} (ffunction myFunction
} Ofunction loginToWiki
var wikiApiUrl = "http://example.com/mediawiki/api.php"; // Replace with your wiki's API
URL
var username = "yourUsername"; // Replace with your username
var password = "yourPassword"; // Replace with your password

Step 1: Get login token //
} = var params
,"action: "login
,lgname: username
Jlgpassword: password
"format: "json

{

} = var options
,"method: "post
muteHttpExceptions: true

{

var response = UrlFetchApp.fetch(wikiApiUrl + "?" + new URLSearchParams(params),
;(options
;((var data = JSON.parse(response.getContentText

} ("if (data.login.result === "Success
;(".Logger.log("Logged in successfully

} else {
;(Logger.log("Login failed: " + data.login.result

{

;return data.login.token

{

} (function syncGoogleDocsToMediaWiki
var folderld = "yourFolderld"; // Replace with your Google Drive folder ID
var wikiApiUrl = "http://example.com/mediawiki/api.php"; // Replace with your wiki's API
URL
var token = loginToWiki(); // Get login token

;(var folder = DriveApp.getFolderByld(folderld
;()var files = folder.getFiles

} (Owhile (files.hasNext



;()var file = files.next
} ("if (file.getMimeType() === "application/vnd.google-apps.document
;(()var doc = DocumentApp.openByld(file.getld
;()var content = doc.getBody().getText
var pageTitle = file.getName(); // Page title will be the same as the file name

Convert content to wiki markup //
;(var wikiContent = convertToWikiMarkup(content

Step 2: Get CSRF token for editing //
} = var params

,"action: "query

,"meta: "tokens

S"type: "csrf

"format: "json

A{

} = var options
,"method: "get
muteHttpExceptions: true

A{

var response = UrlFetchApp.fetch(wikiApiUrl + "?" + new
;(URLSearchParams(params), options

;(Ovar data = JSON.parse(response.getContentText

;var csrfToken = data.query.tokens.csrftoken

Logger.log("CSRF Token: " + csrfToken); // Log the CSRF token

Step 3: Check if the page exists, if not create it //
} = var queryParams

,"action: "query

Jlitles: pageTitle

"format: "json

{

} = var queryOptions
,"method: "get
muteHttpExceptions: true

{

var queryResponse = UrlFetchApp.fetch(wikiApiUrl + "?" + new
;(URLSearchParams(queryParams), queryOptions
;((var queryData = JSON.parse(queryResponse.getContentText



Logger.log("Query Response: " + JSON.stringify(queryData)); // Log the query
response
;var pageExists = queryData.query.pages

If the page does not exist, create it //
} (["if (pageExists["-1
Step 4: Create a new page //
} = var createParams
,"action: "edit
Jlitle: pageTitle
text: wikiContent
,token: csrfToken
"format: "json

{

} = var createOptions
,"method: "post
,"contentType: "application/x-www-form-urlencoded
,payload: createParams
muteHttpExceptions: true

{

;(var createResponse = UrlFetchApp.fetch(wikiApiUrl, createOptions
;(Logger.log("Created new page: " + pageTitle
Logger.log("Create Response: " + createResponse.getContentText()); // Log the
APl response
} else {
If the page exists, update it /
} = var editParams
,"action: "edit
litle: pageTitle
Jtext: wikiContent
,token: csrfToken
"format: "json

A{

} = var editOptions
,"method: "post
,"contentType: "application/x-www-form-urlencoded
,payload: editParams
muteHttpExceptions: true

{

;(var editResponse = UrlFetchApp.fetch(wikiApiUrl, editOptions



;(Logger.log("Updated page: " + pageTitle
Logger.log("Edit Response: " + editResponse.getContentText()); // Log the API
response
{
{
{
{

Function to convert text to wiki markup //

} (function convertToWikiMarkup(content
Convert headings //
== content = content.replace(/*# (.+)$/gm, "== $1 =="); // Level 1 heading -> == Heading
content = content.replace(/A## (.+)$/gm, "=== $1 ==="); // Level 2 heading -> === Heading

content = content.replace(/"### (.+)$/gm, "==== $1 ===="); // Level 3 heading -> ====
==== Heading

Convert paragraphs //
content = content.replace(/\n/g, "\n\n"); // New paragraph separated by a blank line

Convert lists //
content = content.replace(/"\* (.+)$/gm, "* $1"); // Unordered list
content = content.replace(/\d+\. (.+)$/gm, "# $1"); // Ordered list

Convert links //
content = content.replace(A[(["\]]+)\\([*)]+)\)/g, "[$2 $1]"); // [Description](URL) -> [URL
[Description

(Convert tables (simple //
content = content.replace(/\| (.+)/g, "| $1"); // Table

:return content

{
{



