichiD J} gametype J rounds Ji players

do | (| initialize local (=) to call matchlD

N call (FERSTITES StoreValue tag | get & valueToStore

||l fdbPending ~ sG]
tag

valueToStore

-1l fdbPending ~ ISI0IGETTS
tag

valueToStore

o=l fdbPending ~ ESiGEE S
E)

valueToStare

=1l fdbPending = BSieIEE NS
tag

valueToStore

references: hostMatchFDBKey

(© join ¢ get (R0
[+=4 matchlD ~

(0 join ¢ get (0
] gametype - |

(© join ¢ get LD
P] rounds -

() join ¢ gt TR
2] players

(v=d matchlD ~
true -

(+ =4 global matchlD FDB_TAG ~

i+ =1 global game_type FDB_TAG -

[+=d global target_rounds FDB TAG -

l+ =t global target_players FDB TAG -~

btninitiate

RN cetMatchiD - Rt DT B createMatchiD - %

call
matchlD | call
gametype | WISMEINTENS -
L xtTargetRounds -
players :
call
matchlD | call
gametype | (IIENEINTENS -
ST i TargetRounds -
players -

call (EIIETRD playeriD || call (EMZETILES | matchiD | cal
Y VarinitiateGame - J§ Visible - JRCRLL false
L S_—

A pending match is stored temporarily in the Matches/pending section as well as under the
matches subsection of the initiating player. References: getMatchlID, createMatchlID,

putPendingMatch, putHostMatch, get PlayerID, joinMatch

putPendingMatch

DR) putPendingMatch I matchiD || gametype [l rounds Jif players |
do | (o] inifialize local [ENt0 | call EEEEIEGIEESES matchiD | get CEEIED

N call StoreValue tag [get (T | valueToStore (TR
call .StoreValue
tag 9} join _ gel. ‘D s =1 global game_type FDB_TAG - -
valueToStore [get
call -StoreValue
ORI T key - NI TG -1 global target_rounds_FDB_TAG - |

valueToStore | get [EIGEEED
w1l fdbPending ~ ESIGIGENE

L R C R T ey - ISR RIGE: — global target_players FDB_TAG - |
valueToStore | get

References: pendingMatchfdbKey

joinMatch

(o] to WD O G
do [(o] initialize local R LS 10 | can matchiD | get
intialize local [IETED o | cal matchiD | get GCEEIDED
in | call .StoreValue
tag | 1) join | gel ‘Q"
valueToStore | (IEE

+-| il fdbPending -~ BSIGIEENS
L ANCE NPT hosiey - JANEL' B
valueToStore

=] .GetValue
tag | (0] join ¢ get
valuelfTagNotThere | “@ "
call matchiD [get [MECELES @

=1 global players FDB TAG - ‘@ = playerlD -

(=1 global players_FDB_TAG - ‘@ (=1 playerlD -~

Joining a match is done both at the pending match section and at the home copy of the match
under the originating player, and in TinyDB1 tag MATCHES. After joining the match, we double
check if the match has enough players to commence in fdbPostJoin.GotValue.

References: pendingMatchfdbKey, hostMatchfdbKey, add_game

add_game

This adds a matchID to the app’s TinyDB list of matches, for display in the matchlD list picker.

(0] to matchiD

do | (@] initialize local ([== =) fo | = call .GetValue
WA Global MATCHES TAG -
valuelfTagNotThere | [©| create empty list
in (o] additemstolist list | get GEEITED
item | get CECIED
call .StoreValue

Pl =1 global MATCHES TAG -
valueToStore | get

hostMatchfdbKey

(o] to []
result 2| join =1 global PlayerNames FDB TAG -

call matchlD | get [IEl=1PIE

Reference:
hostPID

hostPID

o) to [matchiD |
result [selectlistitem list [EXIED text | get [UECINE

The host player ID of a match is kept after the “-” in the matchID.

fdbPostJoin.GotValue

when [REEEIMNIES -GotValue
tag value
do | (o] intialize local EECITENEIET 0 | o UEHE) JsonTextDecode jsonText getm.

