

Department of Computer Engineering

​
 Senior Design Project​

T2306​
 SecuRent

​
 Design Project Final Report:

Team Members:

Mustafa Kaan KOÇ - 21903358 - kaan.koc@ug.bilkent.edu.tr
Yusuf ŞENYÜZ - 21903105 - yusuf.senyuz@ug.bilkent.edu.tr

Cengizhan TERZİOĞLU - 22003014 - cengizhan@ug.bilkent.edu.tr
Yunus Eren TÜRKERİ - 22001842 - eren.turkeri@ug.bilkent.edu.tr

Arda YILDIZ - 22003093 - yarda@ug.bilkent.edu.tr

Supervisor: Özcan ÖZTÜRK

Course Instructors: Atakan ERDEM, Mert BIÇAKÇI

Date: 12.05.2024
This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the requirements of the

Senior Design Project course CS491/2.

Table of Contents
Table of Contents​ 2
1. Introduction​ 5

1.1 Purpose of the system​ 5
1.2 Design goals​ 5

1.2.1 Usability​ 6
1.2.2 Reliability​ 6
1.2.3 Supportability​ 6
1.2.4 Scalability​ 6
1.2.5 Security​ 7
1.2.6 Maintainability​ 7
1.2.7 Marketability​ 8
1.2.8 Modularity​ 8

1.3 Definitions, acronyms, and abbreviations​ 8
1.4 Overview​ 9

2. Current Software Architecture​ 10
2.1 Possible Competitors​ 10

3. Final Architecture and Design Details​ 10
3.1 Overview​ 10

3.1.1 Description of the High Level System Architecture​ 13
3.2 Subsystem Decomposition​ 14
3.3 Hardware/Software Mapping​ 15
3.4 Persistent Data Management​ 16
3.5 Access Control and Security​ 16

4. Subsystem Services​ 17
4.1 User Interface Layer​ 17
4.2 Authentication Layer​ 18
4.3 Web Service Layer​ 18
4.4 Database Abstraction Layer​ 19
4.5 Firewall Layer​ 19
4.6 Database Layer​ 19

5. Development/Implementation Details​ 21
6. Test Cases​ 22

6.1 Upload Photo Function​ 22
6.2 Filter Function​ 22
6.3 Search Function For Houses​ 23
6.4 Display Details Function​ 23
6.5 Submit Report Function For Reporting Ad​ 23
6.6 Preview Function For Displaying Real Estate Agents​ 24
6.7 Select Agent Function​ 24
6.8 See Profile Function​ 24
6.9 Display Remaining Time For Contract​ 25
6.10 Display Notification Function For Landlord​ 25

6.11 Accept Notification Function For Landlord​ 25
6.12 Decline Notification Function For Landlord​ 26
6.13 See The Profiles Of Contract​ 26
6.14 Display Past Requests For Landlord​ 26
6.15 Display Current Requests For Landlord​ 27
6.16 End Operation For A Contract​ 27
6.17 Upload Contract Function​ 27
6.18 Display Rental Notification For Real Estate Agents​ 28
6.19 Accept Rental Notification For Real Estate Agents​ 28
6.20 Decline Rental Notification For Real Estate Agents​ 28
6.21 Display Past Requests For Real Estate Agents​ 29
6.22 Display Current Requests For Real Estate Agents​ 29
6.23 Display Houses In The Real Estate Agent’s Location​ 29
6.24 House Condition Check Upload Report​ 30
6.25 Display House Condition Check Notification For Real Estate Agents​ 30
6.26 Accept House Condition Check Request Function​ 30
6.27 Decline House Condition Check Request Function​ 31
6.28 Display Handled Complaints Function​ 31
6.29 Display Pending Complaints Function​ 31
6.30 Mark As Handled Function​ 32
6.31 Display Approved Contracts Function​ 32
6.32 Download Contracts Function​ 32
6.33 Display Uploaded Contracts Function​ 33
6.34 Accept Contract Function​ 33
6.35 Decline Contract Function​ 33
6.36 Display Complaint Notifications​ 34
6.37 Download Condition Status File Function​ 34
6.38 Submit Who Will Keep The Deposit Function​ 35
6.39 Create Account Function​ 35
6.40 Filter User Type To Display User List Function​ 35
6.41 Update Profile Function​ 36
6.42 Login Function​ 36
6.43 Forgot Password Function​ 37
6.44 Signup Function​ 37
6.45 Logout Function​ 37
6.46 Publish Ad Function​ 38
6.47 Upload Receipt Function​ 38
6.48 Update Ad Function​ 39
6.49 Display Rental Houses Of The Landlord Function​ 39
6.50 System Notification For Rental Period Extension Function​ 40
6.51 Loading Time Of The Images​ 40
6.52 Login Time​ 41

7. Maintenance Plan and Details​ 41
8. Other Project Elements​ 42

8.1 Consideration of Various Factors in Engineering Design​ 42
8.1.1 Constraints​ 42
8.1.2 Standards​ 44

8.2 Ethics and Professional Responsibilities​ 45
8.3 Teamworks​ 46

8.3.1 Contributing and Functioning Effectively on the Team​ 46
8.3.2 Helping Creating a Collaborative and Inclusive Environment​ 47
8.3.3 Taking Lead Role and Sharing Leadership on the Team​ 47
8.3.4 Meeting Objectives​ 47

8.4 New Knowledge Acquired and Applied​ 48
9. Conclusion and Future Work​ 49
10. Glossary​ 49
11. References​ 49

Detailed Design Report: SecuRent

1. Introduction

1.1 Purpose of the system

In Turkey, the renewal time for a rent contract is once per year, according to law [1].
However, this is not the case when it comes to practice. Some landlords still believe that they
have the right to increase the rent price before a contract expires in one year. Hence, tenants
complain about the unlawful increments in the rent prices, and unfortunately, the complaints
lead to heavy discussions between tenants and landlords. Unfortunately, discussions often
lead to violence in between two parties. What is more, tenants and landlords often argue
about who should keep the deposit of the house, with regards to the conditions of the house
after the contract expiration date. Hence, the tension between the two parties tends to increase
because of this situation as well.

The SecuRent application resolves/alleviates the aforementioned issues in the following
ways: Firstly, SecuRent introduces the government as the guarantor to the renting process.
Henceforth, The tenant can request a government official to evaluate the renting price of the
house before a contract is signed. Next, within the contract period, if an increment has been
made to the rent price by the landlord, the government will interfere, stating that the price
increment is illegal. According to the law, no increment can be made to the house rental
prices during the contract. Only increment can be made before the contract renewal with 25%
increment rate, in regards to the law passed on July 1st 2023 [2]. Hence, as the government
will be the authority in the rent process and act as the guarantor for the contract, the unlawful
rent price increases will be prevented. Furthermore, with the SecuRent application, the
deposit of the rented house will be kept in the government vault. As the contract expires, the
conditions of the house will be evaluated by a real estate agent. Therefore, the real estate
agent can evaluate the house conditions and register his/her evaluations to the SecuRent
system, concluding with a decision on who should keep the deposit. Henceforth, the
government can send the deposit to either the tenant or the landlord, upon the real estate
agent’s decision. Thus, the disputes between tenants and landlords caused by deciding on
who should keep the deposit will be resolved with the contribution of third parties such as the
real estate agent and the government, given that they should act objectively.

1.2 Design goals

In this section, the design goals of the system are addressed. The design goals are the quality
attributes of SecuRent system.

1.2.1 Usability

To enhance the usability, the user interface must be simple and easy to understand. Users of
the application can vary substantially. Users from all age groups (starting from 18 years old
minimum) should be able to use the application without difficulty. Our aim is to make an
application that the most of the citizens of Turkey will use. Possible tenants should be able to
access the particular home within at most 10 clicks. To ensure the usability, we are designing
simple and easy to understand home pages while utilizing the React.js and Bootstrap libraries
to design easy to understand navigation bars and user interfaces in general.

1.2.2 Reliability

SecuRent application has millions of prospective users. For this reason, the application must
be reliable and it should not crash in millions of user traffic. Hence, we will use AWS
services to maintain reliability for our application. Specifically, we will use AWS EC2 along
with AutoScaling group and Elastic Load Balancer to balance the traffic by distributing on
different processors. Moreover, we will use AWS VPC to establish our own private network
for our application to ensure that it works smoothly. Furthermore, to ensure the reliability of
our application, we will write unit tests for our front end and back end source codes. For the
back end we will use JUnit test library to write our tests and Spring annotations for
configuration. For the front end we will use Jasmine test library to write our tests and Karma
for configuration. Hence, we will test the code that we have written. The standard that we
have come to consensus is that we will have a coverage rate of 80% to ensure reliability via
unit tests. Last but not least, we will implement rate limits to our front end and back end
source codes, to prevent our application crashing from DDoS attacks. Hence, our application
will not be met with an enormous number of requests (such as 10000 requests) within a
millisecond, and will not crash.

1.2.3 Supportability

SecuRent is aimed to be used for at least 10 years. In its lifetime, new technologies may arise
and some of the users might start to use these technologies. SecuRent should be accessible in
these new technologies because it will have millions of users all around Turkey. For instance,
SecuRent should work smoothly in different browsers such as Chrome, Opera, Edge etc. In
addition, since we will use cloud based solutions (AWS services), the system we provide will
be long lasting as long as the hosting fees are paid. Thus, the application should also support
a new/emerging browser as well to ensure supportability.

1.2.4 Scalability

SecuRent is aimed to be used by all the tenants, landlords and real estate agents in the
country. Therefore, it will already be used by possibly thousands or millions of users
beginning from the first day it becomes live after the public release. Also the number of the
potential users might increase as the population of the country increases or more houses are
built in the long term. Hence, SecuRent should be scalable to be able to increase the capacity

of the servers when it is needed. Therefore, we are integrating Amazon EC2 in our system to
host and respond to the increasing number of users. With EC2’s tailored scalability options
thanks to AutoScaling group and Elastic Load Balancer (ELB), we will address the issues
varying from increasing number of users to traffic spikes with respect to the Standard and
Spot options provided by the AWS.

