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This document is part of the V8 Sandbox Project and discusses different options for how 
dedicated hardware support could be used to strengthen or even replace the software-based 
sandbox. For a general overview of the (software-based) sandbox design see the high-level 
design document. 

Background 
The sandbox strives to build a privilege boundary within the process hosting V8 (e.g. a 
Chromium renderer process): untrusted code - for example the JavaScript code executed by 
V8, or even parts of V8 itself - should run with lower privileges than the rest of the process. In 
the software-based sandbox, this is achieved indirectly: untrusted code only operates on data 
inside the sandbox, and all data stored there must be “sandbox-compatible”, so cannot for 
example contain raw pointers that would allow accessing data outside of the sandbox.  
 
This privilege separation is not unlike the kernel-userland split used by modern operating 
systems. However, there it is enforced through hardware: the CPU runs at a lower privilege 
level when executing userspace code, which makes it impossible to access memory belonging 
to the kernel. This document explores whether similar hardware-based approaches could work 
for the V8 sandbox as well. 
 
Throughout the rest of this document, the words “trusted”/”privileged”/”unsandboxed” and 
“untrusted”/”unprivileged”/”sandboxed” will be used mostly interchangeably. 

Design 
A hardware-supported sandbox would not be fundamentally different from a purely 
software-based one: the core idea remains to partition the address space into trusted and 
untrusted regions, and using pointer table indirections for references that cross the trust 
boundary (at least from unprivileged to privileged) as shown in the picture below. Then, when 
executing “sandboxed” code, the CPU would be explicitly put into a low-privilege mode in 

https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit?usp=sharing
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which it cannot write to privileged memory (the sandbox only attempts to prevent corruption, 
not disclosure, of trusted memory): 
 

 
 
The design for a hardware-supported sandbox then needs to answer two central questions: 

1.​ which data is considered privileged or unprivileged 
2.​ which code is considered privileged or unprivileged 

 
The software-based sandbox has a clear answer for question 1: all memory inside the sandbox 
address space is considered untrusted, everything else is trusted. However it does not (need 
to) precisely answer question 2 as there are no explicit enter_sandbox/leave_sandbox 
operations. Instead, most code operating on the data inside the sandbox is in some sense 
considered to be sandboxed. The below table summarizes the software-based sandbox design 
in terms of these two questions. 

 

Data 

Main V8 Heap (most V8 objects) 

 

Code 

JavaScript Code (interpreted or JIT-compiled) 



Trusted V8 Heap (e.g. bytecode) 

Stack and Registers 

V8/Chromium binary and library 

Compiler data (mostly ZoneAllocator) 

Other Heaps (system heap, Blink heap, …) 

 

WebAssembly Code 

V8’s Runtime Code (e.g. the builtins) 

V8’s Garbage Collector 

V8’s Compilers 

Embedder Code (all of Blink) 

 
Here, red means “sandboxed” and blue means “unsandboxed/trusted” while yellow means that 
the code is implicitly (and maybe only partially) considered to be sandboxed as it mostly 
operates on data inside the sandbox. Note that while V8’s compilers are considered trusted (as 
they mostly operate on data outside of the sandbox), their output (the generated code) is not, 
which is what matters in practice. 
 
With hardware support, question 2 (code) will need to be answered precisely. Further, its 
answer to question 1 (data) may differ from that of the software-based sandbox. Due to the 
many different data- and code regions, there are many possible options for the design of a 
hardware-supported sandbox. Broadly, these options can be divided into “hardware-assisted” 
sandboxing, which keeps all the software mechanisms and restrictions in place, and 
“hardware-based” approaches which replaces at least some of them. Both of these will be 
discussed next. 

Hardware-Assisted Sandbox 
With a hardware-assisted sandbox, all mechanisms on which the software-only sandbox relies 
would be kept in place. In addition, the CPU would enter a low-privilege mode before executing 
untrusted code. 
 
As such, a hardware-assisted sandbox would mostly answer question 1 (data) in the same way 
as the software-based sandbox does. In the simplest case, the answer to question 2 (code) 
would be to treat all JIT-generated code as untrusted. Alternatively, and maybe preferably, all 
code generated by V8’s compilers, including ahead-of-time compiled code (e.g. CSA code) 
would be considered untrusted. In that case, numerous builtins and the entire JavaScript 
interpreter would run inside the sandbox. The benefit of this approach is that the mode 
switching would happen exactly at the transitions between C++ and non-C++ code, which are 
already well-defined through trampolines. 
 
The following table summarizes the hardware-assisted sandbox in terms of the two central 
questions: 

https://source.chromium.org/chromium/chromium/src/+/main:v8/src/zone/zone.h
https://v8.dev/blog/csa


 

Data 

Main V8 Heap (most V8 objects) 

Stack and Registers 

Trusted V8 Heap (e.g. bytecode) 

V8/Chromium binary and library 

Compiler data 

Other Heaps (system heap, Blink heap, …) 

 

 

Code 

JavaScript Code (interpreted or JIT-compiled) 

WebAssembly Code 

V8’s Runtime Code (e.g. the builtins) 

V8’s Garbage Collector 

V8’s Compilers 

Embedder Code (all of Blink) 

 
As can be seen, the main difference to the software-based sandbox is that the JavaScript and 
WebAssembly code executed by V8 are now explicitly considered untrusted and are executed 
in a low-privileged mode. In this mode, only the sandbox (and the stack, see below) are 
writable, everything else is read-only (or not accessible at all). This design would mitigate 
certain bugs such as the use of 64-bit sizes inside the sandbox or accidental sign-extension 
when computing indices, which could also result in a memory access outside of the sandbox. 
Note that both the JavaScript interpreter and JIT-generated code require access to the stack, 
but the stack cannot be moved into the sandbox (as it contains full pointers). As such, the stack 
must be accessible in sandboxed mode, and is therefore marked as partially untrusted (yellow) 
in the table above. 
 
Another way to visualize this sandboxing mode is to look at a typical stack trace. Below is an 
abbreviated stack trace captured when allocating a new V8 object (in this case, an 
ArrayBuffer):  
 
#0  v8::internal::JSArrayBuffer::Setup 
#3  0x000055555af1b183 in v8::internal::Builtin_ArrayBufferConstructor 
#4  0x000055555ec1ad7d in Builtins_CEntry_Return1_ArgvOnStack_BuiltinExit () 
#5  0x000055555e89d05d in 
Builtins_InterpreterPushArgsThenFastConstructFunction () 
#6  0x000055555f25321f in Builtins_ConstructHandler () 
#7  0x000055555e89bd0f in Builtins_InterpreterEntryTrampoline () 
#8  0x000055555e89bd0f in Builtins_InterpreterEntryTrampoline () 
#9  0x000055555e89bd0f in Builtins_InterpreterEntryTrampoline () 
#10 0x000055555e8928dc in Builtins_JSEntryTrampoline () 
#11 0x000055555e892607 in Builtins_JSEntry () 
#15 0x000055555adcdd7d in v8::Script::Run 
#17 0x000055555ad2e42d in v8::Shell::ExecuteString 



#21 0x000055555ad4af2d in v8::Shell::Main 
#22 0x000055555ad4b522 in main 
 
Here, the CPU enters “sandboxed mode” when it starts executing JavaScript code (via the 
JSEntry builtin), in this case via the interpreter (but it could also be JIT-compiled code). It then 
leaves sandboxed mode either when returning, or when executing builtin code implemented in 
C++. In this example, the ArrayBuffer constructor is implemented in C++, and so the CEntry 
trampoline is executed, at which point the CPU would leave the sandboxed mode. Similar 
transitions would happen for many other common tasks: calling out to the embedder (for 
example, into Web APIs in Blink), performing common object modification tasks such as 
installing or modifying properties, or notifying the garbage collectors of changes to the heap 
graph (e.g. via write barriers). As such, this design is very performance sensitive, and ultimately 
the choice of whether to implement it will depend on the performance overhead of the 
transitions and whether the security benefits are deemed sufficiently high. 
 
Pros: 

-​ Simple to implement: all that would be necessary is to mark sandbox and non-sandbox 
pages and enter the low-privilege mode when transitioning between C++ and 
V8-generated code. 

-​ Strictly an improvement in terms of security guarantees. 
-​ Can mitigate certain vulnerabilities that would otherwise allow breaking out of the 

sandbox. For example the use of 64-bit sizes inside the sandbox or some “low-level” 
compiler bugs such as register allocation issues. 

 
Cons: 

-​ Performance sensitive: mode switching will happen very frequently as there will be 
many transitions into and out of sandboxed code. 

-​ Even though the stack is considered trusted, it must still be writable by sandboxed 
code. 

-​ Likely impossible to sandbox components such as the garbage collector or the 
compilers themselves as they are written in C++. However, it’s somewhat unclear if 
there would be much benefit in doing so. 

