

Introduction to C
Blue Waters Petascale Institute 2018

Pre-Institute Training Material
Authors: Mobeen Ludin and Aaron Weeden, Shodor

KEY: $ indicates the start of command. If you want to enter the command, you should not type
the $ sign. means type a space, \ means type a space but do not hit enter yet, <ENTER>
means type the enter key, and things in this color should be replaced with relevant
information. Source code file has an extension of .c and executables have a file extension of
.exe.

Begin by following these steps
Log in to the Shodor testbed server
​ $ ssh username@testbed.shodor.org<ENTER>

Download the starter code onto the Shodor testbed server:

$ git clone \
https://github.com/aaronweeden/pi2018-intro-to-c.git<ENTER>

Change into the examples directory:

$ cd pi2018-intro-to-c<ENTER>
$ cd examples<ENTER>

Disclaimers
This is a short tutorial on C. It is intended to be a quick introduction to programming and more
specifically C syntax. You should definitely take a look at reference material for in-depth
tutorials and information on C. Also, only the first program will be explained line by line, every
other example will basically have the same structure and some new concepts.

What is C
C is a programming language designed for writing very fast applications, because it allows the
programmer to manage multi-level memory as well as I/O devices.

How to compile and run the examples
Each example we will show you has its code in a file with the extension .c. Remember you can
use the less, vi, or cat commands (or any others you know) to view the code in that file.

Page 1/20

mailto:username@bwbay.ncsa.illinois.edu

Many Linux systems (including testbed.shodor.org) have a built-in GNU C compiler, and the
way to compile is below:
​ $ gcc examplename.c -o examplename.exe<ENTER>

This creates an executable file named examplename.exe. To run the file, we simply provide
the path to it, i.e.:
​ $./examplename.exe<ENTER>

On Blue Waters, compiling is different. Blue Waters has a compiler wrapper command called cc
which contains additional options besides the default ones (and uses the Cray C compiler by
default instead of the GNU C compiler). However, the command line looks similar:
​ $ cc examplename.c -o examplename.exe<ENTER>

Running on Blue Waters is more complicated, and we will not discuss it here.

For each of the examples we will go through, we recommend reading the code, compiling it, and
running it. For further exploration, we recommend making changes to the code to see how it
works.

Page 2/20

First C Program [greetings.c]
Oftentimes the best way to learn a programming language is to take a look at a working example,
so let's get started with our first simple program that basically prints a message to the screen.

NOTE: the line numbers are provided for reference; they are not part of the code. Some
editors will have them, or allow the programmers to turn them on.

1/**
2 * Filename: greetings.c
3 * Author: Mobeen Ludin
4 * Description: first c program. This simple program basically
5 * prints a greetings message to screen
6 * How to Compile: gcc -g greetings.c -o greetings.exe
7 * How to Run: ./greetings.exe
8 * Output: Greetings from: Hello World
9 **/
10 #include <stdio.h> //C standard Library that defines printf
function.

11
12 int main(){
13
14 printf("Greetings from: Hello World\n");
15
16 return 0;
17
18 } // END: main()

Line 1-9: This is a block comment in C. It is a good programming practice to have comments in
the code that describe the algorithm, functions, variables, and data structures. For multi-line
comments in C, you use the /* (forward slash and a star) to start the comment section and */
(star and forward slash) to close the comment block. Anything /* INSIDE */ is ignored by
the compiler and will have zero effect on your program behavior.

Line 10: Demonstrates the use of the #include directive which is an instruction to the
compiler. It tells it to import the file whose name is specified between the angle brackets. We use
the #include directive to include external libraries or header files (*.h) in our programs.
These external libraries define useful functions and variables which we might use in our
program. In this program we include the "standard input/output" [stdio.h] header file. This
header file contains many of the functions which are used to print to the screen or grab an input
from the user; it defines the function printf() which we will use in the main program.
C also allows the programmer to have inline comments or single-line comments. A single-line
comment starts with // (two forward slashes); everything after the // is ignored by the
compiler until the end of the line. Inline comments are useful for a brief description of a data

Page 3/20

structure or variable in the code as well as marking the end of a function or loop. They can also
be used to temporarily disable lines of code for testing or debugging purposes.

Lines 11, 13, 15, and 17: These are empty lines, ignored by the compiler.

Line 12: This is the ‘main function’; it is the first bit of code that runs when the program is
started. In C, a main function must be given the name main. The function name is followed by a
pair of parentheses. For the main function, the parentheses may contain two named arguments,
argc and argv (we will discuss these in detail later), separated by a comma. Blocks of code,
such as the code inside the main function, are enclosed by a pair of curly brackets {}. Note that
each statement in C that is not followed by brackets must be terminated with a semicolon, ;.