1.2.5 Security

SecuRent collects countless sensitive data such as Turkish Republic identity number, address
and phone number of the users, contract information, etc. All of this data will be protected by
a set of measures. First of all, AWS WAF (Web Application Firewall) will be integrated into
the system as it is a service that helps to protect our web application from common web
exploits that could affect application availability, compromise security, or consume excessive
resources. With AWS WAF, we will create rules to filter web traffic based on conditions that
we define to protect our application from malicious third parties and users. In addition, as it
was mentioned in section 1.2.2, AWS VPC will be used to provide a secure and isolated
private network which we will use to host our application. What is more, we will use AWS
IAM to manage access to AWS services and resources securely which are integrated to our
system. We will create user roles and security rules to prevent unauthorized access to the
system and its resources. Furthermore, the multi factor authentication must be added to the
system, with a confirmation mail sent to a user. In the system, as the tenants will make
payments through the application, money transactions must be secure so that no user loses
their money. Hence, we will cooperate with multi factor authentication again to provide
security. Last but not least, we will implement rate limits to our front end and back end
source codes, to prevent our application crashing from DDoS attacks. Hence, our application
will not be met with an enormous number of requests (such as 10000 requests) within a
millisecond, and will not crash, as mentioned in the reliability section as well.

1.2.6 Maintainability

To ensure maintainability we have made a set of architectural and design decisions. Here is a
list of the decisions we have made to provide maintainability in our application:

●​ We will provide documentation for our codebase through README.md files and our
webpage. Hence, the documentation will act as a guide when maintenance is required.

●​ We have decided to use module style as our architectural style. Hence, we will implement our
system in modules, which comes with meaningful units of development in itself. Thus, when
maintaining the codebase, each module can be put into investigation separately.

●​ We are using version control tools such as Git. We are committing with meaningful and self
descriptive commit messages. Hence, it becomes easier to backtrack and build upon a certain
commit when needed.

●​ We will use SonarQube to have clean code in our codebase. Therefore, we will follow the
common coding practices and correct our critical issues via SonarQube tool to have a more
maintainable code.

●​ We are providing comments in our codebase to help each other work efficiently. Therefore,
multiple people can work and communicate effectively on the same source code with the help
of the comments. Moreover, when someone takes over the codebase in the future, the
comments will help the future developers to understand the legacy code easier and ultimately
maintain it easier as well.

1.2.7 Marketability

SecuRent is a groundbreaking application that revolutionizes the house rental process by
addressing key issues faced by tenants and landlords. One of its primary features is the ability
for tenants to request government-appointed officials to determine a fair rental price if they
disagree with the landlord's set price, ensuring tenants do not overpay for their
accommodation. Additionally, the application allows landlords to upload rental contracts,
which are monitored by the government to prevent unauthorized rent increases. Furthermore,
SecuRent streamlines the deposit process by collecting deposit money at the government
treasury and disbursing it based on the house's condition at the end of the contract,
eliminating conflicts over deposit refunds between tenants and landlords. By offering these
innovative solutions, SecuRent enhances marketability by addressing critical pain points in
the house rental process, making it an attractive and reliable option for both tenants and
landlords alike. Last but not least, there is no direct competitor for SecuRent. Currently, there
are 2 similar applications however, they lack the essential features that SecuRent provides:
Endeksa and Mydeposits. These two applications will be discussed in section 2.1.

1.2.8 Modularity

SecuRent is composed of separate, independent modules that interact with each other through
well-defined interfaces. This allows for easier development, as each module can be
developed, tested, and maintained independently. Additionally, modularity improves system
flexibility and scalability, as modules can be added, removed, or modified without affecting
the entire system. In the context of SecuRent, modularity enables the system to evolve and
adapt to changing requirements and technologies, ensuring that it remains efficient, reliable,
and easy to maintain throughout its lifecycle. For these regions, the system has a modular
architecture which comprises decomposition, layered. In sections 3.1 and 3.2, the modular
structure of the system will be investigated via diagrams.

1.3 Definitions, acronyms, and abbreviations
●​ AWS: Amazon Web Services, is a cloud computing platform by Amazon that offers a variety

of cloud-based services, including computing power, storage, database management, and
content delivery. Currently, we utilize its computing, network, and storage services.

●​ EC2: Amazon Elastic Compute Cloud. It provides scalable computing capacity in the cloud.
●​ Spot: An Amazon EC2 pricing model that allows you to bid on spare Amazon EC2

computing capacity.
●​ VPC: Virtual Private Cloud. It allows you to create a private network within the AWS cloud.

●​ S3: Simple Storage Service, is an Amazon AWS offering that provides object storage. It
stores objects in buckets and is used in our project to store large files like PDFs and images
uploaded by driver users.

●​ WAF: Web Application Firewall. A firewall that protects web applications from common web
exploits.

●​ IAM: Identity and Access Management. It helps you manage access to AWS services and
resources securely.

●​ ELB: Elastic Load Balancer. It distributes incoming application or network traffic across
multiple targets, such as EC2 instances, in multiple Availability Zones.

●​ DDoS: Distributed Denial of Service. An attack where multiple compromised systems are
used to target a single system, causing a denial of service for users.

●​ JUnit: A unit testing framework for Java programming language.
●​ React.js: A JavaScript library for building user interfaces.
●​ Bootstrap: A front-end framework for developing responsive and mobile-first websites.
●​ Jasmine: A behavior-driven development framework for testing JavaScript code.
●​ Karma: A test runner for JavaScript that runs tests in real browsers.
●​ API: Application Programming Interface. It defines the methods and data formats that

applications can use to communicate with each other.
●​ JSON: Abbreviation for JavaScript Object Notation, is a human-readable format for

representing objects. It is easy to parse and serves as an excellent format for exchanging data.
●​ UI: Stands for User Interface, encompasses the visual and interactive components of software

or hardware systems that enable user-system interaction, aiding users in achieving their goals
efficiently.

●​ UML: The Unified Modeling Language, establishes standards for object modeling and
visualization. All our diagrams were created using UML.

1.4 Overview
The SecuRent is an application which enhances the house rental process as well as addressing
the issues that are related with the house rental process. SecuRent application emerges as a
pioneering solution designed to transform the dynamics between tenants and landlords. With
SecuRent, tenants can request officials (who are assigned by the government) to determine
the rental price of a house, if they are not in favor of the price set by the landlord. Thus,
ballooned prices set by the landlords can be regulated by the officials to prevent tenants
paying more than what is worth for a particular house. Furthermore, if a house is rented, the
status of the house will be updated in the application and a contract uploaded by the landlord
will enable the government to monitor the contract. If a landlord wants to increase the rent
price before the contract expiration date, the government will be notified with a request.
Hence, the rent prices will not be increased without the government's consent, ultimately
preventing unwanted skyrocketing prices that cause hardships for tenants. Moreover, with
SecuRent, the deposit money for houses will be collected at the government treasury. The
implication of this use case is that the deposit money will be given to either the tenant or the
landlord depending on the condition of the house after the contract expires. Thus, conflicts

between tenants and landlords caused by deciding who will keep the deposit money will be
solved, as the government will act as the mediator in this process.

2. Current Software Architecture
Currently, there is no existing application comparable to SecuRent that we can further
develop. While there are renting applications available, they do not encompass the essential
features of SecuRent and are typically designed for specific companies. We are also working
on implementing a payment system within the app to facilitate financial operations integrated
to the system. Our aim is to enhance user experience with the user-friendly SecuRent
application and expand our reach to the entire renting sector.

2.1 Possible Competitors

In the market, there is no robust competitor for Securent, as mentioned in the previous
paragraph. There are similar projects that include some features of SecuRent, but these
projects do not function similarly and their aims are not the same. On the internet, 2
projects/websites show a similarity in the same application domain as SecuRent: Endeksa and
mydeposits.

Endeksa is a service which offers the users to buy or rent a house. It is supported with
machine learning which predicts the market price of a house. The website has some fields to
fill in when a landlord creates a publication of a house to be sold. These fields include
specific information about the floor, facade and the condition of the flat. Users can also
examine in a specific location to look for the renting/selling opportunities. Though it is in the
same application domain as SecuRent, the contract system, interactions with the government
and the depositing system is different from SecuRent. So, in practice Endeksa is not a
challenging competitor for SecuRent since they function differently and they offer different
services [3].

Mydeposits is a service which is constructed by private rental sector experts. It is a deposit
protection service which landlords, agents and tenants can use. The website is dedicated and
designed to protect the deposits mainly, so there is no governmental profit from these
deposits or detailed tracking of contracts [4]. Regarding these missing features, mydeposits is
not a powerful competitor for SecuRent since the functionalities and scope is different.

3.1 Overview

SecuRent is a web application which easens the house rental process as well as addressing the
unlawful rent price increment and deposit retrieval problems. SecuRent is innovative since

there is no application that resolves the unlawful rent price increment and deposit retrieval
conflicts.

The system followed a three layered architectural style: Presentation layer, business layer,
and data layer. In the presentation layer, we enabled the clients to interact with the system.
Hence, we implemented the front end of the system. To do this, we used JSX syntax of
JavaScript alongside React.js library of JavaScript, as well as Bootstrap. Proceeding from the
presentation layer to the business layer, we used Axios to handle the communication between
these layers. In the business layer, we implemented the business logic of the SecuRent
system. Hence, we implemented the back end functionality of the system, while responding
to the functional and non functional constraints that will be discussed next. We used the Java
programming language and Spring Boot framework to implement the business layer. Lastly,
we have the data layer, which stores the entities and their properties. To implement this layer,
we used PostgreSQL, a relational database, which will be in communication with the
business layer through SQL queries. Last but not least, since SecuRent is intended to be an
enterprise application, we used Amazon Web Services (AWS) to host our application.
Specifically, we used Amazon Elastic Compute Cloud (Amazon EC2) to achieve a scalable
and adjustable application, as EC2 comes with the features responding to the increasing
numbers of users or sudden spikes (stark increments in the number of users) [5].

