HBase/Phoenix RPC Scheduler
Framework

This document describes HBase RPC framework and how Phoenix extends it. It also
discusses the challenges and gaps in the framework and the potential solutions for
PHOENIX-7370.

Background:

Every read/write request requires an up-to-date schema of the table before making RPC
requests. Every request makes an RPC call to the regionserver serving SYSTEM.CATALOG
to fetch the PTable object, with the only exception being table schema param:
UPDATE_CACHE _FREQUENCY. If UPDATE_CACHE_FREQUENCY is not ALWAYS, the client
can cache the PTable object for the duration specified by UPDATE_CACHE_FREQUENCY.
In this case, not every query ends up making an RPC call to the regionserver serving
SYSTEM.CATALOG region(s).

We have seen several latency issues for tenant queries running on a large multi-tenant table
in production. These problems are associated with the fact that Coproc
MetaDataEndpointimpl that is primarily available on SYSTEM.CATALOG region serving
regionservers, takes write-lock on <tenant-id, schema-name, table-name> tuple before
scanning SYSTEM.CATALOG or retrieving PTable object from server side cache. Upserts or
Selects on tenant based views require PTable object of the parent base table and hence, all
multi-tenant read-write requests require base table PTable object. This can significantly
cause performance issues as we hold getTable() calls with write-lock for shared base tables
by all multi-tenant requests. As part of PHOENIX-6066, the write-lock has been replaced
with the read-lock because the write-lock taken by getTable() calls do not perform any
schema changes for the given table.

HBase RPC framework:

HBase uses RPC (Remote Procedure Call) framework for all the wire communication among
its components e.g. client to server (client to master daemon or client to regionservers) as
well as server to server (master to regionserver, regionserver to regionserver)
communication. HBase RPC uses Google's Protocol Buffers (protobuf) for defining the
structure of messages sent between clients and servers. Protocol Buffers allow efficient
serialization and deserialization of data, which is crucial for performance. HBase defines
service interfaces using Protocol Buffers, which outline the operations that clients can
request from HBase servers. These interfaces define methods like get, put, scan, etc., that
clients use to interact with the database.

HBase also provides Coprocessors. HBase Coprocessors are used to extend the
regionservers functionalities. They allow custom code to execute within the context of the
regionserver during specific phases of the given workflow, such as during data reads

https://issues.apache.org/jira/browse/PHOENIX-7370
https://issues.apache.org/jira/browse/PHOENIX-7370
https://issues.apache.org/jira/browse/PHOENIX-6066

(preScan, postScan etc), writes (preBatchMutate, postBatchMutate etc), region splits or
even at the start or end of regionserver operations. In addition to being SQL query engine,
Phoenix is also a Coprocessor component. RPC framework using Protobuf is used to define
how coprocessor endpoints communicate between clients and the coprocessors running on
the regionservers.

RPC priority and dedicated thread-pools:

HBase RPC framework allows clients to set priority for the given RPC call. This priority can
be set in general for any RPC calls or RPC calls for specific tables:

Java
| **
* Set the priority for this operation.
* @param priority Priority for this request; should fall
roughly in the range
* {@1link HConstants#NORMAL_QOS} to {@link
HConstants#HIGH_QOS}
W/
void setPriority(int priority);

/**

* Set the priority for this operation.

* @param tn Set priority based off the table we are going
against.

v/

void setPriority(final TableName tn);

HBase uses several RPC Scheduler implementations for clients to choose the right priority
for RPC call execution:

e FifoRpcScheduler
e MasterFifoRpcScheduler
e SimpleRpcScheduler

By default, regionservers use SimpleRpcScheduler, which is provided by
SimpleRpcSchedulerFactory.

For each RpcScheduler, corresponding RpcSchedulerFactory is used to provide the
RpcScheduler implementation:

e FifoRpcSchedulerFactory
e MasterFifoRpcSchedulerFactory
e SimpleRpcSchedulerFactory

HBase SimpleRpcScheduler provides separate thread-pools for specific workflows:

RpcServer.priority.FPBQ.Fifo.handler for high priority RPC call execution
RpcServer.metaPriority.FPBQ.Fifo.handler for hbase:meta region transition related
RPC calls

RpcServer.bulkLoad.FPBQ.Fifo.handler for bulk load workloads
RpcServer.replication.FPBQ.Fifo.handler for replication RPC calls
RpcServer.default.FPBQ.Fifo.handler for normal FIFO RPC queue based
execution

By default, priority of any RPC call is set to 0 and it goes to default.FPBQ handler pool. The
highest priority that HBase recognizes is 200. High priority requests such as meta transition
or any system table read/write are served with priority.FPBQ or metaPriority. FPBQ handler
pools.

Phoenix leverages this concept to provide its own RpcSchedulerFactory implementation and
its own priority as well as handler thread-pools.

e RpcServer.Metadata.Fifo.handler for Client to Server RPC calls for Phoenix system
tables
RpcServer.Index.Fifo.handler for RPC calls to Index tables
RpcServer.ServerSide.Fifo.handler for Server to Server RPC calls for Phoenix
system tables

e RpcServer.InvalidateMetadataCache.Fifo.handler for metadata cache invalidation
as part of redesign of Metadata caching

Each priority number used by Phoenix for above handler pools is unique and higher than
200. This is necessary because HBase recognizes 0 to 200 priority numbers and uses its
own handler pools accordingly.