Line 14: printf() is a defined function in the stdio.h library. It allows the programmer to
print some text to the screen. In this line we are using the printf() function to print a
message, or a string of characters, to the screen: Greetings from: Hello World. The
message string has to be enclosed in double quotes. The \n is used to start a new line at the end
of the message. More on functions later.

Line 16: The return 0, indicates that, at the end of the main() function, no problems were
detected during the run of the program. Note that in the UNIX shell, 0 indicates success/true,
which is why we’re using it here.

Line 18: } is used to close the block of code belonging to the main() function. Because it can
be easy to confuse which curly braces belong to which block, I have used a single-line comment
to mark the end of the block (in this case, the end of the main() function).

Variables and Data Types in C [variables.c]
In our previous examples, we used printf() function to print a simple output message to the
screen. However, printing just a greetings message is not doing anything useful. In a typical
program we will have some data that must be stored in computer’s memory, and we will have to
perform some operations on these data. When you need to store values in memory with your
program, you need to declare variables. A variable is simply an identifier for a location in
memory to which some value can be assigned.

Page 4/20

A variable has the following attributes:
●​ Name (assigned by the programmer, can’t start with a number).
●​ Address (a location in memory, assigned by the runtime system).
●​ Data type (examples: int (integer), float (single-precision decimal), double

(double-precision decimal), char (character)).
●​ Value (can be defined either at compile time or runtime).
●​ Scope (code blocks can be nested inside each other, with variables only visible to certain

blocks depending on where they are declared).
11 #include <stdio.h> //C standard Library, defines printf function.

12

13 #define PI 3.14159265358979323846 // Defining constants

14

15 int main(){

16 int radius; // Variable declaration

17 float area = 0.0; // Variable initialization

18 double pi = PI; // C is case sensitive

19 radius = 8;

20 area = pi * radius * radius;

21

22 printf("Area of a circle with radius: %d is: %.5f \n", radius,

area);

23 return 0;

24 } // END: main()

Line 13: Constant Variables in C: as the name suggests, the value of constant variables are
constant and unchanging. They are defined at the compile time, and their values cannot change
during the execution of the program. The #define directive is used to create an identifier and
associate the text on its right to it. When the code is compiled, the compiler’s preprocessor will
replace all each instance of the identifier with its associated text. In this example, every time PI
is used in the program, the preprocessor does a literal text substitution of it with the value
3.14159265358979323846. Since the preprocessor does a literal search and replace before the
code is compiled, if you have a typo in your #define statements, you can get some compiler
errors that may be hard to diagnose!

Line 16 declares an integer variable named radius.

Line 17 declares a variable area of type float (to store area of the circle as a decimal
number) and assigns it the initial value 0.0.

Page 5/20

Line 18 declares a variable pi and initializes it to have the value of the constant PI. Note that C
is case-sensitive, which means that pi and PI are two distinct identifiers.

Line 19 initializes the variable radius to have value of 8.

Line 20 computes the area of the circle using the formula A = pi * r^2. Note that the
symbol ^ does NOT mean exponentiation in C (it performs a different operation altogether), so
we use r * r instead.

Line 22 uses the printf() function to print the value of radius and the computed area of
the circle. The printf() function is used to print what is called a formatted string. When the
computer executes this statement and reaches the %d and %.5f symbols, the printf()
function looks for other arguments (inputs) to the printf() function and replaces %d and
%.5f with those values: in this case, radius and area, respectively. %d means to format the
given variable as an integer, while %.5f says to format the given variable as a floating-point
number with 5 digits after the decimal point.

Conditionals (if and else) [conditionals.c]
In our previous example, we defined some variables and computed the area of a circle. Now let’s
assume our circle has the following attributes: area, diameter, and circumference. We can do
three distinct computations about the same object, as you can see in the image below, which is
obtained from Google by searching “area of circle”.