The high-level system architecture of the system is given in the next page. In the architecture,
module style is used. Main features of the system are grouped into modules and their
relationship with each other is displayed with arrows. Moreover, layered architectural style
was used, since we have different layers to respond to front end and back end requirements of
the system, as well as API layers to maintain communication in between layers. Lastly we
implement the use style, since particular modules use the functionality of other modules.

Figure 1: High Level System Architecture

3.1.1 Description of the High Level System Architecture

●​ Deposit and Payment Module: Deposits will be paid with this module.
●​ User Management and Authentication Module: In this module, authentication functionality

will be covered.
●​ Government Integration Module: In this module, government related functionality will be

covered.
○​ Assign Expert Module: The government will assign experts to houses, with the

functionality covered in this module
○​ Manage Deposits Module: The government will collect and distribute deposits with this

module.
○​ Monitor Contracts Module: With this module, the government will monitor the contracts.

●​ Renting Module: The renting functionality will be covered within this module.
○​ Rent Request Module: In this module, the tenant will request a house to be rented after

negotiations are completed with the landlord.
○​ Rent Confirm Module: The landlord will confirm the rent request of the tenant and the

status of the house will change to the rented. Hence, the house will not be displayed to
other tenants for rental purposes after the confirmation, since it has already been rented by
a tenant.

●​ Contract Management Module: The functionality will be covered within this module.
○​ Upload Module: Landlords can upload rental contracts to the system, and the government

monitors these contracts.
○​ Download Module: Uploaded rental contracts to the system can be downloaded with this

module.
○​ Confirm Module: The government will confirm the contract whether it belongs to the

renting. If the uploaded document is an irrelevant document, the landlord will be notified
to upload the contract.

●​ Expert Assessment Module: The expert judgments on the house to be rented will be carried
out in this module.
○​ Determine Price Module: The renting price of the house will be determined by the official

assigned by the government. The functionality will be covered in this module.
○​ Determine Conditions Module: The condition of the house will be determined by a real

estate agent. The real estate agent will be chosen by the tenant to provide an objective
judgment. Next, the conditions will be entered into the system by the real estate agent to
help the government decide on which party will receive the deposit depending on the
conditions.

●​ Real Estate Operations Module: Tenants can choose a real estate agent from multiple options
in a specific area to assist in the rental process. Moreover, tenants can request a real estate
agent to investigate the conditions of the house after the expiration of the contract.

●​ Dispute Resolution Module: Upon the real estate agent’s evaluation of the house conditions,
the government will determine whether the deposit goes to the tenant if the house is in good
condition or to the landlord if the house is damaged.

●​ User Interface: The GUI in which the clients will interact with the system.

●​ UI API Layer: The API layer which serves as the communication channel between the back
end and the front end of the system. HTTP requests are used to make calls in between layers.

●​ Database: The data related to the houses and contracts will be stored in the database. A
relational database will be used and SQL queries are used to make calls to the database.

3.2 Subsystem Decomposition

Figure 2: Subsystem Decomposition of SecuRent

User Interface Layer: This layer represents the interface through which users interact with the
SecuRent system and its features. It includes components such as forms, buttons, and menus
that users use to input data and receive feedback.

Authentication Layer: This layer is responsible for authenticating users and ensuring that only
authorized users can access the system. It may include components for login, password
management, and access control. AWS IAM will be used for authentication along with the
Spring Security.

Web Service Layer: This layer provides the interface for external systems or clients to
interact with the application. It includes RESTful services for data exchange, which will be
implemented in the controllers for each entity.

Database Abstraction Layer: This layer abstracts the database implementation details from
the rest of the application. It provides a simplified interface for accessing and manipulating
data, independent of the underlying database technology. We used Spring Data JPA along
with Hibernate for this layer.

Firewall Layer: This layer protects the system from unauthorized access and cyber threats. It
may include components for filtering incoming and outgoing network traffic, as well as
monitoring for suspicious activity. AWS WAF will be utilized for this layer.

Database Layer: This layer represents the actual database where the system's data is stored. It
includes components for data storage, retrieval, and management, using a PostgreSQL
database management system. MongoDB will be used as well for storing contracts uploaded
to the system.

 3.3 Hardware/Software Mapping

Figure 3: Hardware/Software Mapping of SecuRent

In the hardware/software mapping of SecuRent, the application's core components are
allocated to specific hardware or software elements. For hardware, Amazon EC2 instances
are designated for hosting, ensuring the application's availability and scalability. The Elastic
Load Balancer is utilized to evenly distribute incoming traffic among these instances,
enhancing performance and reliability. Auto Scaling groups are implemented to automatically
adjust the number of instances based on traffic volume, optimizing resource utilization. On
the software side, Java and Spring Boot are employed for the backend's business logic,
providing a robust and efficient foundation. PostgreSQL is chosen as the database, offering a
reliable and scalable data storage solution. Since AWS RDS is compatible with the
PostgreSQL database, the service is utilized in the cloud environment.

 3.4 Persistent Data Management
In SecuRent, a PostgreSQL instance will be integrated with AWS RDS, and the database
instance will be maintained within the AWS environment. Given that our backend application
is developed in Java Spring Boot, opting for an SQL database like PostgreSQL is logical. The
backend team chose PostgreSQL due to their prior experience with it, reducing the learning
curve. The database will store user data such as profile information, TCK, rented houses, and
houses owned. AWS will manage the database instance, and it will be accessed through the
REST API running on the Java Spring Boot framework.

 3.5 Access Control and Security

We have opted to utilize the Java programming language and the Spring Boot framework for
constructing the business layer of our project. To handle authentication, we have chosen
SAML 2.0, facilitated by Spring Security. SAML 2.0 operates on an XML-based protocol,
utilizing security tokens that carry assertions to convey information about a user (typically an
end user) between a SAML authority, known as an Identity Provider, and a SAML consumer,
known as a Service Provider.

Additionally, our authentication strategy includes Remember-Me Authentication, which
employs a straightforward hash-based token method. This approach utilizes hashing to
establish an effective remember-me functionality. Essentially, upon successful interactive
authentication, a cookie is transmitted to the browser.

Moreover, we have incorporated X.509 authentication. This authentication method is
commonly employed to verify the identity of a server in SSL usage, particularly with HTTPS
from a browser. The browser automatically verifies that the server's certificate is issued
(digitally signed) by one of the trusted certificate authorities it maintains.

4. Subsystem Services

 4.1 User Interface Layer

Figure 4: User interface layer of SecuRent

User interface layer has the front-end pages that the end-users will be able to view and use.
These are:
Admin Interface: Manages the pages for the admins of SecuRent
Account Management Interface: The user interface which will be used by admins to add,
delete and update accounts in SecuRent
Expert Interface: Manages the pages for the experts that are assigned by the government
Rent Price Determination Interface: The user interface which will be used by experts to
enter rent prices of the houses after conditions of those houses are evaluated
Government Interface: Manages the pages for the government officials
Deposit Management Interface: The user interface which will be used by government
officials to retrieve and withdraw the deposits of the houses
Contract Management Interface: The user interface which will be used by government
officials to monitor rental contracts between tenants and landlords
Landlord Interface: Manages the pages for the landlords
House Registering Interface: The user interface which will be used by landlords to add their
houses to the SecuRent database
Renting Requests Evaluation Interface: The user interface which will be used by landlords
to monitor, accept or reject the renting requests coming from the tenants for their houses
Real Estate Agent Interface: Manages the pages for the real estate agents
Rental Services Evaluation Interface: The user interface which will be used by real estate
agents to enter the results of the rental services that are requested by the tenants
House Conditions Evaluation Interface: The user interface which will be used by real
estate agents to enter the house conditions before and after the renting period
Tenant Interface: Manages the pages for the tenants
Deposit Payment Interface: The user interface which will be used by tenants to pay the
deposits of the houses they rented and retrieve them back when they decide to leave the house
Renting Requests Interface: The user interface which will be used by tenants to send
renting requests to the landlords

 4.2 Authentication Layer

Figure 5: Authentication layer of SecuRent

Authentication layer has the services that are required to determine whether a user has access
to a certain page or not. These are:
Authentication Service: The main service which determines whether the user has access to a
page or not
Spring Security: Security package of the Spring Boot
IAM Authentication Service: An AWS service that securely controls access to other AWS
services
AWS Services: Cloud services which are provided by Amazon

 4.3 Web Service Layer

Figure 6: Web service layer of SecuRent

Web service layer has the services that are required to perform the actions of users. These are:
Account Management: Service which is used to add, delete and update user accounts
Contract Management: Service which is used for all rental contract related operations
Contract Download Management: Service which is used to download rental contracts to
the system
Contract Upload Management: Service which is used to upload rental contracts from the
system
House Management: Service which is used for all house related operations
Registering Management: Service which is used to add, delete or update houses
House Search Management: Service which is used to query houses from the database
Renting Requests Management: Service which is used for all renting request related
operations
Rental Services Management: Service which is used to create or evaluate rental service
requests
Rent Price Evaluation Management: Service which is used to create house price evaluation
requests and enter the evaluation results of those requests
Deposit Management: Service which is used for all deposit related operations
Deposit Payment Management: Service which is used to get deposit payments of the
tenants

Deposit Distribution Management: Service which is used to distribute the deposits from
government back to tenants or landlords

 4.4 Database Abstraction Layer

Figure 7: Database abstraction layer of SecuRent

Database Abstraction Tool: In our project, we utilize Spring Data JPA in conjunction with
Hibernate as our database abstraction tool. This combination allows us to abstract the data to
a format that is appropriate for the database we are using. This abstraction simplifies the
interaction with the database, reducing the need for boilerplate code and providing additional
features such as caching, lazy loading, and transaction management.