RpcSchedulerFactory provided by Phoenix:

ClientRpcControllerFactory
InterRegionServerindexRpcControllerFactory
InterRegionServerMetadataRpcControllerFactory
InvalidateMetadataCacheControllerFactory

As of today, both Phoenix clients and servers use the default RpcSchedulerFactory as
ClientRpcControllerFactory. Internally, ClientRpcControllerFactory provides
MetadataRpcController. MetadataRpcController sets priority value corresponding to
RpcServer.Metadata.Fifo.handler thread-pool for any HTable operation to be performed on

any of the Phoenix system tables. This results in RpcServer.Metadata.Fifo.handler being
used for System table related RPC calls regardless of whether Phoenix client initiates the
operation or Phoenix server.

Sample Problem Statement:

Phoenix client creates CQSI connection (ConnectionQueryServices), which maintains
long time TCP connection with HBase server, usually known as HConnection or HBase
Connection. Once the connection is created, it is cached by the Phoenix client.

While PHOENIX-6066 is considered the correct fix to improve the query performance,
releasing it has surfaced other issues related to the RPC framework. One of the issues
surfaced caused deadlock for SYSTEM.CATALOG serving regionserver as it could not make
any more progress because all handler threads serving RPC calls for Phoenix system tables
(thread pool: RpcServer .Metadata.Fifo.handler) got exhausted while creating server
side connection from the given regionserver.

Several workflows from MetaDataEndpointimpl coproc require Phoenix connection, which is
usually CQSI connection. Phoenix differentiates CQSI connections initiated by clients and
servers by using a property: IS_SERVER_CONNECTION.

For CQSI connections created by servers, IS_SERVER_CONNECTION is kept true.

Under heavy load, when several clients execute getTable() calls for the same base table
simultaneously, MetaDataEndpointimpl coproc attempts to create server side CQSI
connection initially. As CQSI initialization also depends on Phoenix system tables existence
check as well as client to server version compatibility checks, it also performs
MetaDataEndpointimpl#getVersion() RPC call which is meant to be served by
RpcServer.Metadata.Fifo.handler thread-pool. However, under heavy load, the thread-pool
can be completely occupied if all getTable() calls try to initiate CQSI connection, whereas
only a single thread can take global CQSI lock to initiate HBase Connection before caching
CQSI connection for other threads to use. This has the potential to create deadlock.

While the above mentioned problem statement is a specific case, there is a generic need for
having different RPC handler pool for Phoenix system table RPC calls that are initiated by
coprocessors (regionservers) than RPC handler pool used for Phoenix system table RPC
calls that are initiated by clients.

Solutions:

e Phoenix server to server system table RPC calls are supposed to be using separate
handler thread-pools (PHOENIX-6687). However, this is not correctly working
because regardless of whether the HBase Connection is initiated by client or server,
Phoenix only provides ClientRpcControllerFactory by default. We need to provide a
separate RpcControllerFactory during HBase Connection initialization done by
Coprocessors that operate on regionservers.

e For the Phoenix server creating a CQSI connection, we do not need to check for
existence of system tables as well as client-server version compatibility. This
redundant RPC call can be avoided.

https://issues.apache.org/jira/browse/PHOENIX-6066
https://issues.apache.org/jira/browse/PHOENIX-6687

Use RpcServer.ServerSide.Fifo.handler
for Phoenix system tables

HBase Connection

»>| CQsl »| ServerRpcController

Reglonserver ServerRpcControllerFactory

—
Use RpcServer.Metadata.Fifo.handler for HBase Master
Phoenix system tables
| | CQsl MetadataRpcController
—= HBase Connection

Phoenix Client
ClientRpcControllerFactory

HBase Rpc Call priority function:

HBase Client >
HBase Connection
HBase
RegionServer

T30 T - | | | |

RpcServer.metaPriority. FPBQ.Fifo.handler
RPC Call R >| ‘ ‘ ‘ |

! > 10

RpcServer.priority. FPBQ.Fifo.handler

RpcServer.bulkLoad.FPBQ.Fifo.handler

Y B B B

RpcServer.replication.FPBQ.Fifo.handler

e ey I I N
RpcServer.default. FPBQ.Fifo.handler

Phoenix Rpc Call priority function:

ClientRpcControllerFactory
Phoenix e s 8 AR RS B 2 .
Client) >
HBase Connection
: HBase

RegionServer

g 1|

RpcServer.metaPriority. FPBQ.Fifo.handler

s I N N N

RPC Call E RpcServer.priority. FPBQ.Fifo.handler
RpcServer.bulkLoad.FPBQ.Fifo.handler

N -

RpcServer.replication.FPBQ.Fifo.handler

e A N N
RpcServer.default.FPBQ.Fifo.handler

——— o N

RpcServer.Metadata.Fifo.handler

rrr o

RpcServer.Index.Fifo.handler

P — T

RpcServer.ServerSide.Fifo.handler

I 000 N

RpcServer.InvalidateMetadataCache. Fifo.handler

	HBase/Phoenix RPC Scheduler Framework
	Background:
	HBase RPC framework:
	RPC priority and dedicated thread-pools:
	Sample Problem Statement:
	Solutions:

