
OpenFeature - SIG - Remote Evaluation
Protocol

Disclaimer
Some terms in this document are used, that need to be defined or renamed:

●​ Wire protocol: A special REST (or similar) API that a vendor/rules engine might
implement, at which point they'd have a baked-in client for all the major open-feature
clients.

●​ Remote flag evaluation: calculating a flag's value on a remote machine, given an input
evaluation context.

●​ Generic provider: an OpenFeature provider ready to communicate through the wire
protocol.

All those terms need to be changed/validated by the community, so feel free to propose a better
alternative.

Description

The wire protocol or OpenFeature Remote Flag Evaluation Protocol, is a mechanism that allows
the use of generic providers to connect to any feature flag service that supports the protocol.

Currently feature flag vendors are expected to write OpenFeature providers for every language
they support. With the wire protocol, they would only be required to implement a single set of
endpoints (technology needs to be defined), that could be consumed directly by all of the
OpenFeature SDKs.

In the event that the wire protocol does not provide the required capabilities for the vendor, they
could write language-specific providers if they wished.

This has 2 major objectives:

1.​ Ease the adoption of OpenFeature for the different feature flag solutions, by providing a
simple way to integrate with the OpenFeature standard without developing OpenFeature
providers in each language.

2.​ Ease the integration of OpenFeature for open-source projects, by avoiding them to
package all the existing providers or by adding a plugin system to support multiple
providers. ​

Those projects will be able to integrate only with the generic provider and be compatible
with all the feature flag solutions implementing the protocol.

In Scope
●​ Define the remote flag evaluation protocol.

○​ Schema
○​ Technology (Connect, Buf, OpenAPI, gRPC, … ?)

■​
○​ …

●​ Client and server SDK paradigms are part of the scope.
●​ Define what a generic provider should be.

○​ Do we need a handshake?
○​ How do we retrieve feature flag service metadata?
○​ Should we do caching?
○​ Capture telemetry data/event reporting?
○​ …

●​ Define how a providers should act with the wire protocol.

Out of scope
●​ In-process flag evaluation.
●​ Standard Feature Flag format definition (DSL).

Non-Functional Requirements
●​ Consideration needs to be made for latency and the minimization of requests being

made
●​ Thought needs to be given for privacy/security (i.e. there is no privacy by design? Should

requesting flags just require some sort of Environment/Project key and nothing else?
AFAIUI that’s how most providers work)

https://excalidraw.com/#json=s4dEn75HFePLe1zM4xB3l,s7NhuGitEXoG0CAkrpaMDw
https://connectrpc.com/
https://buf.build/
https://www.openapis.org/
https://grpc.io/

Example of flows

Server Implementation

Client Implementation

https://mermaid.live/edit#pako:eNp9k1Fr2zAQx7_KoZd2NOneTQl0TTr6MFYS6NgIjIt8SsRkyZPPISHku-8k2SPtWP1iyf7_db-7052UDjWpSnX0uyevaW5xG7FZe5CHLTuCbzYStDFw0MHBiuKeIjw1raOGPCPb4It8Ew5QVulpMbLVtkXPgG0L2MF92zqrLxxvdVn1mTxFq-E5hr2tKRYp-bosLvXGJMOSmsAEj4TcC-qjwy2sjh3TkAZqDhGwbqz_j_xuEz_OigXuk852HFFcwwGCP53NoK0gtORNcd6uiEfG6wF63J_OHwZa8d0YU8EOfd3t8BeBRueAA2yJIRaWroS23oTYXNTHmKn4pxI3_QLchJ6BdzT6BhIwKeXhkDGuGIW7gufl15en-WL5c7m4n3__JyHtrHTxVmA-heAI_Qu6nq6vDofD1QQMuo4moPkw5pN8N5Ayor0oMywEk6kSxggOI_mSuuD6JJsTo3Xd3aYEmg0sjt_RgO2kYHpHuHF0cWnk8FyVjiLLK4eXVyN1icfieHtvMhHkmrzHNFDl2yKGlOmDNG87VFkHb-y2j6-6NBYzXz2pnHRbsLPrVXSRPEiYWADVRDUk_ba1DOAp6dZK8mhorSpZ1mSwd7xWa38WKfYcVkevVcWxp4nq2xp5nFdVlU4NXxe1lcv79yPl7Zcy6XngJ0rm50cIo_H8B6KWWqA

-​ Bulk evaluation needed for client-side, but we should consider in the client to ask for a
set of flags.

