Polly Phone call 10th April 2014

Agenda

Participants: tobias@arosser.es
sebpop@gmail.com
cib123@googlemail.com newbie, just want to listen in
Johannes
zinob@codeaurora.org
dmpots@gmail.com
stephen.neuendorffer@gmail.com

High Level Synthesis

Computation of precise types

Tobias recently tested a patch to derive minimal data types for each subexpression that in the
newly generated code. This has shown to be beneficial in high-level synthesis as it reduces the
LUT units used significantly.

Notes from Stephen (from an intern we had last summer)

About usability of Polly in the Vivado tool chain. In short, there are various issues to be solved,
but all of them look tractable:

Remarks on Polly dependencies analysis:
- it generate dependences between basic blocks (and not between instructions)
http://llvm.org/PR12402

- it is exact in the case where memory accesses are exact

- it is an over-approximation (conservative) in the case they are not
(MayWrite)

To replace the actual Vivado dependencies analysis there are some requirements:
- scalar dependences are not needed (-polly-ignore-scalar-dependences)


mailto:tobias@grosser.es
mailto:cib123@googlemail.com
mailto:doerfert@cs.uni-saarland.de
mailto:zinob@codeaurora.org
mailto:dmpots@gmail.com
mailto:stephen.neuendorffer@gmail.com
http://llvm.org/PR12402

- load/store has to be treated independently even in the same basic-block

Scop detection is somewhat conservative. We need to have a way to specify a scop
explicitly and analyze dependencies in the scop. If no dependencies can be analyzed,
then a fallback to ‘conservative’ dependencies would have to happen. (This probably
isn’t really a problem in polly as much as a limitation to applying it in our context).

Analysis is limited to regions that are:
- not the top-level of a function

- contains at least one loop

- contains only signed arithmetic (a big limitation)

- contains only loops in loop-simplify form, for which SCEV analysis can
compute the trip count and for which this trip count is affine (depends only on
parent loops induction variables and parameters in an affine way)

- contains only if/switch for which SCEV analysis can compute the branch
condition, for which this condition is affine, for which the "condition" basic
block has exactly 2 successors, and the condition is a direct comparison (not a
‘or'/'and' composition of comparisons) (a big limitation)



- contains only phi functions that refers to scalar outside the region (a big
limitation)

- contains only functions call that do not have side effects, always return,
are direct calls and are not intrinsics which access memory
- contains no alloca instruction (a big limitation)

- contains only load and store for which the SCEV analysis can compute the
access functions, for which this access function is affine, and that does not
alias with anybody

LLVM SCEV analysis returns a getBackedgeTakenCount that may take negative
values if considered signed. The correct way to interpret the
getBackedgeTakenCount is to consider it unsigned and bounded by the size of its

type.

Polly ignores signed and unsigned wrap: it assumes every SCEV is signed and
evolve without wrap.

Any loop with statically known bound will have its induction variable bit-width
minimized using integer wrap. The SCEV analysis will then return a
getBackedgeTakenCount on the same type than the induction variable (which is
annoying, but correct) and with a value usually negative computed from the exit
condition of the loop (which is a comparison with a negative value, else the
bit-width could still be reduced).

Polly generate a Domain for the loop which is between 0 and the
getBackedgeTakenCount (included, because the first iteration do not use the
backedge). As the later is negative, the Domain is empty, and no dependences
are generated.



isl_pw_aff_mod allows to do a modulo by a constant and might solve the bug in a
cleaner way.

Delinearization (Tobias)

First patch was committed last week. Still not enabled by default as bugs need to be fixed (See
discussion on mailing list)

Sven mentioned that we should look at Armins implementation and his email on llvm-dev.

Some open issues: http://llvm.org/bugs/show_bug.cgi?id=19336

The use cases that benefit here are C99/D multi-dimensional arrays, the boost ublas library,
http://julialang.org

Use of parts or ideas of Polly in core LLVM (Tobias)

At Euro LLVM there have been discussions if certain components of Polly could be beneficial for
core LLVM. The question itself has been raised by several people, some had themselves
positive experiences with Polly, others proposed this as a step to better align the Polly
development with the LLVM community.

It should be noted that we take a conservative approach here to ensure that only high quality
and generally useful concepts reach core LLVM. Some ideas, e.g. the SCEV based
delinearization is directly beneficial to LLVM, so it is already today directly contributed to core
LLVM. Other components, such as a ILP based dependence analysis, high-level loop
optimizations or even GPU code generation are more complex and will require community
discussions to evaluate their benefit.

We aim to enable such discussions by providing data about the benefits and costs involved
in using Polly. As a first step we set up correctness and performance testers
(http://llvm.org/perf).

Next steps:

- Enable the use of Polly analysis passes


http://llvm.org/bugs/show_bug.cgi?id=19336
http://julialang.org
http://llvm.org/perf

At the moment Polly canonicalizes the IR before it is analyzed. We need to remove the
need for such canonicalization to enable read-only analyzes passes.

- Remove need for -polly-indvars pass
- Remove need for -independent-blocks (requires SCEV codegen)

- Remove need for -polly-prepare
- Model scalars/PHls directly in Polly

- Analyze compile time overhead

We need to be more aggressive in bailing out early in case there is nothing to be gained
by using Polly.

- Analyze Polly compile-time performance and ensure we do not increase
compile time or run-time unnecessarily.

- Make speedups accessible without user interaction
Test cases like polybench, ublas, linear algebra in Julia, can be nicely optimized with
Polly. However, at the moment this only works with additional user provided flags such

as -polly-ignore-aliasing. We want to do this fully automatically

- Run-time alias check
- Guess loop bounds from static array sizes

i- Replace the use of GMP in isl with a MIT licensed integer library (imath)

This is the last missing piece to make Polly fully MIT GPL free. Qualcomm contributed
irst patches to do so.

- Necessary discussions

After sufficient data is available to start an educated discussion, we should gather
more community feedback on the mailing list. Some topics that already raised:

- Identification of components useful for core LLVM



Dependence analysis, loop optimization, ...?
- Integer linear programming

At the moment we use isl as integer linear programming library. How to best
make such functionality available in LLVM needs to be discussed.

- Testing

The question on how to use bugpoint with Polly most efficiently needs to be
addressed.

Overview of current projects (+owners) (Johannes)

Delinearization (Sebastian)

Run time alias checks (Zino has patch, Sebastian)
Reductions (Johannes)

OpenMP code generator for isl-codegen/scev codegen
Assume inbounds array accesses (Zino - no ETA)

Valid:
float A[100][100]
for (i=0;i<n;i++)
for j=0;j<m;j++)
Al = 1;
Valid:
float A[100][100]

for (i=0;i<80;it++)
for (j=0;j <103 j++)
AliliT = 1;
Ali * 100 +j] = A[79 * 100 + 102] = A[7900 + 102] = A[8002] <- valid

f(int p[][100]) {



Qualcomm uncommitted patches:
- separation_class in isl code generation



	High Level Synthesis 
	Computation of precise types 
	Notes from Stephen (from an intern we had last summer) 

	Delinearization (Tobias) 
	Use of parts or ideas of Polly in core LLVM (Tobias) 
	Overview of current projects (+owners) (Johannes) 
	Qualcomm uncommitted patches: 