Page 6/20

Sometimes we want our program to make decisions based on user input and by evaluating
conditional expressions. C provides an if statement for evaluating expressions. The conditional
expression is placed between the parentheses and must be able to evaluate to true (any non-0
integer) or false (0).
In this example the program is little bit more interactive. It makes use of the printf()
function to print a message to the user about the type of computations it can do, i.e. finding the
area, diameter, or circumference of a circle. The program then makes use of the scanf()
standard C input function to ask the user for the type of computation they would like to do.
Finally, the program uses if and else statements to evaluate the user input. If the user entered
1, it will execute the statement inside the first if statement which is to compute the area of a
circle. However, if the user entered 2, the first if statement will evaluate to false (0), so it will
escape executing the statement for computing the area and move on to evaluating the next
expression for calculating diameter. If that if statement is true, it calculates the diameter,
otherwise it moves on and calculates the circumference. Below is some C-like pseudo-code for
this algorithm.

int solve_for;​ ​ //Variable to hold user’s option.
scanf(“%d”, &solve_for); //Get user input

if (solve_for == 1)

 A = π * r^2; //Compute area
else if (solve_for == 2)

 d = 2 * r; //Compute diameter

else

 c = 2 * π * r; //Compute circumference

The if conditional statement is one of the most powerful concepts in programming. To avoid
writing too many if and else statements for evaluating a huge number of test cases, C
provides a switch statement to reduce complexity. See [functions.c] for an example of a
switch statement. It does pretty much the same thing, except in fewer lines of code, and the
programmer doesn’t have to worry about too many open- and close-parentheses and/or brackets.

In an if/else statement, you can use the operators in the table below to test for a condition,
e.g. to compare the values of two variables. You can also use parentheses to define the order of
operations.

Page 7/20

Operator Example Description

== x == y Is x equal to y?

!= x != y Is x NOT equal to y?

< x < y Is x less than y?

<= x <= y Is x less than or equal to y?

> x > y Is x greater than y?

>= x >= y Is x greater than or equal to y?

&& a && b Are statements a AND b both true?

|| a || b Is either statement a OR statement b true, or both?

! !a Is statement a NOT true? (i.e. is statement a false?)

Functions in C [functions.c]
C programs are organized into sets of instructions we call functions. In this example, we will see
two main reasons we use functions in our programs. One is to divide a program into subtasks,
and the other is to reuse the same code for similar subtasks instead of rewriting that code
multiple times. C functions have the following structure:

Page 8/20

Example:
// Division Function

float division(int num1, int num2){

 float result = 0;

 result = num1 / num2;

 return result;

}

To make a function execute, you must call the function by providing its name, a pair of
parentheses, and a list of any values to use as inputs. The number and types of inputs provided
must match the number and types of arguments in the declaration of the function.

Example: division(2.5, 3.7);

Loops and Arrays [for_loop.c]
In this example we will use arrays to declare three float vectors: vectA[VEC_SIZE],
vectB[VEC_SIZE], vectSum[VEC_SIZE]; where VEC_SIZE = number of elements of
each vector. And for loops are used to perform operations on arrays.
Computers were invented to perform repeated operations and task. Sometimes we have to
perform some operations until a condition is met or repeat it a fixed/known number of times. In
almost all modern programming languages including C we use the for loop to perform some
kind of task some number of times.

Page 9/20

Arrays:
Suppose we give all of you (let’s assume there are 35 of you) a quiz question to solve and grade.
We want to be able to store all the scores and compute the average. One way to do that is to
create 35 variables (s0,..,s34) to hold individual scores, and another variable (average) to hold
the average grade. It's a lot of work declaring 35 variables, but still feasible. But what if we
wanted all the University of Illinois student to take the quiz? or maybe nationally. Declaring
thousands and millions of variables could easily get out of control, not to mention hard to debug
that code or read. In C we use the array data structures to group all the students under one name
and store each score. For example: float student[35];
Arrays are used only to group variables of the same data type for example float. Also you must
declare the size of the array when initialized, because the compiler need to know how to manage
memory in way that all the elements are stored sequentially.
Array memory layout: You think of computer memory as gigantic array of cells/bytes. Each
cell has a name starting from 0 to MAX_MEM_SIZE. The name of the cell is also known as the
address of cell location in memory.

Page 10/20

Type Size in Bytes Size in Bits

int 4 Bytes 32 bit

float 4 Bytes 32 bit

double 8 Bytes 64 bit

char 1 Byte 8 bits

You can think variables memory locations as a box, that always contain exactly one thing
(integer/float/char). And the value of the variable is like the content of the box.
Boxes comes in different size. The char box is like 1cm x 1cm, int is 4cm x 4cm and a
double is like 8cm x 8cm. The bigger the box the higher it costs to ship or purchase. It's the
same concept with variables. A double costs a lot more than a float. Because we have to
allocate 8 bytes instead of four.
Why it's important to know. As a programmer you have to be conservative when declaring
variables because it can have a huge impact on the program performance. As you can see in the
example above, x is declared as an integer with value 15. Memory is allocated based on the size
of the data type. Even if only address 3 is enough to store value 15, the compiler would still
allocated the preceding three address and fill it with zeros. If we would have declared x as
double, we would be wasting 7 addresses instead.
This is important especially when dealing with arrays, because arrays are made of contiguous
grouped elements of the same data type. Each individual array element is treated as a variable.

Page 11/20

Static 2D Arrays in C [arrays.c]
This example is a matrix multiplication. The main objectives of this example are:

●​ How declare and initialize 2D arrays of various size.
●​ How to populate the array with known elements.
●​ Naive matrix multiplication algorithm.
●​ How use for loops to print 2D arrays/matrices.

Multi-Dimensional Arrays Memory Layout:
Depending on language/compilers or systems, multi-dimensional arrays are stored either
row-major or column-major. You can think of 2D array as a matrix of certain size.
Row-major: the row-major puts the first row in contiguous memory, then the second row right
after it, and so on. C/C++ stores array in a row-major order.

Page 12/20

Column-major: the column-major on the other hand puts the first column in a contiguous
memory starting with the base/first (0,0) element until last element of first column (3,0). Then
the second column, and so on. Fortran uses column-major order for storing arrays.

Page 13/20

Pointers and Arrays in C [pointers_and_arrays.c]
This example introduces that concept of pointers.
So far we have learned that when we declare
variables, the compiler allocates memory for them
based on their data type. As you can see in the
example in the right. We know that every variable
has an address and value associated with it. For
example the variable “y” has an address “6”, and
value of “a”. Variables that needs more than one
byte are usually addressed by the address of their
first byte. If we wanted to update the value of a
variable, for example, x = 20. The computer will
go to its lookup table to find variable named x,
grabs its address and update the value at that
address from 15 to 20 (well of course in binary). This is all great and powerful magic that
usually is happening behind the seen by the compiler and control units. But what if as a
programmer we want to know the address of variables and operate upon these memory address.
Well, with great power comes great
responsibility. Fortunately, C/C++ allows the
programmer to directly manipulate memory
addresses with the use of pointers.
Pointers: are variables that store the addresses of
other variables. For example:
​ int x = 15;

​ char y = "a";

​ int *ptr = &x;

First we declare a variable x and initialize it with
value 15 and it’s stored at the address 100...103.

We then declare another variable ptr, the type of
which is a pointer to an integer. It stores the address
of variable x. When declaring pointers all we have
to do is to put an * before the variable name. To get
the address of the variable, we put & before the
name of the variable. Like: int *ptr = &x;

One thing to keep in mind is that ptr still occupies
the same amount of memory as variable x.

Page 14/20

That also means that if we change the addresses in ptr from 100...103 to 230...233, or
whatever, it will be pointing now to a different variable in memory.

Output:
ptr = 0x7fff4fe63a0c

&x = 0x7fff4fe63a0c

&ptr = 0x7fff4fe63a00

*ptr = 5

new x = 8

NOTE: some platforms represent address
in hexadecimal for compactness.

Page 15/20

Function Arguments as pointers and Dynamic Arrays:
Pointers are very useful when you want to manipulate or perform operations on variables of
another function or outside the function being called.
When we run a program, let’s say:
./pointers_and_arrays, the operating system will set aside some memory called address
space for the execution of this program. The address space is usually divided into four chunks:

1.​ Stack: which is used for functions and short term and temporary data variables local to
each function. When the program execution reaches a function call, it will create a stack
frame for that function. Each function will have their own stack frame and variables that
are not accessed by other functions.

Page 16/20

2.​ Code: where instructions and program executable lives.
3.​ Data/stack: where constants, and global variables are stored.
4.​ Heap: The data in heap is for long/life time of the program execution. Mostly

dynamically allocated memory accessible by all functions.
In our example, we have three arrays for storing vectors.
​ float *vectA; //declaring a pointer variable named vectA
 ​float *vectB; //declaring a pointer variable named vectB
 ​float *vectSum;​ //declaring a pointer variable named vectSum

Each array is first declared as a pointer to a double variable and then dynamically allocated
memory to it. As we saw in the array example, each array itself is a pointer. For example, when
we declared the array float student[35];. Here the size of the array (35) means to
declare 35 float variables. Since the size is know, this array is declared on the stack and 35
contiguous 4-byte segments (totalling 140-bytes) must be allocated to store all 35 floats. The
variable student, which we refer to as an array, is actually a pointer that references the start of
the array, the memory at the location student[0].