 4.5 Firewall Layer

Figure 8: Firewall layer of SecuRent

AWS Web Application Firewall: The AWS Web Application Firewall (WAF) is a critical
component of our infrastructure, serving as a protective barrier for our web servers against a
variety of external attacks. By leveraging the AWS WAF, we can defend our web applications
from common threats such as SQL injection, cross-site scripting (XSS), and other malicious
activities. This security measure is essential for maintaining the integrity and availability of
our web services, ensuring that they remain resilient and secure against potential threats.

 4.6 Database Layer

Figure 9: Database layer of SecuRent

The database layer of the SecuRent application encompasses both the database itself and the
entity classes.

Database: The database serves as the repository for all the data that the SecuRent application
relies on, storing information such as user profiles, rental listings, and transaction records. We
are using PostgreSQL as our database management tool and pgAdmin as a graphical
administration tool to manage our tables stored in the database.
Entity: The entity classes represent the various models within the application, defining the
structure and behavior of the data. Here are the entities of the SecuRent application: Admin,
Expert, Government, House, HouseProperties, Landlord, RealEstateAgent, RentalAd,
RentalContract, RentRequest, Tenant.

Together, these components form the foundation of the application's data management
system, ensuring that data is stored efficiently and accurately. The database layer plays a
crucial role in the overall functionality and performance of SecuRent, providing a reliable and
secure means of storing and accessing data essential to the application's operation.

Figure 10: Entity relationship diagram of SecuRent

5. Development/Implementation Details

While developing our project, we used the agile methodology. It gave us an iterative
approach that emphasizes flexibility, collaboration, and continuous improvement. We used
the Jira software and used weekly sprints throughout the year.

Before we start implementing the project we divided our group to 2 smaller teams: backend
and frontend teams. The frontend team finished most of the mockup screens (static design of
the web page) in the first semester. Backend team started to implement business logic and
model classes in the first semester.

In the second semester the frontend team started to do the following:

●​ They learn Swagger for establishing API endpoint connections.
●​ They merged UI JSX files mockup classes into a single function React component.
●​ They merged profile JSX files into one.
●​ They created test cases.
●​ They finished designing and coding the pages of the website. They implemented the

pages such as: ApprovedContracts, Contracts, ForgotPassword, HomePage for each
user, HouseDetails, LandlordCurrentRequest, NavBar for each user, Profile for each
user.

●​ They added images of houses.
In the second semester the backend team started to do the following:

●​ They implemented service modules for the Government class.
●​ They implemented service modules for the Landlord class.
●​ They implemented service modules for the Tenant class.
●​ They implemented backend functionalities for the implemented classes.
●​ After the service classes, necessary repositories are created for database operations

such as RentRequestRepository, TenantRepository, UserRepository,
RealEstateAgentRepository, LandlordRepository, GovernmentRepository and
HouseRepository.

●​ They developed login and sign up pages.
●​ They created exception classes for errors.
●​ They created enums files for improved code readability. Examples of those enums

files are: HouseType, Role, ServiceType, and GovernmentServiceType.
●​ They created controller files for pages.
●​ They added authentication.

After, both the backend and frontend team finished their parts, we connected backend and
frontend by arranging API Endpoints. We exposed the API endpoints from the backend
server to allow the frontend to make requests. We ensured that CORS (Cross-Origin Resource
Sharing) is properly configured to allow requests from the frontend domain. We used Axios.

After we completed our project,we used Amazon Web Services (AWS) to host our
application. We deployed our project by using Amazon EC2 (Amazon Elastic Compute
Cloud).

Throughout the year we used GitHub for version control, collaboration and project
management. We were able to track changes in our codebase, and undo the changes if
necessary. We used previous versions when needed. This helped us work on the same project
concurrently without risk of overwriting each other's changes. We used various branches such
as backend, frontend and additional branch for each member, we sometimes used additional
branches for some important features. Then we merged changes from one branch into
another.

6. Test Cases
We have used the following severity levels for our test cases: low, intermediate and critical.

6.1 Upload Photo Function

6.2 Filter Function

Test ID 001 Category Functional Severity Intermediate

Objective This test case verifies if the user can upload a photo (i.e., profile picture).

Steps 1.​ Login as a tenant.
2.​ Navigate to the profile screen.
3.​ Click on “upload photo”.
4.​ Select a photo from the file browser.
5.​ Click “Select”.

Expected A new photo will be uploaded into the system.

Date-Result 07/05/2024 - Passed.

Test ID 002 Category Functional Severity Low

Objective This test case verifies if the user can filter the number of rental ad results (i.e., on
the home page, where the user scrolls through the rental ads).

Steps 1.​ Login as a tenant.
2.​ Navigate to the filter button on the home page (for tenants, real estate

agents, and state officials).
3.​ Change the max result from the dropdown.

6.3 Search Function For Houses

6.4 Display Details Function

6.5 Submit Report Function For Reporting Ad

4.​ Click on “Filter”.

Expected A filtered version of the rental ads will appear on the home page.

Date-Result 07/05/2024 - Failed because we decided not to use a filter component.

Test ID 003 Category Functional Severity Critical

Objective This test case verifies if the user can use the search bar for the rental house ads.

Steps 1.​ Login as a tenant.
2.​ Navigate to the search bar on the home page.
3.​ Search for any ad.
4.​ Click on the “Search” button.

Expected The ad results to be displayed will change related to the searched value.

Date-Result 07/05/2024 - Passed.

Test ID 004 Category Functional Severity Critical

Objective This test case verifies if the user can click and view the details of an ad.

Steps 1.​ Login as a tenant.
2.​ Scroll through the houses on the home page.
3.​ Click on the details of an ad.

Expected A new page with the details of an ad should be displayed.

Date-Result 07/05/2024 - Passed.

Test ID 005 Category Functional Severity Critical

Objective This test case verifies if the user can submit a report about an ad.

Steps 1.​ Login as a tenant.
2.​ Navigate to the details of an ad by clicking the “Details” button.

6.6 Preview Function For Displaying Real Estate Agents

6.7 Select Agent Function

6.8 See Profile Function

3.​ Click on the “Report Ad” button.

Expected A modal will pop up in which a user can report an ad.

Date-Result 07/05/2024 - Failed because later we decided that the report ad function is out of
our scope.

Test ID 006 Category Functional Severity Critical

Objective This test case verifies if the user can preview the list of real estate agents.

Steps 1.​ Login as a tenant.
2.​ Click on the “Details” button on an ad.
3.​ Click on the “Preview” button in the ad details.

Expected A new page will load showing the list of real estate agents.

Date-Result 07/05/2024 - Passed.

Test ID 007 Category Functional Severity Critical

Objective This test case verifies if a tenant can select a real estate agent.

Steps 1.​ Login as a tenant.
2.​ Click on the “Details” button on an ad.
3.​ Click on the “Preview” button in the ad details.
4.​ Click on “Select Agent” in the real estate agent list

Expected A notification will be sent to the corresponding real estate agent.

Date-Result 07/05/2024 - Passed.

Test ID 008 Category Functional Severity Critical

Objective This test case verifies if a tenant can see the profiles of a real estate agent through
a list of them.

Steps 1.​ Login as a tenant.
2.​ Click on the “Details” button on an ad.
3.​ Click on the “Preview” button in the ad details.

6.9 Display Remaining Time For Contract

6.10 Display Notification Function For Landlord

6.11 Accept Notification Function For Landlord

4.​ Click on “See Profile” in the real estate agent list

Expected A new page showing the corresponding real estate agent’s profile will appear.

Date-Result 07/05/2024 - Passed.

Test ID 009 Category Functional Severity Critical

Objective This test case verifies if a tenant can see the remaining time for the contract end.

Steps 1.​ Login as a tenant.
2.​ Click on the “Rented House” in the top nav bar in tenant home page.

Expected A page will show the remaining time for the contract end, with a button that will
let the user select a new agent.

Date-Result 07/05/2024 - Failed because we changed that page’s design and the new design
does not involve remaining time.

Test ID 010 Category Functional Severity Critical

Objective This test case verifies if a landlord can see their notifications.

Steps 1.​ Login as a landlord.
2.​ Click on the “Notifications” tab on the top nav bar.

Expected A page will show the rental notifications to a landlord user, with the requests and
who made that request, along with their photos.

Date-Result 07/05/2024 - Passed.

Test ID 011 Category Functional Severity Critical

Objective This test case verifies if a landlord can accept a rental request.

Steps 1.​ Login as a landlord.
2.​ Click on the “Notifications” tab on the top nav bar.

6.12 Decline Notification Function For Landlord

6.13 See The Profiles Of Contract

6.14 Display Past Requests For Landlord

3.​ Click on “Accept” for a rental request.

Expected The rental request will be accepted and the request will drop to the current
requests page.

Date-Result 07/05/2024 - Passed.

Test ID 012 Category Functional Severity Critical

Objective This test case verifies if a landlord can decline a rental request.

Steps 1.​ Login as a landlord.
2.​ Click on the “Notifications” tab on the top nav bar.
3.​ Click on “Decline” for a rental request.

Expected The rental request will be declined and the landlord and the rental request will be
put into the past requests page.

Date-Result 07/05/2024 - Passed.

Test ID 013 Category Functional Severity Critical

Objective This test case verifies if a landlord can see the profiles of contracts

Steps 1.​ Login as a landlord.
2.​ Click on the “Current Requests” tab on the top nav bar.
3.​ Click on the “See Profiles” button in a request.

Expected A new page will show the tenant and real estate agent corresponding to the clicked
request.

Date-Result 07/05/2024 - Passed.

Test ID 014 Category Functional Severity Critical

Objective This test case verifies if a landlord can see the past requests.

Steps 1.​ Login as a landlord.
2.​ Click on the “Past Requests” tab on the top nav bar.

Expected A new page will show past rental requests with the associated tenant and real
estate agent.

6.15 Display Current Requests For Landlord

6.16 End Operation For A Contract

6.17 Upload Contract Function

Date-Result 07/05/2024 - Passed.

Test ID 015 Category Functional Severity Critical

Objective This test case verifies if a landlord can display the current requests list in their
page.

Steps 1.​ Login as a landlord.
2.​ Click on the “Current Requests” tab on the top nav bar.

Expected A new page will show the current requests related to the landlord user.

Date-Result 07/05/2024 - Passed.

Test ID 016 Category Functional Severity Critical

Objective This test case verifies if a landlord end an operation for a contract.

Steps 1.​ Login as a landlord.
2.​ Click on the “Current Requests” tab on the top nav bar.
3.​ Click on the “End Operation” button on any rental request.

Expected The operation will end and the request will drop to the past requests page.

Date-Result 07/05/2024 - Passed.

Test ID 017 Category Functional Severity Critical

Objective This test case verifies if a landlord can upload a contract for a rental request and
officially verify the rental request by doing so.

Steps 1.​ Login as a landlord.
2.​ Click on the “Current Requests” tab on the top nav bar.
3.​ Click on the “Upload Contract” button on any rental request.

Expected The operation will be completed with the contract being uploaded.

Date-Result 07/05/2024 - Passed.

6.18 Display Rental Notification For Real Estate Agents

6.19 Accept Rental Notification For Real Estate Agents

6.20 Decline Rental Notification For Real Estate Agents

6.21 Display Past Requests For Real Estate Agents

Test ID 018 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can view rental notifications.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “Notifications” tab on the top nav bar.

Expected A page will show the rental notifications for a real estate agent user, having
decline and accept buttons.

Date-Result 07/05/2024 - Passed.

Test ID 019 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can accept a rental notification.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “Notifications” tab on the top nav bar.
3.​ Click on “Accept” for a rental notification

Expected The accepted rental notification will move to the “Current Requests” tab
accordingly.

Date-Result 07/05/2024 - Passed.

Test ID 020 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can decline a rental notification.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “Notifications” tab on the top nav bar.
3.​ Click on “Decline” for a rental notification

Expected The accepted rental notification will move to the “Past Requests” tab accordingly.

Date-Result 07/05/2024 - Passed.

6.22 Display Current Requests For Real Estate Agents

6.23 Display Houses In The Real Estate Agent’s Location

6.24 House Condition Check Upload Report

Test ID 021 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can view past requests.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “Past Requests” tab on the top nav bar.

Expected The user will be able to see past requests.

Date-Result 07/05/2024 - Passed.

Test ID 022 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can view current requests.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “Current Requests” tab on the top nav bar.

Expected The user will be able to see current requests.

Date-Result 07/05/2024 - Passed.

Test ID 023 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can view houses in his location.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “Home” tab on the top nav bar.

Expected The user will be able to see the houses only in his location

Date-Result 07/05/2024 - Failed because real estate agents can display all of the houses. We
did not filter the location instead we changed the feature to display all houses.

Test ID 024 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can upload a report for a house
condition check.

6.25 Display House Condition Check Notification For Real Estate
Agents

6.26 Accept House Condition Check Request Function

6.27 Decline House Condition Check Request Function

Steps 1.​ Login as a real estate agent.
2.​ Click on the “House Condition List” tab on the top nav bar.
3.​ Click on the “Upload Report” button on for a house.

Expected The report will be uploaded and the house condition check card will disappear.

Date-Result 07/05/2024 - Passed.

Test ID 025 Category Functional Severity Critical

Objective This test case verifies if a real estate agent can display the house condition check
notifications.

Steps 1.​ Login as a real estate agent.
2.​ Click on the “House Condition Notifications” tab on the top nav bar.

Expected A page will show the house condition check notifications.

Date-Result 07/05/2024 - Passed.

Test ID 026 Category Functional Severity Critical

Objective This test case is to verify that accepting house condition checks for real estate
agents is working.

Steps 1.​ Login as a real estate agent.
2.​ Navigate to the house condition check screen.
3.​ Click on the notification and see the house details.
4.​ Accept the request if you wish.

Expected The notification should be removed from the house condition check screen and
displayed in the house condition list page.

Date-Result 07/05/2024 - Passed.

Test ID 027 Category Functional Severity Critical

Objective This test case is to verify that the declining house condition check for real estate
agent function is working.

Steps 1.​ Login as a real estate agent.
2.​ Navigate to the house condition check screen.

6.28 Display Handled Complaints Function

6.29 Display Pending Complaints Function

6.30 Mark As Handled Function

3.​ Click on the notification and see the house details.
4.​ Decline the request if you wish.

Expected The notification should be removed from the house condition check screen and
displayed in the pa page.

Date-Result 07/05/2024 - Passed.

Test ID 028 Category Functional Severity Intermediate

Objective This test case is to verify that state officials can display the handled complaints.

Steps 1.​ Login as a state official.
2.​ Navigate to the handled complaints screen.
3.​ Display all the handled complaints

Expected When a complaint is handled by a state official, it should be displayed in this tab.

Date-Result 07/05/2024 - Passed.

Test ID 029 Category Functional Severity Critical

Objective This test case is to verify that state officials can display the pending complaints.

Steps 1.​ Login as a state official.
2.​ Navigate to the pending complaints screen.
3.​ Display all the pending complaints

Expected When a user sends a complaint request such as an overview for rental increment,
and if the complaint is removed from the notifications screen, it should be seen
under this screen.

Date-Result 07/05/2024 - Passed.

Test ID 030 Category Functional Severity Critical

Objective This test case is to verify that state officials can mark a pending complaint as
handled.

Steps 1.​ Login as a state official.
2.​ Navigate to the pending complaints screen.
3.​ See the house details if needed.
4.​ Click the “mark as handled” button to flag this complaint as a resolved

6.31 Display Approved Contracts Function

6.32 Download Contracts Function

6.33 Display Uploaded Contracts Function

one.

Expected When the state official marked a complaint as handled, it should be removed from
this page to “Handled Complaints” screen.

Date-Result 07/05/2024 - Failed because there were inconsistencies between backend and
frontend. Due to such inconsistencies we could not make it on time.

Test ID 031 Category Functional Severity Critical

Objective This test case is to verify that state officials can display the approved rental
contracts.

Steps 1.​ Login as a state official.
2.​ Navigate to the approved contract screen.
3.​ Display the whole list of approved contracts.

Expected When the state official navigates to this screen, he/she should be able to see all of
the approved contracts.

Date-Result 07/05/2024 - Passed.

Test ID 032 Category Functional Severity Critical

Objective This test case is to verify that state officials can download the rental contracts in
both approved contracts page and contracts page.

Steps 1.​ Login as a state official.
2.​ Navigate to the approved contracts or contracts screen.
3.​ Download the contract by clicking the “Download Contract” button.

Expected When the state official navigates to one of these screens, he/she should be able to
download the contract whenever they desire. The contracts should stay on that
page after downloading them.

Date-Result 07/05/2024 - Passed.

Test ID 033 Category Functional Severity Critical

Objective This test case is to verify that state officials can see the contracts uploaded by
tenants.

Steps 1.​ Login as a state official.

6.34 Accept Contract Function

6.35 Decline Contract Function

6.36 Display Complaint Notifications

2.​ Navigate to the contracts screen.
3.​ Display the uploaded contracts to decline or accept.

Expected When the state official navigates to the contracts screen, he/she should be able to
see the whole list of contracts.

Date-Result 07/05/2024 - Passed.

Test ID 034 Category Functional Severity Critical

Objective This test case is to verify that state officials can accept the contracts uploaded by
tenants.

Steps 1.​ Login as a state official.
2.​ Navigate to the contracts screen.
3.​ Accept uploaded contracts.

Expected When a state official accepts the contract, the notification should disappear and be
displayed under the “Approved Contracts” page.

Date-Result 07/05/2024 - Failed because there were inconsistencies between backend and
frontend. Due to such inconsistencies we could not make it on time.

Test ID 035 Category Functional Severity Critical

Objective This test case is to verify that state officials can decline the contracts uploaded by
tenants.

Steps 1.​ Login as a state official.
2.​ Navigate to the contracts screen.
3.​ Decline uploaded contracts.

Expected When a state official declines the contract, the notification should disappear.

Date-Result 07/05/2024 - Failed because there were inconsistencies between backend and
frontend. Due to such inconsistencies we could not make it on time.

Test ID 036 Category Functional Severity Critical

Objective This test case is to verify that state officials can display the complaint sent by the

6.37 Download Condition Status File Function

6.38 Submit Who Will Keep The Deposit Function

other users.

Steps 1.​ Login as a state official.
2.​ Navigate to the notifications screen.
3.​ Display the whole list of complaint notifications.

Expected When the state official opens the notifications page, she/he should be able to see
the notifications until they click the “Handle” button. If all the notifications’
“Handle” button is clicked, the page should display “There are no notifications”
text.

Date-Result 07/05/2024 - Passed.

Test ID 037 Category Functional Severity Critical

Objective This test case is to verify that state officials can download the condition status file
to use it while deciding who will keep the deposit at the end of the rental
operation.

Steps 1.​ Login as a state official.
2.​ Navigate to the deposit side screen.
3.​ Click the “Download Condition File” button.

