Capacity and Usage Metrics In
Kubernetes

Authors:

e Phillip Wittrock (@pwittrock)
e Ebot Ndip-Agbor
e Paul Morie (@pmorie)

TLDR

e We developed a custom solution for generating high fidelity capacity and usage metrics
that scales to large clusters

e We think this would be valuable to the community, and are proposing further developing
the project under a kubernetes sig instrumentation project

TLDR Example

Get the 95th utilization percentile across all containers in a workload at a 1 second
sample interval over the last 5 minutes

resources:
"cpu": "cpu cores" # get cpu metrics
"memory": "memory bytes" # get memory metrics
aggregations:
- sources:
type: "container"
container: ["utilization"] # export container utilization
levels:
- mask:
name: "container"

builtIn: # aggregate on these labels
exported container: true
exported namespace: true
workload name: true
workload kind: true
workload api group: true
workload api version: true

operation: "p95" # take the 95th percentile sample

Mission

Provide extensible, rich Kubernetes capacity and usage metrics with minimal toil.

Extensible + Rich

e High Granularity Utilization Metrics

o Configurable sampling interval for utilization metrics

o Default to ~1 sec
e Comprehensive Metadata

o Join namespace, workload, node, pod metadata when exporting metrics
e Comprehensive Metrics

o Export key metrics: un-utilized capacity on nodes, system utilization, etc

Minimal Toll

e Simple
o Don’t require writing complex promql statements to combine metrics — native
support for joining metadata across resources
e Scalable
o Support large clusters with lots of Pods
o Optimize cardinality and storage requirements by exporting pre-aggregated
results
e Performant
o Quickly compute values without requiring tiering prometheus instances

Motivation

Having the right data is critical to managing capacity in Kubernetes clusters and tuning
workloads. While there are many existing solutions for getting Kubernetes metrics, they are
architected to solve use cases.

e Utilization metrics sampling intervals should be relatively low, and configurable to ~1
intervals second

e Commonly required metadata should be trivial to attach to the metric values, and should

remain performant even with high cardinality joins

Non-Goals

(Don’t) replace existing generic metrics solutions such as kube-state-metrics.

The capacity metrics are not intended to be generic “everything about Kubernetes” metrics, but
instead focussed on providing a detailed view of capacity and usage within a cluster.

(Don’t) build an APM solution targeted at deep understanding of application specific
performance and health

The capacity metrics are not intended to provide deep insight into application performance (e.g.

Java, Python, Golang). There are existing solutions for these. The goal is to understand how
application’s performance impacts Kubernetes capacity and make it actionable.

Example Use Cases

Get p95 utilization using 1 second sampling intervals for all containers in a workload

e Sample at 1 second interval for each Pod in a workload
e Get p95 value across all samples

Before: Not possible
e Missing granularity
e Difficult to resolve workload from container metrics

Get total utilization for a team’s namespaces broken down by priority class.

e Get pod-level utilization for all pods
e Sum utilization by pod priority class and team owning the namespace

Before: Times out
e Requires expensive and complicated promql joins + relabels + sums
e Times out as a recording rule or query

Get total requests per-node-pool aggregated by priority class.

e Get pod-level utilization for all pods
e Sum utilization by pod priority class and node

Before: Times out
e Requires expensive and complicated promql joins + relabels + sums
e Times out as a recording rule or query

Get p95 utilization using 1 second sampling intervals per-node-pool aggregated by
kubepods vs node-system.

e Get cgroup-level utilization for all nodes
e Sum utilization by node-system vs kubepods cgroup

Before: Not possible
e Missing granularity
e Missing scopes

Architecture

Node Sampler

e DaemonSet run on each node and mounts cgroups filesystem

e Scrapes cgroup filesystem periodically and stores samples in a ring buffer
o By pod UID and container ID
o By cgroup

e Pushes periodically all samples to the collector
o Collector resolves pod Ul + container ID to pods

Prometheus Collector

Implements prometheus Collector interface and exposes /metrics endpoint
Receives utilization samples from the sampler

Joins namespace, pod, node, quota, workload resource data
Pre-aggregates metrics to reduce cardinality of data in prometheus

Prometheus + Grafana

e Run standard prometheus + grafana instances to scrape the collector
Capabilities

Operations

Histograms
Max

P95
Average
Sum

Sources

Containers
o Requests
o Limits

o Utilization (1 second sampling rate)
Pods
o Utilization (1 second sampling rate)

o Count
Quota

o Requests

o Limits

o Used
Nodes

o Capacity

o Allocatable

o Requests

o Limits

o Utilization (1 second sampling rate)
Cgroups (Nodes)

o Utilization (1 second sampling rate)
PVs + PVCs

O

Container / Pod Labels

Container Name (container only)