Often in a program we want to either put variables on heap to be globally accessible by all the
functions in our program, or be able dynamically allocate memory for resizeable
variables/arrays. To do so in C, we can use the malloc() function from the standard library
(stdlib.h) that takes the number of bytes to be allocated as its argument, and it returns a
pointer to a memory region on the heap of the requested byte-size.
For example:

vectA = malloc(sizeof(double) * VEC_SIZE);
Here is a code snippet to allocate memory to store vectA as an array of double on heap. First, to
allocate an array of double on the heap, we have to know how big the array is going to be, that
is, what size is it? This could be determined either at the runtime or compile time.
In the example we define a macro VEC_SIZE 10. Here the malloc function takes an argument
that is the total number of bytes required to hold 10 double elements. Its computed based on:

●​ sizeof(double): which is itself a C function that finds the size of a data type. For
example for a double it will return 8-bytes.

●​ VEC_SIZE: the size of array (how many elements).
Since a double is 8 bytes in size, malloc() will allocate 80-bytes (8*10) of memory on the
heap in which the array of double can be stored. malloc() then returns the memory address of
the newly allocated memory, which is assigned to vectA. Since vectA is located on heap and
globally accessible, it is accessible by all the functions in our program. We do not have to
redefine the array in each function in our program.
Once we are done using the array, we have to free that allocated memory using the
free(vectA) function from C standard library (stdlib.h). If we don’t free the memory it
could cause different problems such as memory leak and more; however, those are advanced
topics beyond the scope of this lesson.

Page 17/20

Exercise: Computing as an area under a curve. π

Task:
You do not need all the materials you learned about C today to solve this problem. However,
with a subset of most common C concept/syntax you should be able to solve this problem.

Problem definition:
Often, we can estimate a desired quantity by finding the area under a curve (an integral). As an
example of this type of computation, we will estimate the value π. As everyone knows, the area
of a circle is , and therefore for a unit circle the area is just π. π𝑟2

Algorithmic strategy

The formula for the unit circle is x2 + y2 = 1. Solving for y, we get the formula . 𝑦 =± 1 − 𝑥 2

For every value of x, there will be two values of y computed. If we want to calculate π we should
compute the area under half of the circle between and and multiply that answer 𝑥 =− 1 𝑥 = 1

by 2. (In terms of integrals, we have .) π = 2
−1

1

∫ 1 − 𝑥2

​
We will approximate this total area value (of the blue region in the diagram above) by adding up
the areas of rectangles that approximately cover the area of that semicircle, as illustrated below.

Page 18/20

This diagram shows 12 rectangles of equal width that approximately cover the green 𝑤
semicircular area. Each rectangle is positioned over a subinterval of the -axis interval [-1,1], 𝑥
and the height of a rectangle is the function’s value at some value in that rectangle’s 𝑥

𝑖

subinterval. Thus, the area of a rectangle is . We must add up the areas of all 1 − 𝑥
𝑖
2 * 𝑤

these rectangles, then double that sum to get the approximation of π.

The more rectangles we use, the greater accuracy we expect in our rectangle approximation to
the exact area under the semicircular curve . Therefore, we will compute the sum with 𝑦 = 𝑓(𝑥)
millions of thin rectangles in order to get better accuracy for our estimate of . π

Note: The accuracy of our estimate depends on how many rectangles we use, and to a lesser
extent on how we choose the values . We have illustrated in the diagram above choosing as 𝑥

𝑖
𝑥

𝑖

the midpoint of each subinterval, which visibly causes the sum of rectangle areas to be a
reasonable approximation to the exact semicircular area we seek. If represents the midpoint of 𝑥

𝑖

the th rectangle, then 𝑖
 𝑥

𝑖
 = − 1 + (𝑖 + 1

2) * 𝑤

where
 ℎ = 2. 0/𝑁𝑈𝑀_𝑅𝐸𝐶𝑇𝐴𝑁𝐺𝐿𝐸𝑆

Page 19/20

Reference
https://cvw.cac.cornell.edu/(X(1)S(rfa5ssionwc00wyn0y31qejx))/Cintro/default.aspx

Page 20/20

https://cvw.cac.cornell.edu/(X(1)S(rfa5ssionwc00wyn0y31qejx))/Cintro/default.aspx

	Introduction to C
	Begin by following these steps
	Disclaimers
	What is C
	How to compile and run the examples
	
	First C Program [greetings.c]
	Variables and Data Types in C [variables.c]
	Conditionals (if and else) [conditionals.c]
	Functions in C [functions.c]
	Loops and Arrays [for_loop.c]
	Static 2D Arrays in C [arrays.c]
	Pointers and Arrays in C [pointers_and_arrays.c]
	Exercise: Computing π as an area under a curve.
	
	​We will approximate this total area value (of the blue region in the diagram above) by adding up the areas of rectangles that approximately cover the area of that semicircle, as illustrated below.

	Reference

