*Note Q 7, Q8, Q9 not available in this file.
OOAD 2013 Solved Short Questions

Question No 1:

A UML Operation contract identifies system state changes when an operation happens.
Effectively, it will define what each system operation does. An operation is taken from a system
sequence diagram. It is a single event from that diagram. A domain model can be used to help
generate an operation contract. The domain model can be marked as follows to help with the
operation contract:

A design pattern is a general solution to a recurring problem. Design patterns are more
conceptual than tangible and can be modified to fit the exact need. However, abstract classes and
interfaces can be reused to implement certain patterns.

Question NO 3:

A container class is a data type that is capable of holding a collection of items. In
C++, container classes can be implemented as a class, along with member functions to add,
remove, and examine items.

Create an empty container (via a constructor)

Insert a new object into the container

Remove an object from the container

Report the number of objects currently in the container
Empty the container of all objects

Provide access to the stored objects

Sort the elements (optional)

Question NO 4:

Inception is the smallest phase in the project, and ideally it should be quite short. If the Inception
Phase is long then it may be an indication of excessive up-front specification, which is contrary
to the spirit of the Unified Process.

Elaboration phase the project team is expected to capture a healthy majority of the system
requirements. However, the primary goals of Elaboration are to address known risk factors and
to establish and validate the system architecture. Common processes undertaken in this phase
include the creation of use case diagrams, conceptual diagrams (class diagrams with only basic
notation) and package diagrams (architectural diagrams).

Question NO 5:


https://en.wikipedia.org/wiki/Use_case_diagram
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Package_diagram

Cohesion is the indication of the relationship
within module.

Cohesion shows the module’s
relative functional strength.

Cohesion is a degree (quality) to which a
component / module focuses on thesingle thing.

While designing you should strive for high
cohesion i.e. a cohesive component/ module focus
on a single task (i.e., single-mindedness) with
little interaction with other modules of the system.

Cohesion is the kind of natural extension of data
hiding for example, classhaving all members
visible with a package having default visibility.

Cohesion is Intra — Module Concept.

Question NO 6:

Coupling is the indication of the
relationships between modules.

Coupling shows the
relativeindependence among the modules.

Coupling is a degree to which a component
/ module is connected to theother modules.

While designing you should strive for low
coupling i.e. dependency between modules
should be less.

Making private fields, private methods and
non public classes provides loose coupling.

Coupling is Inter -Module Concept.

An object can be a variable, a data structure, or a function, and as such, is a location in
memory having a yalue and possibly referenced by an identifier.

In the class-based object-oriented programming paradigm, "object" refers to a
particular instance of a class where the object can be a combination of variables, functions, and

data structures.

e Function object: an object with a single method (in C++, this method would be the function
operator, "operator()") that acts much like a function (like a C/C++ pointer to a function).
e Immutable object: an object set up with a fixed state at creation time and which does not

change afterward.

is not necessarily an object).

First-class object: an object that can be used without restriction.

Container object: an object that can contain other objects.

Factory object: an object whose purpose is to create other objects.

Metaobject: an object from which other objects can be created (compare with a class, which

e Prototype object: a specialized metaobject from which other objects can be created by

copying

e (God object: an object that knows or does too much (it is an example of an anti-pattern).

e Singleton object: an object that is the only instance of its class during the lifetime of the

program.
e Filter object.


https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Identifier_(computer_programming)
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Function_object
https://en.wikipedia.org/wiki/Immutable_object
https://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/Container_(data_structure)
https://en.wikipedia.org/wiki/Factory_object
https://en.wikipedia.org/wiki/Metaobject
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Prototype_pattern
https://en.wikipedia.org/wiki/God_object
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Filter_object

Question NO 10: The following sections present the first five GRASP patterns:
Information Expert

Creator

High Cohesion

Low Coupling

Controller

There are others, introduced in a later chapter, but it is worthwhile mastering these five first
because they address very basic, common questions and fundamental design issues. Please study
the following patterns, note how they are used in the example interaction diagrams, and then
apply them during the creation of new interaction diagrams. Start by mastering Information
Expert, Creator, Controller, High Cohesion, and Low Coupling. Later, learn the remaining
patterns.