Hardware-Based Sandbox 
In contrast to a hardware-assisted sandbox, a hardware-based sandbox would remove or 
replace some of the restrictions and mechanism of the software-based sandbox such that the 
hardware support becomes a necessity, rather than a defense-in-depth measure. In particular, 
it would again allow storing full 64-bit pointers inside the sandbox in some cases. 
 

https://source.chromium.org/chromium/chromium/src/+/main:v8/src/builtins/builtins-arraybuffer.cc;l=114;drc=44b299590083b888637c79fb5632806e607ab861


An initial step in this direction would be to add a dedicated “sandbox stack” that is allocated 
inside the sandbox and used when executing sandboxed code (i.e. there would also be a stack 
switch at the privilege boundary). As that stack would contain raw 64-bit pointers, this mode 
would no longer be safe without the hardware sandbox mode. With this “simple” 
hardware-based sandbox, the two questions from above would be answered as follows:  

 

Data 

Main V8 Heap (most V8 objects) 

Untrusted stack (inside the sandbox) 

Trusted V8 Heap (e.g. bytecode) 

Trusted Stack 

V8/Chromium binary and library 

Compiler data 

Other Heaps (system heap, Blink heap, …) 

 

 

Code 

JavaScript Code (interpreted or JIT-compiled) 

WebAssembly Code 

V8’s Runtime Code (e.g. the builtins) 

V8’s Garbage Collector 

V8’s Compilers 

Embedder Code (all of Blink) 

 

Once established, more and more code and data could gradually be moved into the 
hardware-based sandbox, until potentially all of V8 is effectively sandboxed. However, it 
remains an open question whether this is actually practically feasible, and how much effort it 
would be. Eventually, the design would then look as follows: 

 

Data 

Main V8 Heap (most V8 objects) 

Untrusted stack (inside the sandbox) 

Compiler data (inside the sandbox) 

Other data owned by V8 (inside the sandbox) 

Trusted Stack 

Chromium binary and library 

Other Heaps (system heap, Blink heap, …) 

 

 

Code 

JavaScript Code (interpreted or JIT-compiled) 

WebAssembly Code 

V8’s Runtime Code (e.g. the builtins) 

V8’s Garbage Collector 

V8’s Compilers 

Embedder Code (all of Blink) 

 



Consider again the stacktrace from above, but now with the final hardware-based sandbox 
design: 
 
#0  v8::internal::JSArrayBuffer::Setup 
#3  0x000055555af1b183 in v8::internal::Builtin_ArrayBufferConstructor 
#4  0x000055555ec1ad7d in Builtins_CEntry_Return1_ArgvOnStack_BuiltinExit () 
#5  0x000055555e89d05d in 
Builtins_InterpreterPushArgsThenFastConstructFunction () 
#6  0x000055555f25321f in Builtins_ConstructHandler () 
#7  0x000055555e89bd0f in Builtins_InterpreterEntryTrampoline () 
#8  0x000055555e89bd0f in Builtins_InterpreterEntryTrampoline () 
#9  0x000055555e89bd0f in Builtins_InterpreterEntryTrampoline () 
#10 0x000055555e8928dc in Builtins_JSEntryTrampoline () 
#11 0x000055555e892607 in Builtins_JSEntry () 
#15 0x000055555adcdd7d in v8::Script::Run 
#17 0x000055555ad2e42d in v8::Shell::ExecuteString 
#21 0x000055555ad4af2d in v8::Shell::Main 
#22 0x000055555ad4b522 in main 
 
Here, sandboxed mode would be entered effectively immediately when entering V8 code, for 
example through any of the public APIs, and wouldn’t be left until returning from V8 to the 
embedder. 
 
Pros: 

-​ At least in theory, it would be possible to sandbox (almost) all of V8. 
-​ Even in the simplest form, the stack can be sandboxed, which would mitigate additional 

bugs compared to the hardware-assisted sandbox, such as stack corruption bugs that 
would otherwise likely lead to a sandbox escape. 

-​ Would (eventually) require fewer transitions between trusted and untrusted code, 
thereby potentially being more performant than a hardware-assisted sandbox 
(somewhat dependent on the stack switching overhead, see next point). 

 
Cons: 

-​ Switching the stack when crossing the privilege boundary might be expensive. 
-​ Replacing software mechanisms might make the sandbox less secure, at least in the 

short term. For example, if privileged code wrongly assumes that a full pointer read 
from inside the sandbox can be trusted, it might subsequently corrupt trusted memory, 
leading to a sandbox escape. In contrast, when no full pointers can be stored inside the 
sandbox, this cannot happen. 

-​ Difficult to implement: for example, it’s unclear how to deal with global variables that are 
written to from C++ code. 

https://source.chromium.org/chromium/chromium/src/+/main:v8/include


Summary 
It appears that a hardware-assisted sandbox would be the best option, at least initially, due to 
the simpler implementation effort and lower risk of introducing new problems. From there, if 
desired, it would be possible to gradually move towards a hardware-based sandbox by moving 
more memory regions into the sandbox, and running (some of the) C++ code also in the 
sandboxed mode. 
 
Finally, it should be noted that none of the design choices are expected to provide significant 
performance gains: the main performance cost of the sandbox comes due to the pointer table 
(in particular the external pointer table, containing amongst others the pointers to Embedder 
objects), which will not be affected by either of the designs. All other parts of the 
software-based sandbox are sufficiently cheap that replacing them would likely not have a 
noticeable impact. 