-​ We need to have a cache invalidation.
-​ Polling is a possibility
-​ gRPC or other solution can help

-​ Check with vendors to get some feedback on how different players are doing
-​ Unleash do polling
-​ GO Feature Flag is doing websocket
-​ Server set events

-​

Project steps proposition
1.​ Agree on the scope.
2.​ Agree on the naming.
3.​ Define the protocol schema.
4.​ Find 1 or 2 feature flag services that are willing to implement a 1st proof of concept of

the wire protocol.
5.​ Implement generic providers to test it with the available POC implementation.

https://mermaid.live/edit#pako:eNqVVNtqGzEQ_ZVBL3Gwnb4vweDaTslDabAhpWWhjLWjtUArqVpt2GD87x3tJXYbkrZ60uWc0ZkzIx2FdAWJTNT0syEraa2xDFjlFnhEHQ3BVx0IfHDRSWdgZTTZCPeVN1TxDKN2tofvXQv9LA2PIWqpPTIavQesYem90fKC8SeuQ30iS0FLeAjuSRcUeijZop9c4pVKhC1VLhLcEcaGpd4ZLGH3XEca0kAZXQAsKm3fgN_uw4dFT4Flwuk6BmTWEIDlzxcL8Bk4T1b1zJsdxZWzkdo4kbG9HuTBPEGZksHf2GOGkyHlcX08jcGYN1UqA3pC02CkpTFJbz0ZNtjJQcI1TKGk-I4ZoK1yfVylksg5K-rOUyyqp__GTZqYWLM7BOpMZwjEA4FEeaARytjOiYftl8f79Wb7Y7tZrr-98kV2TXXD-j86ZwjtYwo5uWrb9moGCk1NZ3t7Ssr1fDuo4KpX11-UYku1M03ya00Rtalv9_1Ni3zoxb4_mJD8Xh3QlkN60lmlyyZc9C333SBjdXkIB24v2VGL_y_gO6X5zflA3qB823sxExWFCnXB7_qYqLngw4pywS0pClLYmJiL3J4Yik10u2crRRZDQzPR-IJlDt-AyDrvx91NobnqL5vULT_3H0j3j8wEP8vvzo3E0y8NgHec

 - OpenFeature: wire protocol kickoff Dec 1, 2023
Recording:

Notes:

●​ Naming
○​ Wire protocol is confusing and we are looking for a better name.
○​ will open a discussion in GitHub to find a better name. Thomas Poignant
○​ We have a few options

■​ Remote evaluation protocol
■​ Remote Flag Evaluation Protocol
■​ Standard protocol
■​ OpenFeature protocol
■​ Out of process evaluation protocol

●​ Goals of the protocol
○​ Before defining the protocol we will create a doc containing the different

high-level goals we want to follow for the protocol.
○​ We have mentioned the following one during the meeting:

■​ Reducing dependencies (specially on the client side)
■​ Portability
■​ Ease of utilization

○​ We will not spec anything in the beginning to make the discussion more fluid.
○​ We will have to spec it later but probably not in the actual spec

■​ Dedicated spec
■​ Or in the appendix

●​ Technology to use
○​ Different options

■​ REST API / Websocket / Server Sent Event
■​ Connect

●​ Can do REST API (but not in a restful way)
●​ Can do gRPC

■​ gRPC not mature enough for UI side
○​ We need to check if the technology support the same coverage of languages that

the one OpenFeature is covering
○​ Reducing dependencies as minimum specially on the client side.
○​ We should check with different flag management systems what they are using.

●​ Flag management system survey
○​ In order to meet existing flag management systems where they are, we are

willing to ask some questions of the existing solution.
○​ Check with the vendors which systems they are using

mailto:thomas.poignant@gmail.com

■​ polling vs push,
■​ gRPC vs REST
■​ Also check with which languages we should start.

○​ and Pete will work on the survey and build a Michael.Beemer@dynatrace.com
matrix for it.

●​ Should we start with client-side or server-side?
○​ Client-side will fit more use-case but harder to build

■​ For client-side we will need a flag management system->provider from
day 1 to invalidate the cache.

○​ Server-side should be more straightforward.
■​ We don’t need cache in the beginning.

●​ Extension discussion
○​ Telemetry and data collection

■​ How can we send telemetry data?
■​ Hooks maybe not enough

○​ Dot notation getBooleanValue("myflag.myproperty")
○​ We need to give flexibility to people using the generic providers to build around it.

●​ Interested parties to POC the wire protocol
○​ GO Feature Flag
○​ flagD
○​ Spotify (no strong commitment)
○​ Unleash (no strong commitment)

●​ Actions:

○​ Start discussion about naming (Thomas)
■​ https://github.com/orgs/open-feature/discussions/288

○​ Start a document about the goal of the wire protocol (Todd & Thomas)
○​ Create a survey for vendors about what tech they are using (Michael & Pete)

mailto:Michael.Beemer@dynatrace.com
https://github.com/orgs/open-feature/discussions/288

	OpenFeature - SIG - Remote Evaluation Protocol
	Disclaimer
	Description
	In Scope
	Out of scope
	Non-Functional Requirements
	Example of flows
	Server Implementation

	
	Client Implementation

	Project steps proposition
	Dec 1, 2023 - OpenFeature: wire protocol kickoff

