DOCTORADO EN INGENIERÍA UNIVERSIDAD TECNOLÓGICA DE PEREIRA MICROCURRÍCULO

INFORMACIÓN DE LA ASIGNATURA

Programa académico	Doctorado en Ingeniería
Nombre de la asignatura	Modelos Computacionales
Código de asignatura	DV104
Semestre y año en que se imparte la asignatura	Segundo semestre del 2022
Profesor de la asignatura	Julio César Chavarro Porras
Afiliación institucional del profesor	UTP
Correo electrónico del profesor	jchavar@utp.edu.co

DESCRIPCIÓN

1. Descripción y justificación de la asignatura

Esta asignatura es impartida en Doctorado de Ingeniería, línea de Ciencias de la Computación de la Universidad Tecnológica de Pereira, y nace como resultado de la necesidad de fortalecer los fundamentos computacionales para la construcción, validación y verificación de modelos computacionales; así como del propósito de presentar una perspectiva unificadora del estudio de los lenguajes de programación desde el punto de vista de sus capacidades y del modelo computacional que lo subyace.

2. Objetivo de la asignatura

Al finalizar esta asignatura el estudiante estará en capacidad de:

- Conocer el cálculo lambda, como sistema formal y como lenguaje universal.
- Identificar las características universales de los lenguajes de programación en el plano computacional
- Enseñar las características del modelo de computación declarativo.
- Enseñar las características de los modelos computacionales imperativo y objeto.
- Comprender las características de los modelos de computación concurrente y de restricciones.

La pertinencia de estos objetivos se encuentra en el aporte a la fundamentación teórica de quien crea modelos que deben ser tratables computacionalmente.

3. Contenido de la asignatura

- MÓDULO 1: Cálculo lambda. (10 horas)
- MÓDULO 2: Modelos computacionales, lenguaje kernel y paradigmas de programación. (4 horas)
- MÓDULO 3: Modelo declarativo. (8 horas)
- MÓDULO 4: Modelos Imperativo y Objeto. (8 horas)
- MÓDULO 5: Modelo de restricciones. (8 horas)
- MÓDULO 6: Caso de estudio práctico. (4 horas)

4. Requisitos

- Conocimiento en Matemáticas computacionales
- Habilidades de programación en cualquier lenguaje de programación declarativo, imperativo, objeto

5. Evaluación de la asignatura

Se desarrollarán evaluaciones que permitan la verificación de cada uno de los resultados de aprendizaje planteados. Estas evaluaciones estarán distribuidas en 3 trabajos que se desarrollarán a lo largo del curso.

- Taller sobre cálculo lambda 20 %
- Definición de un micro-lenguaje 10 %
- Cuatro (4) Talleres prácticos, confrontación conceptual e informe. 60 %
- Mini Exposiciones individuales 10%

6. Recursos

- Libros de texto
 - o Lenguaje Mozart OZ
 - o Concepts Techniques and Models of Computer Programming Peter Van Roy
 - o Foundations for Programming Languages, John Mitchell
- Herramientas computacionales
 - o Mozart OZ
 - Λ
- Recursos en línea
 - o Bases de datos ACM, IEEEE