Hardware Requirements 
This section summarizes the hardware requirements that would be necessary to implement any 
of the previously discussed designs. These requirements are, for the most part, independent of 
the concrete design choices, such as whether to use a hardware-assisted or hardware-based 
sandbox, and the amount of code that would run in the sandboxed mode. 
 
Necessary features: 
 

1.​ Pages or virtual address ranges must be “taggable”. When executing sandboxed 
code, access to privileged memory must be forbidden. As such, there must be a way to 
mark pages or address ranges as either “privileged” or “unprivileged”.  

2.​ Mode switching must be fast. It is expected that crossing the privilege boundary will 
happen very frequently (especially in the hardware-assisted design): every call into 
Embedder-provided APIs (all web APIs in Blink), as well as many calls inside V8 itself, e.g. 
to the garbage collector or other parts of the runtime. Likely, a performance cost similar 
to PKEYs (WRPKRU can cost >100 cycles) would be significantly too large. On the other 
hand, every crossing of what would become the privilege boundary already incurs the 
cost of a function call today, so a cost in that order of magnitude may be acceptable. 

3.​ Revoking write- but not read access must be possible. It is unlikely that the 
unprivileged code can become fully hermetic any time soon as it needs to read various 
bits of information from outside of the sandbox (e.g. from the Isolate object or other, 
trusted space objects, the binary’s data section). As such, it must be possible to revoke 
write access while still allowing read access. 

 

https://www.kernel.org/doc/html/next/core-api/protection-keys.html
https://people.mpi-sws.org/~druschel/publications/erim.pdf


 
Optional features: 
 

1.​ Provide a way to change the default permissions. While it would be possible to hook 
into the low-level page allocation routines (e.g. mmap on Linux) to mark all non-sandbox 
pages as privileged, such an approach is somewhat fragile, and so a mechanism to limit 
access to the “default” pages would be preferable.  

2.​ Allow for more than two “regions”. In its simplest form, the sandbox would require 
separating the address space only into two different regions: the sandbox (and 
potentially the stack), and everything else. Privileged code can access all memory, 
sandboxed code can only write to sandboxed memory. However, it may be helpful to 
have additional regions. For example, it might allow having more than one sandbox per 
process (but even then, at most one sandbox would be active for a given thread at any 
time). Further, it might be interesting to uniquely mark the code pages of sandboxed 
code to apply further restrictions to it (see next point). 

3.​ Stronger sandboxing mode. In addition to limiting memory permissions, the 
sandboxed mode could enable further restrictions. For example syscalls could be 
disallowed entirely, and control-flow transfers to other code could be prohibited. 
Without this, it might be necessary to implement lightweight assembly verification for 
runtime-generated code (which would need to happen in privileged mode). 

 

Examples 

PKEYs 
Conceptually, a PKEY-based sandbox would be simple: the sandbox region (and only the 
sandbox region) would be tagged with key 1. All other memory uses a different key (e.g. key 0, 
the default). Then, on every transition into and out of the sandbox, a WRPKRU instruction would 
be executed to revoke or restore write access to the other PKEYs, in particular to the default 
key used for (most) non-sandbox memory. The main issue would likely be the performance of 
the WRPKRU instruction which, with potentially >100 cycles required, would likely be 
significantly too slow to be used in practice, at least for a hardware-assisted sandbox. 

HFI 
The mechanisms provided by hardware-fault isolation can be used to implement a 
hardware-assisted or hardware-based sandbox. A possible configuration would specify the 
sandbox as one implicit memory region and the pages containing sandboxed code as an 
implicit code region. When the sandbox is entered, write access to all other memory is revoked, 

https://dl.acm.org/doi/pdf/10.1145/3582016.3582023


and control-flow transfers to non-sandbox code would be forbidden. Further, the code would 
also be prohibited from performing any syscalls. 
 
In case of a hardware-assisted sandbox where the stack must be accessible, the stack could 
be located in an explicit data region, in which case V8’s compiler would need to emit special 
instructions for accessing stack memory. 
 
As the sandbox does not attempt to prevent read access to privileged memory, protection 
from side-channel attacks such as Spectre are not necessary. The sandbox can therefore use 
the (significantly cheaper) non-serializing enter/leave operations. 
 
All in all, HFI appears to fulfill all requirements for hardware-supported sandboxing. Whether 
the performance impact is acceptable in practice (especially for a hardware-assisted sandbox, 
which would be the preferred initial use-case) would still need to be determined 
experimentally. 


	V8 Sandbox - Hardware Support 
	Background 
	Design 
	Hardware-Assisted Sandbox 
	Hardware-Based Sandbox 
	Summary 

	Hardware Requirements 
	Examples 
	PKEYs 
	HFI 