Expected When the state official clicks the “Download Condition File” button, it should
download the pdf file uploaded by the tenants.

Date-Result 07/05/2024 - Failed because there were inconsistencies between backend and
frontend. Due to such inconsistencies we could not make it on time.

Test ID 038 Category Functional Severity Critical

Objective This test case is to verify that state officials can submit who will keep the deposit.

6.39 Create Account Function

6.40 Filter User Type To Display User List Function

6.41 Update Profile Function

Steps 1.​ Login as a state official.
2.​ Navigate to the deposit side screen.
3.​ After deciding who will keep the deposit money by examining the

condition file, choose the deposit side by clicking the corresponding radio
button and “Submit” button.

Expected When the state official clicks the “Submit” button, the corresponding card should
disappear and the decision should be seen by both the tenant and landlord.

Date-Result 07/05/2024 - Failed because there were inconsistencies between backend and
frontend. Due to such inconsistencies we could not make it on time.

Test ID 039 Category Functional Severity Critical

Objective This test case is to verify that the admin account can create state official accounts.

Steps 1.​ Login as admin.
2.​ Navigate to the create state official screen.
3.​ Fill the form to assign state offical’s attributes.
4.​ Upload a profile picture for the state official
5.​ Click the “Create Account” button to end the operation.

Expected When the admin creates a state official account, the account should be able to
perform a state official’s job.

Date-Result 07/05/2024 - Passed.

Test ID 040 Category Functional Severity Critical

Objective This test case is to verify that the admin can filter the whole user list to see a
specific actor.

Steps 1.​ Login as admin.
2.​ Navigate to the user list screen.
3.​ Click the corresponding radio button to display that actor’s list.
4.​ Click the “List User” button to see that actor’s list.

Expected When the admin chooses a user type and wants to display it, the screen should
only display that type of user.

Date-Result 07/05/2024 - Passed.

Test ID 041 Category Functional Severity Critical

Objective This test case is to verify that the admin can update an existing profile’s
information.

6.42 Login Function

6.43 Forgot Password Function

Steps 1.​ Login as admin.
2.​ Navigate to the user list screen.
3.​ Choose a user to change its profile information by clicking the

corresponding “Update Profile” button
4.​ It will take the admin to a new page in which he/she can change the

profile information.
5.​ After changing the attributes, click the “Update Account Information”

button.

Expected When the admin changes the profile information of a user, the changes could be
seen by other users.

Date-Result 07/05/2024 - Passed.

Test ID 042 Category Functional Severity Critical

Objective This test case is to verify that all of the user types can login into the system.

Steps 1.​ Open the login page
2.​ Enter your e-mail address and password
3.​ Click the “Login” button

Expected When a user enters his/her credentials, they need to be directed into the system.

Date-Result 07/05/2024 - Passed.

Test ID 043 Category Functional Severity Critical

Objective This test case is to verify that the users can use the forgot password function in
case they cannot remember their passwords.

Steps 1.​ Open the login page
2.​ Click “Forgot Password” button
3.​ Enter your e-mail address to receive mail from the system.
4.​ Enter the password in the mail sent by the system to login into your

6.44 Signup Function

6.45 Logout Function

6.46 Publish Ad Function

account.

Expected When users use the forgot password function, they need to receive mail to be able
to login into the system.

Date-Result 07/05/2024 - Failed because we removed that feature.

Test ID 044 Category Functional Severity Critical

Objective This test case is to verify that users can create landlord, real estate agent and
tenant accounts.

Steps 1.​ Open the signup page
2.​ Choose the account type by clicking the corresponding radio button.
3.​ Fill the form by entering the necessary information.
4.​ Click the “Sign Up” button to create the account.

Expected Users can easily create landlord, real estate agent and tenant accounts by simply
filling the form and the accounts should be seen in the backend.

Date-Result 07/05/2024 - Passed.

Test ID 045 Category Functional Severity Critical

Objective This test case is to verify that all of the actors should be able to logout from the
system.

Steps 1.​ Click the button with the profile picture that lays on the upper right corner
of the page.

2.​ Click the “Logout” button.

Expected When users click the “Logout” button, they should be logged out from the system
and directed to the login page.

Date-Result 07/05/2024 - Passed.

Test ID 046 Category Functional Severity Critical

Objective This test case is to verify that landlord actor will be able to publish ads of their
houses.

Steps 1.​ Login as a landlord.
2.​ Navigate to publish ad page
3.​ Upload images of the house by clicking the “Upload Image” button.
4.​ Fill the comprehensive form that defines the house.
5.​ Click the “Publish Ad” button.

6.47 Upload Receipt Function

6.48 Update Ad Function

Expected After an ad is issued by a landlord, it is expected that the ad will be displayed in
the system to allow other actors to see the house details.

Date-Result 07/05/2024 - Passed.

Test ID 047 Category Functional Severity Critical

Objective This test case is to verify that after renting a house, the system can understand the
deposit is paid by the tenant.

Steps 1.​ Login as a tenant.
2.​ Navigate to the upload receipt page.
3.​ If the previous procedures are done, upload the receipt that is generated by

the bank.
4.​ Click the “Upload Receipt” button.

Expected When the tenant uploaded the receipt, it should display a pop-up that indicates
receipt is successfully uploaded. If a problem occurs, it should be displayed as a
pop-up. Also, the uploaded receipt should be seen by the state officials.

Date-Result 07/05/2024 - Failed because we decided not to take receipt in the system.

Test ID 048 Category Functional Severity Critical

Objective This test case is to verify that a published ad can be edited by the landlord if
desired.

Steps 1.​ Login as a landlord.
2.​ Navigate to the my ads page.
3.​ Click the “Edit Ad” button.
4.​ Change the parts of the ad that you want to edit.
5.​ Click the “Save Changes” button.

6.49 Display Rental Houses Of The Landlord Function

6.50 System Notification For Rental Period Extension Function

Expected The landlord should receive a pop-up that indicates changes are successfully saved
after submitting the changes. When a landlord edits an ad, the changes should be
displayed for all of the other actors.

Date-Result 07/05/2024 - Passed.

Test ID 049 Category Functional Severity Critical

Objective This test case is to verify that the landlord can see the list of his/her published
rental houses.

Steps 1.​ Login as a landlord
2.​ Navigate to the my houses page.
3.​ Display the list of the rental houses published by that specific landlord.

Expected When a landlord goes to my houses screen, he/she should be able to see the houses
published.

Date-Result 07/05/2024 - Passed.

Test ID 050 Category Functional Severity Low

Objective This test case is to verify that when the contract validity period becomes under a
threshold value (7 days), the system sends an e-mail to both tenant and landlord.

Steps 1.​ Create a rental operation by applying the procedure.
2.​ Manually decrease the validity period under the threshold value.
3.​ Check the mailboxes of the both tenant and landlord actors.

Expected After the remaining time for a contract has become less than the threshold value,
the system should send an email for both tenant and landlord actors as a reminder.

Date-Result 07/05/2024 - Failed because we discarded displaying the remaining time function.

6.51 Loading Time Of The Images

6.52 Login Time

Since our test cases mostly consist of functional operations, their severity level is generally
critical. We wanted to give priority to the functional features because this is how we

So, that feature automatically removed.

Test ID 051 Category Non-Function
al

Severity Low

Objective This test case is to verify that a published ad can be edited by the landlord if
desired.

Steps 1.​ Login as a tenant.
2.​ Go to the home page where the ads are displayed.
3.​ Check the loading time of the images in the ad.
4.​ If the time was too long (more than 5 seconds), try to optimize the loading

function.

Expected The loading time should not bore the user.

Date-Result 07/05/2024 - Failed because we could not focus on increasing user experience.

Test ID 052 Category Non-Function
al

Severity Low

Objective This test case is to verify that an actor is logging into the system under a
reasonable amount of time.

Steps 1.​ Connect the log in function to the front-end
2.​ Check the required time for logging in.
3.​ If the time was too long (more than 5 seconds), try to optimize the logging

function

Expected Actors should be able to log into the system without waiting too long.

Date-Result 07/05/2024 - Failed because we could not focus on increasing user experience.

understand the system is working or not. However, we have some non functional test cases to
optimize the user experience.

7. Maintenance Plan and Details
We wrote a clear code with descriptive comments to be able to handle the maintenance easier.
Currently, we are not planning to do any maintenance on the application as we do not have a
customer that will buy our application. We will try to find a suitable customer and arrange a
meeting with them to discuss how exactly our maintenance will go. If we find such a
customer, we are aiming to focus on the following actions for our maintenance.

1.​ Scheduled Updates: We are planning to schedule regular updates to address the
needs of our customers and end users that emerge after deployment. We are also
aiming to enhance the security of our application with these updates to ensure the
safety of our users and their data.

2.​ Performance Monitoring: We will continuously check response time, server uptime,
etc. of our application to take proactive measures in case of any deviation from the
expected result.

3.​ Security Audits: We will regularly perform security audits to see if there are any
vulnerabilities in our application. Performing such audits are very important because
in case of any security vulnerabilities, people might lose their houses, money, etc.

4.​ User Support: A dedicated user support team will be available to resolve the
technical problems that might arise in the application.

5.​ Backup and Recovery: We will replicate and keep at least one backup of each data
so that we can recover them in case of a cyber attack or technical problem. We will
prevent any data loss that might occur in such events.

6.​ Scalability Planning: As the user and data size we will scale up the backup services
and the database respectively. This will allow more users to be active without any
performance issues.

7.​ Documentation Updates: We will update the documentation with each change so
that finding anything on the source code or the application to remain easy at all times
for us, future developers/administrators, customers and end users.

8. Other Project Elements

8.1 Consideration of Various Factors in Engineering Design
In this section the possible effects of various factors on the engineering design process of the
project will be discussed in detail.