o 1N enoughPlayers - Nu=le BN 8 ISOM JoinedMatch - '
then ., StoreValue tag getm- valueToStore | “ [~

call StoreValue
tag @ join + =1 global Matches _running_FDB_TAG -

SN matchJoined - F= AT tag - |

valueToStore

il alerttlavers - L SRR ratchJoined - I { |
| ag | get ERD

N

After joining a match, the match is checked if it has enough players to start its first round. The
newly looked up match is gotten from Firebase as the entire JSON string under the joined
pending matchID. The JSON is decoded into a tree rooted at the matchID. If enough players
have joined the match, the pending match is erased from the Matches/pending leg, and added
to the Matches/running leg for people who want to watch matches in progress. All the players in
this match are alerted by updating their newsfeed timestamp for this match. References:
enoughPlayers, matchJoined , alertPlayers,

enoughPlayers

B GN enoughPlayers B match |
result length of list list look up in pairs key (v =l global players FDB_TAG ~
pairs

notFound . ©| create empty list

i L EEY Giobal target players FDB.TAG -
pairs

notFound . | create empty list

matchJoined

o) to (fag |

result | select list item list text

at

index [E)

alertPlayers

SR siertriayers J match)
do | (@] initialize local [V=1-:) to | lookupin pairs key | get CEEREECERERLEE
pairs | oot G
notFound @| create empty list
initialize local (21T to [select list item list | get (IEGIED | index | §)
in [foreach (77 /1) in list
do call
playeriD | get REZILES

matchiD || get CEEI0ND

alertPlayer

This serves to alert a player by inserting a matchlD and timestamp into his newsfeed.

G seiayer J piayend JJ matchiD.

-1l fdbPutlogin - S GIEENS
tag +' =¥ global PlayerNames FDB TAG -

= playerlD ~
v =1 global newsfeed FDB_TAG -

=1 matchiD -
valueToStore o=l N yyyyMIMDDhhmmss -+

make first move

Review closed matches

o delete closed matches

quit

	MultiPlayer Rock Paper Scissors on FireBaseDB
	
	GameTypes
	
	Design methodology
	Server contents:
	PlayerNames
	
	Matches
	FireBaseDB Tags and Subtags

	TinyDB tags
	TinyDB Tags.png

	
	App Dialogs
	Initialization
	globals
	Screen1.Initialize
	flush_all_fdbs
	set_PlayerID
	get_PlayerID

	Status header: current playerID, newsfeed, selected matchID,
	Player Login Designer

	
	Login / Register
	Designer Dialog for Registering
	
	
	btnRegister.Click
	scrub procedure

	fdbGetLogin.GotValue
	
	new_PlayerID
	log_signin
	login date tag values
	btnHideRegister

	Menu button
	HaveGames
	Designer Menu arrangement
	
	
	btnMyGames.Click
	lpkSelectGame.BeforePicking
	lpkSelectGame.AfterPicking
	Reference: setMatchID
	
	btnJoin.Click
	fdbGetAllPending.GotValue
	lvwJoinGame.AfterPicking

	btnNewGame.Click
	

	Running Matches awaiting your move
	Running matches awaiting other player moves
	Join a pending match
	
	

	Monitor a match
	fdbGameMonitor.GotValue
	fdbGameMonitor.DataChanged
	showJSONmatch
	summary
	clause

	playByPlay
	extract_players
	rounds
	get_winning_moves
	round
	round.png

	announce_round
	announce_incomplete_round
	ItsMyMove
	didHePlay

	announce_complete_round
	whatDidHePlay

	judge
	Rules
	Rules - RPS
	Rules - RPSSL

	Initiate a match
	select game type, target rounds, target wins
	Designer layout - Initiate a match
	Designer components - Initiate a match
	Select a Game Type
	
	Game Type List Picker blocks
	Game Type Blurb Lookup

	Generating a unique gameID for a new game
	createMatchID
	
	yyyyMMDDhhmmss
	setMatchID
	matchBucket

	getMatchID

	Saving a pending match to FireBaseDB
	pendingMatchfdbKey
	hostMatchFDBKey
	putPendingMatch
	putHostMatch
	btnInitiate

	putPendingMatch
	joinMatch
	add_game
	hostMatchfdbKey
	hostPID

	fdbPostJoin.GotValue
	enoughPlayers
	matchJoined
	alertPlayers
	alertPlayer

	make first move

	Review closed matches
	quit

