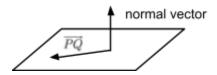
2.4 Cartesian Equation of a Plane

Another way to describe a plane is to describe the set of vectors perpendicular to a normal vector.



If
$$\vec{n}=(A,B,C)$$
 and $\overrightarrow{PQ}=(x-x_0,y-y_0,z-z_0)$ where \overrightarrow{PQ} is some vector on the plane.

For any
$$\overrightarrow{PQ}$$
, $\overrightarrow{n} \cdot \overrightarrow{PQ} = 0$ and it can be shown that Ax + By + Cz + D = 0.

The good news is that this equation is unique. There is only one normal to a plane, and all other normal vectors will be collinear to it. If a point (x,y,z) satisfies the equation, then it is a point on the plane.

Ex Determine the equation of the plane:

(a) that contains A(1,2,2) and has a normal $\, \vec{n} = (-1,\!2,\!6)_{\,.} \,$

-x+2y+6z-15=0

(b) that contains the points A(-1,2,5), B(3,2,4) and C(-2,-3,6).

5x+3y+20z-101=0