
Route optimization
Current status

●​ RouteAdded
○​ First time added, route is programmed in the Fabric. Flows+L3 unicast groups

are added in the dst switch (populateRoute) and Flows+L3 ECMP groups are
added in the rest of the fabric (populateSubnet).

●​ RouteRemoved
○​ Route is definitely removed from the Fabric. Flows are removed in the dst switch

(revokeRoute) and in the rest of the fabric (revokeSubnet).
●​ RouteUpdated

○​ Route has been changed (new nexthops/new locations). Flows+L3 unicast
groups are added in the new dst switch (populateRoute) and Flows are updated
and new L3 ECMP groups are added in the rest of the fabric (populateSubnet).

●​ Nexthop 2->1 location
○​ Route is the same, lost a location for the nexthop. Flows are removed from the

old dst switch (revokeRoute) and Flows are added/updated and new L3 ECMP
groups are added in the rest of the fabric (populateSubnet).

●​ Nexthop 1->2 location
○​ Route is the same, added a location for the nexthop. Flows+L3 unicast groups

are added in the new dst switch (populateRoute) and Flows are updated and new
L3 ECMP groups are added in the rest of the fabric (populateSubnet).

●​ LinkDown, LinkUp_seen_before, SwitchDown
○​ All ECMP groups are modified (and for switch down flows are eventually

refreshed)
●​ LinkUp_!seen_before

○​ Complete rerouting is executed. ECMP groups are modified and new Flows are
installed

Problem

Operations related to nexthop changes or new links are very expensive. Working at scale
means reinstall all the xxxK flows.

Current logic uses destination switches and hash together all the routes sharing the destination
switches. From one side this allows to reduce the number of used ECMP groups but on the
other side does not allow to efficiently fix issue or perform updates.

Let’s consider Nexthop 2->1 location, we need to fix only the routes having this next hop.
Current logic picks the affected routes, creates a new ECMP group and point the affected routes
to this new ECMP groups.

Proposed solution

Firstly, let’s not consider LinkUp_!seen_before, this is not a real problem.

In order to perform efficient operations we need to use more ECMP groups and at the same
time have a more fine grained way to distinguish them.

DestinationSet store has to be augmented with the nexthop mac, ie mac1 and mac2. We are
assuming that at most we support two different nexthops.

A new method has to be introduced in the DefaultRoutingHandler to heal the damaged routes or
update the existing ones.

Any modification has to take into account current logic of LinkDown, LinkUp_seen_before,
SwitchDown. This requires to revisit the logic handling these events (probably changes are
minimal but we need to be careful).

	Route optimization