Pod Name

Pod Namespaces

Workload Name + APl GVK

Priority Class

Node

App

Scheduled

Extensions
o Namespace Annotations / Labels
o Pod Annotations / Labels
o Node Annotations / Labels

Node Labels

Node Name
Unschedulable
Extensions

o Node Annotations / Labels

Example Collector Configurations

mounted in the Collector as a file through a ConfigMap

Get p95 utilization (cpu and memory) using 1 second sampling intervals for all containers
in each workload.

resources:
"cpu": "cpu cores" # get cpu metrics
"memory": "memory bytes" # get memory metrics
aggregations:
- sources:
type: "container"
container: ["utilization"] # export container utilization
levels:
- mask:
name: "container"

builtIn: # aggregate on these labels
exported container: true
exported namespace: true
workload name: true
workload kind: true
workload api group: true
workload api version: true
operation: "p95" # take the 95th percentile sample

Result Metrics:

workload p95 utilization cpu cores{exported container="",exported nam
espace="",workload name="",

workload kind="",workload api group="",workload api version=""}
workload p95 utilization memory bytes{exported container="",exported
namespace="",workload name="",

workload kind="",workload api group="",workload api version=""}

Get total utilization (cpu and memory) for each team’s namespaces broken down by
priority class.

extensions:
namespacelabels:

- name: team # define a team label for metrics
annotation: team # populate from this namespace annotation

resources:
"cpu": "cpu cores"
"memory": "memory bytes"
aggregations:
- sources:
type: "container"
container: ["utilization"]
levels:
- mask:
name: "container"
builtIn:

exported container: true

exported pod: true

exported namespace: true

priority class: true
extensions:

team: true # keep the team label
operation: "average" # take the average for each container

- mask:

name: "team"
builtlIn:

priority class: true # aggregate on priority class + team
extensions:

team: true # aggregate on priority class + team
operation: "sum" # sum containers across namespaces

Result Metrics:

team sum utilization cpu cores{team="", priority class=""}
team sum utilization memory bytes{team="", priority class=""}

Get total node capacity metrics per-node-pool

resources:
"cpu": "cpu cores"
"memory": "memory bytes"
extensions:
nodelabels:

- name: node pool # create a metrics label called node pool
annotation: node pool # get value from this node annotation
aggregations:
- sources:

type: "node"

node:

- "node capacity" # capacity of the node

- "node allocatable" # allocatable of the node

- "node requests" # requests scheduled to node

- "node limits" # limits scheduled to node

- "node allocatable minus requests" # remaining schedulable

levels:

- mask:
name: "nodepool"
extensions:

node pool: true
Operation: sum

Result Metrics:

nodepool sum node capacity cpu cores{node pool=""}
nodepool sum node capacity memory bytes{node pool=""}

nodepool sum node allocatable cpu cores{node pool=""}
nodepool sum node allocatable memory bytes{node pool=""}

nodepool sum node requests cpu cores{node pool=""}
nodepool sum node requests memory bytes{node pool=""}

nodepool sum node limits cpu cores{node pool=""}
nodepool sum node limits memory bytes{node pool=""}

nodepool sum node allocatable minus requests cpu cores{node pool=""}
nodepool sum node allocatable minus request memory bytes{node pool=""

}

Get a p95 utilization using 1 second sampling intervals per-node-pool aggregated by
kubepods vs node-system.

resources:
"cpu": "cpu cores"
"memory": "memory bytes"
extensions:
nodelLabels:

- name: node pool # create a metrics label called node pool
annotation: node pool # get value from this node annotation
cgroupMetrics:
sources:

"/": {name: "utilization"} # define source for cgroups at /
rootSource: {name: "root utilization"} # define total node source
aggregations:
- sources:
type: "cgroup"
cgroup:
- "utilization"
- "root utilization"
levels:
- mask:
name: "nodepool"
builtIn:
cgroup: true # aggregate on cgroup + node pool
extensions:
node pool: true # aggregate on cgroup + node pool
operation: "p95" # get 95th percentile of samples

Result Metrics:

nodepool p95 utilization cpu cores{node pool="", cgroup=""}
nodepool p%5 utilization memory bytes{node pool="", cgroup=""}
nodepool p95 root utilization cpu cores{node pool=""}

nodepool p95 root utilization memory bytes{node pool=""}

	Capacity and Usage Metrics In Kubernetes
	Authors:
	TLDR
	TLDR Example

	Mission
	Extensible + Rich
	Minimal Toil

	Motivation
	Non-Goals
	Example Use Cases
	Architecture
	Node Sampler
	Prometheus Collector
	Prometheus + Grafana

	Capabilities
	Operations
	Sources
	Container / Pod Labels
	Node Labels

	Example Collector Configurations
	mounted in the Collector as a file through a ConfigMap