8.1.1 Constraints

We considered the following constraints while regarding the functional and nonfunctional
requirements of SecuRent.

Legal Considerations: Legal considerations are crucial for the success and compliance of
the SecuRent project, given its involvement in the house rental process and the handling of
sensitive data such as TCK. We need to protect the user’s data and get consent from them
regarding the collection, processing, and storage of their personal information. We should
also comply with the Rental Regulations of the government. Henceforth, we need to carefully
follow KVKK and prescribe a privacy policy regarding the control of data within the
SecuRent application.

Usability: We should provide a simple user interface that is not complicated. We need to
prioritize a clean and intuitive user interface. We should ensure that common tasks are easily
achievable and that users can quickly understand and navigate through the application. We
are aiming to meet a user and his/her goal in at most 10 clicks. Hence, we are developing our
application to satisfy intuitiveness and simpleness.

Maintenance: We need to design the application with a modular structure, separating
different components or modules such as Tenant, Landlord, Government etc. We should also
provide comprehensive documentation for the application's architecture, codebase, and data
structures, and database so that our project can be maintained easily (as mentioned in the
NFR section in detail as well).

Accessibility: Accessibility is a critical aspect of the SecuRent project, ensuring that the
application is usable by individuals with diverse abilities, including those with disabilities.
Considerations for accessibility in the SecuRent application are essential to provide an
inclusive user experience. Our project has potential users from all regions of Turkey.
Moreover, people from different ethnic backgrounds, gender, and age will use the SecuRent,
without facing any discrimination.

Constructability: Constructability in the context of the SecuRent refers to the ease with
which the application can be built and implemented successfully. A focus on constructability
ensures that the development process is efficient, cost-effective, and aligns with the project's
goals. We need to provide incremental development, breaking the project into manageable
phases or iterations. This allows for continuous testing, validation, and adjustment of features
as the development progresses. Last but not least, our unit tests will help us to build an
efficient and a constructible application.

Cost: SecuRent will use AWS services to manifest its functionality in the public networks.
Thus, the cost of the cloud services should be constantly monitored. Moreover, AWS services
need precise configurations to prevent us from paying for more than what we need. To handle

the process, AWS Cloudwatch and AWS Cost Optimizer services can be used to give us
insights about the cost of the services SecuRent uses.

In the following table, the effect levels range from 0 to 10 (0 having no effect, 1 having the
least and 10 having the greatest effect).

 Effect level Effect

Public health 0 Public Health does not affect any part of the solutions
since the solutions are not intended for any problems in
public health.

Public safety 10 Public Safety has a great effect because one of the
primary aims of SecuRent is to ensure the safety of rental
ads, rent amounts, deposits, and landlord-tenant contracts
for houses.

Public welfare 10 Public Welfare has a great effect on the solutions since
the aim of the project is to provide a service to the
tenants, landlords and government, which is for public
welfare specifically.

Global factors 4 Global Factors do not have a big impact on the solutions
because the problems that are to be resolved or reduced
by Securent are not global problems. Yet, it is for public
advantage, so it can be scaled as an effect level of 4.

Cultural factors 0 Cultural Factors have no effect on the way the solutions
are designed because SecuRent does not aim to provide
any measures/advantages on the cultural factors: it will
function for the benefit of the public in general.

Social factors 6 Social Factors have an impact on the solutions, but they
are second to public safety and public welfare. The
solutions for SecuRent are affected by the social factors
in the way that it aims to increase the trust and work
ethics between landlords, tenants and real estate agents.

Environmental factors 0 Environmental Factors have no effect on the way the
solutions for SecuRent are shaped. SecuRent has no
concerns (or will not deal with the issues) of
environmental problems.

Economic factors 6 Economic factors have some impact on the solutions
design but just like social factors, it comes after public
safety and public welfare. Economic factors sparked the
idea that the government should hold the deposits of
rental houses for them to make a profit and add up extra
income.

8.1.2 Standards
UML 2.5.1 is used through the draw.io platform to model the high level architecture of the
system.

●​ Architectural Patterns: Module style is used to model the class diagram architecture.
Specifically following styles are used:

○​ Decomposition Style: Modules are separated into submodules to cover
functionalities within the parent module.

○​ Uses Style: Different modules connect to each other with the user relationship
as particular modules require the functionality of other modules.

○​ Layered Style: Different layers allow different functionalities to be separate.
For instance UI and core module are distinct layers and interact with each
other through an intermediary API layer.

●​ Software Development Standards: The software development of the SecuRent should
be applied by following the reports and aiming for the actual final product. The
standards of the development phase should be complied which involve the language
and technology choices and predefined development processes.

●​ Usability Standards: The User Interface (UI) and User Experience (UX) of the
SecuRent should be considered so that it follows the usability standards that are user
friendly, intuitive, and easy to navigate in the system.

●​ Quality Assurance Standards: SecuRent should comply with the quality assurance
standards that are satisfying the requirements of the project. Hence, we test the
application with 50 test cases currently. In the subsequent iterations, the number of
test cases will increase to cover each aspect of the application.

8.2 Ethics and Professional Responsibilities
Ethical Considerations: Our project deals with the data of the landlords, tenants and houses.
We are collecting them and showing them to the user. Dealing with those private data may
create a privacy issue. In our project, we prioritized the careful handling of data privacy and
consistently supported the principles of respecting individuals' privacy rights. Here's how we
ensured that data privacy was a top priority throughout the project:

●​ Data Minimization: We minimized the collection and storage of personal data to
only what was necessary for the functionality of the project. By limiting the scope of

data collection, we reduced the potential risk of unauthorized access or misuse of
sensitive information. We do not require additional unnecessary private information
from users. We just ask for information about the house such as number of rooms, flat
number, heating type, number of bathrooms, existence of balcony, existence of
furniture, and rent price.

●​ Access Controls: We implemented strict access controls to ensure that only
authorized individuals had access to sensitive data. This included regular audits of
user access logs to detect and prevent unauthorized access attempts.

●​ Compliance with Regulations: We conducted thorough legal research to understand
the regulatory landscape governing the rental housing market. This included
familiarizing ourselves with relevant local, national, and international laws,
regulations, and industry standards. Furthermore, we did not add any feature that can
violate any regulations or law.

Ethical AI usage: In our project, we followed ethical principles in the usage of AI and the
internet to get knowledge and resources. We ensured that our usage of AI and internet
resources was ethical and respectful by following these principles:

●​ Originality and Integrity: We verify that all the code developed for our project was
original and created by our team members. We did not engage in any form of
plagiarism, theft, or unauthorized use of code from external sources. Our commitment
to integrity and originality highlight our respect for intellectual property rights and
ethical conduct in software development.

●​ Transparency: We maintained transparency and accountability throughout the
development process by documenting our sources, methodologies, and
decision-making processes. As a result of this, how AI and internet resources were
utilized in our project and integrity of our work can be observed. Our whole progress
and code are available at our GitHub repository.

8.3 Teamworks

8.3.1 Contributing and Functioning Effectively on the Team

All significant decisions are made collectively after group discussions. Each project member
actively participates in report writing sessions, and every team member is easily accessible
and communicates effectively.

Arda Yıldız: One of the three backend developers of the project. Together with Cengizhan
and Yusuf, built the server-side logic using Java Spring Boot. Implemented the Tenant,
House, RealEstateAgent, RealEstateAgentOperations, RentRequest, and Contract entities
along with their services, repositories and controllers. Created the database logic using

PostgreSQL and Spring Data JPA. Defined the REST API endpoints with other backend
developers. Configured and began testing the API endpoints using Postman. Implemented the
security of the application in terms of authentication and authorization. Implemented Axios to
connect frontend and backend sides of the project. Deployed and configured the application
in the AWS cloud environment. Set up the Amazon EC2 instances to run the backend,
connected the database to Amazon RDS, configured/hosted the frontend of the application in
the S3 bucket in the AWS cloud environment.

Cengizhan Terzioğlu: One of the backend developers of the project. Created the backend of
the project with Spring Boot. Created many model classes for the database objects.
Implemented Landlord, House and RentalContract entities with their services, repositories
and controllers. Done modifications to services and controllers related to Tenant and
RealEstateAgent. Fixed bugs in the backend. Configured the application in the AWS
environment.

Yusuf Şenyüz: One of the backend developers of the project. Implemented services of the
Government and House classes in the backend. Implemented, GovernmentController,
GovernmentRepository, HouseRepository. Updated and changed RealEstateAgent class
specifically its controller. Helped Landlord and Tenant classes as well. Created some of the
interface, model and enums files to make it easier the whole implementation process. Helped
the frontend team during the connecting backend and frontend by testing API endpoints.

Yunus Eren Türkeri: Worked as a team of 2 members for the frontend. Developed half of
the user interfaces and specifically worked on the tenant and landlord actors and partially
worked on the admin user interfaces (3 actors out of 5). Worked on connecting the frontend to
backend using Axios library. Worked on adapting some UIs to suit the endpoints in the
backend side. Moreover, I created 25 test cases for this report. Was responsible for running
half of the test cases.

Mustafa Kaan Koç: Other member of the frontend team. Worked on developing half of the
user interfaces. Focused on real estate agents and state official actors, and worked some parts
of the admin actor. Worked on completing missing UI parts and removing uınnecessary
components. Connected backend with frontend using axios. Worked on adapting some UIs to
suit the endpoints in the backend side. Created around 30 test cases and was responsible for
creating the test case tables in this report. Also, was responsible for running half of the test
cases.

8.3.2 Helping Creating a Collaborative and Inclusive Environment

We utilized Jira to allocate roles and tasks within the project. Moreover, we assigned stories
to different members of the backend and frontend teams to include everyone in the
development process and sharing responsibilities. For project-related communications, we
primarily used a WhatsApp group. However, for live communication needs and especially for
iteration planning meetings, we used the Discord platform to communicate.

8.3.3 Taking Lead Role and Sharing Leadership on the Team

Collaboration is the key to success in the SecuRent project. To ensure that everyone
collaborates, we have set up a Jira project management page. Next, we assigned each group
member a task, giving responsibility to everyone. Thus, instead of merely talking about the
distribution of the tasks, we are writing them down and assigning the tasks explicitly to
everyone. Hence, everyone feels involved as they are taking responsibilities (through tasks),
based on their prior experiences or willingness to commit. Moreover, we decided to have
leaders for the front end and the back end side, to ensure that different people share the role
of leadership in different aspects. For instance, Yunus is the leader of the front end team,
while Cengizhan is the leader of the back end team. In addition, Yusuf is responsible for
implementing the data access layer as well as leading the design process. Arda is the SCRUM
Master due to his prior experience on Agile and SCRUM in the company he works. Kaan is
the product owner as he has connections in the domain and has formulated the very idea of
the SecuRent application. Consequently, each team member has assigned a leadership role in
a particular field. With the sharing of leadership in different aspects of the project, we aim to
increase the efficiency and joy as everyone volunteered to take leadership according to their
skills and interests.

8.3.4 Meeting Objectives

In our project, we specified the following objectives at the beginning of the year:
●​ Filters feature that enables users to filter the houses by typing district, floor, number

of rooms, direction information.
●​ Searching feature that enables users to search houses.
●​ User Management and Authentication features.
●​ Effective usage of the database for data related to the houses and contracts. A

relational database and SQL queries are used to make calls to the database.
●​ User interface that enables clients to interact with the system.
●​ A feature that enables landlords to publish ads about their houses.
●​ A feature that enables tenants to see available ads that are published.
●​ A feature that tenants can make requests for renting available houses.
●​ A feature that landlords can see notifications about their published ad.
●​ A feature that the government can collect deposits from tenants, and give it back

when necessary.
●​ A feature that the government can assign exprets to the houses to determine rent

prices.

We met most of our objectives. Features about tenants, and landlords are done completely.
User Management and Authentication features, effective database usage and effective user
interface objectives are also met. However, due to time constraint, we could not finish the
implementation of filtering and searching house those features are missing. In addition,
features about the government such as collecting deposits and giving it back are not
completed because when we discuss those ideas with the officials from the ministry of trade,

they did not support our idea and project in general as a stakeholder so we did not prioritize
those features. Moreover, we planned to add an image feature such that each house would
have an image of itself but we faced a problem with that objective as well.

8.4 New Knowledge Acquired and Applied
Decision for choosing the tech stack involved team members’ familiarity with the tool.
Although both the frontend and backend team chose development tools, languages or
development environments with regards to their familiarity, everyone has acquired new
knowledge. For the frontend team, implementing Axios to establish communication between
UI components and the database was a new knowledge. We set learning goals during our
sprints for the frontend team members. Henceforth, after completing backend functionalities
incrementally, the frontend team began implementing Axios. The frontend team went step by
step to connect the UI pages and backend functionalities, actively communicating with the
backend team in the process. On the other hand, the backend team learned how to configure
the database via application.properties file. Moreover, they learned how to map the database
tables via Hibernate. In addition, they learned how to deploy an application to the AWS cloud
environment. With both teams achieving their learning goals and acquiring new knowledge,
we as a team managed to release a functioning application running on the cloud environment.
Apart from learning technologies, we learned how to cooperate and communicate actively.
We communicated with each other almost everyday and learned how to work together
effectively. Sometimes we worked asynchronously, sometimes synchronously, we respected
each other’s priorities and availability times (due to exams or other projects). Thus, we
experienced working as a team from the first hand with our completion project.

9. Conclusion and Future Work
After successfully implementing the SecuRent project, what lies ahead is finding a potential
customer. The biggest mystery of this project has always been a customer. In that regard, we
as the SecuRent team went to the Ministry of Environment, Urbanisation and Climate Change
with the hopes of earning a sponsorship for our project. However, since we met with
feasibility concerns and the problem of acquiring real data from E-devlet, our project is not
welcomed. Thus, we decided to complete our project and present it as a Proof of Concept
work. Therefore, we still need to find prospective customers for our project.

10. Glossary
Deposit: Amount of money paid at the beginning of the renting period. In principle, tenants
are paying the deposit to the landlords. Throughout the duration of the contract, the landlord

keeps the deposit. When the contract expires, the landlord keeps the deposit if the house is
damaged. Otherwise, the landlord returns the deposit to the tenant.

11. References
[1] trthaber.com. [Online]. Available:
https://www.trthaber.com/haber/ekonomi/kiracinin-kontrat-suresi-dolmadan-kira-artisi-yapila
bilir-mi-656837.html. [Accessed: Dec. 8, 2023].

[2] ntv.com.tr. [Online]. Available:
https://ntv.com.tr/galeri/ntvpara/ekim-ayi-kira-artis-orani-ne-kadar-oldu-2023-ekim-ki

[3] endeksa.com. [Online]. Available: https://www.endeksa.com/tr/. [Accessed: Nov. 15,
2023].
[4] mydeposits.co.uk. [Online]. Available: https://www.mydeposits.co.uk/join-now/.
[Accessed: Nov. 16, 2023].

[5] amazon.com. [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html. [Accessed: Dec. 8,
2023].

https://www.trthaber.com/haber/ekonomi/kiracinin-kontrat-suresi-dolmadan-kira-artisi-yapilabilir-mi-656837.html
https://www.trthaber.com/haber/ekonomi/kiracinin-kontrat-suresi-dolmadan-kira-artisi-yapilabilir-mi-656837.html
https://ntv.com.tr/galeri/ntvpara/ekim-ayi-kira-artis-orani-ne-kadar-oldu-2023-ekim-ki
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

	Table of Contents
	
	
	1. Introduction
	1.1 Purpose of the system
	1.2 Design goals
	1.2.1 Usability
	1.2.2 Reliability
	1.2.3 Supportability
	1.2.4 Scalability
	1.2.5 Security
	1.2.6 Maintainability
	1.2.7 Marketability
	1.2.8 Modularity

	1.3 Definitions, acronyms, and abbreviations
	1.4 Overview

	2. Current Software Architecture
	2.1 Possible Competitors

	
	3.1 Overview
	3.1.1 Description of the High Level System Architecture

	3.2 Subsystem Decomposition
	 3.3 Hardware/Software Mapping
	 3.4 Persistent Data Management
	 3.5 Access Control and Security

	
	4. Subsystem Services
	 4.1 User Interface Layer
	 4.2 Authentication Layer
	 4.3 Web Service Layer
	 4.4 Database Abstraction Layer
	 4.5 Firewall Layer
	 4.6 Database Layer

	
	5. Development/Implementation Details
	6. Test Cases
	6.1 Upload Photo Function
	6.2 Filter Function
	6.3 Search Function For Houses
	
	6.4 Display Details Function
	
	6.5 Submit Report Function For Reporting Ad
	6.6 Preview Function For Displaying Real Estate Agents
	6.7 Select Agent Function
	6.8 See Profile Function
	6.9 Display Remaining Time For Contract
	6.10 Display Notification Function For Landlord
	6.11 Accept Notification Function For Landlord
	6.12 Decline Notification Function For Landlord
	6.13 See The Profiles Of Contract
	6.14 Display Past Requests For Landlord
	
	6.15 Display Current Requests For Landlord
	6.16 End Operation For A Contract
	6.17 Upload Contract Function
	6.18 Display Rental Notification For Real Estate Agents
	6.19 Accept Rental Notification For Real Estate Agents
	6.20 Decline Rental Notification For Real Estate Agents
	
	6.21 Display Past Requests For Real Estate Agents
	6.22 Display Current Requests For Real Estate Agents
	6.23 Display Houses In The Real Estate Agent’s Location
	
	6.24 House Condition Check Upload Report
	6.25 Display House Condition Check Notification For Real Estate Agents
	6.26 Accept House Condition Check Request Function
	6.27 Decline House Condition Check Request Function
	6.28 Display Handled Complaints Function
	6.29 Display Pending Complaints Function
	6.30 Mark As Handled Function
	6.31 Display Approved Contracts Function
	6.32 Download Contracts Function
	6.33 Display Uploaded Contracts Function
	6.34 Accept Contract Function
	
	6.35 Decline Contract Function
	6.36 Display Complaint Notifications
	6.37 Download Condition Status File Function
	
	
	6.38 Submit Who Will Keep The Deposit Function
	6.39 Create Account Function
	6.40 Filter User Type To Display User List Function
	6.41 Update Profile Function
	6.42 Login Function
	
	
	
	6.43 Forgot Password Function
	6.44 Signup Function
	6.45 Logout Function
	6.46 Publish Ad Function
	
	6.47 Upload Receipt Function
	
	6.48 Update Ad Function
	
	6.49 Display Rental Houses Of The Landlord Function
	
	6.50 System Notification For Rental Period Extension Function
	
	6.51 Loading Time Of The Images
	
	
	6.52 Login Time

	7. Maintenance Plan and Details
	8. Other Project Elements
	8.1 Consideration of Various Factors in Engineering Design
	8.1.1 Constraints
	8.1.2 Standards

	8.2 Ethics and Professional Responsibilities
	8.3 Teamworks
	8.3.1 Contributing and Functioning Effectively on the Team
	8.3.2 Helping Creating a Collaborative and Inclusive Environment
	8.3.3 Taking Lead Role and Sharing Leadership on the Team
	8.3.4 Meeting Objectives

	8.4 New Knowledge Acquired and Applied

	9. Conclusion and Future Work
	10. Glossary
	11. References

