
Capacity and Usage Metrics In
Kubernetes

Authors:
●​ Phillip Wittrock (@pwittrock)
●​ Ebot Ndip-Agbor
●​ Paul Morie (@pmorie)

TLDR
●​ We developed a custom solution for generating high fidelity capacity and usage metrics

that scales to large clusters
●​ We think this would be valuable to the community, and are proposing further developing

the project under a kubernetes sig instrumentation project

TLDR Example

Get the 95th utilization percentile across all containers in a workload at a 1 second
sample interval over the last 5 minutes

resources:
 "cpu": "cpu_cores" # get cpu metrics
 "memory": "memory_bytes" # get memory metrics
aggregations:
- sources:
 type: "container"
 container: ["utilization"] # export container utilization
 levels:
 - mask:
 name: "container"
 builtIn: # aggregate on these labels
 exported_container: true
 exported_namespace: true
 workload_name: true
 workload_kind: true
 workload_api_group: true
 workload_api_version: true

​ operation: "p95" # take the 95th percentile sample

Mission
Provide extensible, rich Kubernetes capacity and usage metrics with minimal toil.

Extensible + Rich
●​ High Granularity Utilization Metrics

○​ Configurable sampling interval for utilization metrics
○​ Default to ~1 sec

●​ Comprehensive Metadata
○​ Join namespace, workload, node, pod metadata when exporting metrics

●​ Comprehensive Metrics
○​ Export key metrics: un-utilized capacity on nodes, system utilization, etc

Minimal Toil
●​ Simple

○​ Don’t require writing complex promql statements to combine metrics – native
support for joining metadata across resources

●​ Scalable
○​ Support large clusters with lots of Pods
○​ Optimize cardinality and storage requirements by exporting pre-aggregated

results
●​ Performant

○​ Quickly compute values without requiring tiering prometheus instances

Motivation
Having the right data is critical to managing capacity in Kubernetes clusters and tuning
workloads. While there are many existing solutions for getting Kubernetes metrics, they are
architected to solve use cases.

●​ Utilization metrics sampling intervals should be relatively low, and configurable to ~1
intervals second

●​ Commonly required metadata should be trivial to attach to the metric values, and should
remain performant even with high cardinality joins

Non-Goals
(Don’t) replace existing generic metrics solutions such as kube-state-metrics.

The capacity metrics are not intended to be generic “everything about Kubernetes” metrics, but
instead focussed on providing a detailed view of capacity and usage within a cluster.

(Don’t) build an APM solution targeted at deep understanding of application specific
performance and health

The capacity metrics are not intended to provide deep insight into application performance (e.g.
Java, Python, Golang). There are existing solutions for these. The goal is to understand how
application’s performance impacts Kubernetes capacity and make it actionable.

Example Use Cases

Get p95 utilization using 1 second sampling intervals for all containers in a workload

●​ Sample at 1 second interval for each Pod in a workload
●​ Get p95 value across all samples

Before: Not possible

●​ Missing granularity
●​ Difficult to resolve workload from container metrics

Get total utilization for a team’s namespaces broken down by priority class.

●​ Get pod-level utilization for all pods
●​ Sum utilization by pod priority class and team owning the namespace

Before: Times out

●​ Requires expensive and complicated promql joins + relabels + sums
●​ Times out as a recording rule or query

Get total requests per-node-pool aggregated by priority class.

●​ Get pod-level utilization for all pods
●​ Sum utilization by pod priority class and node

Before: Times out

●​ Requires expensive and complicated promql joins + relabels + sums
●​ Times out as a recording rule or query

Get p95 utilization using 1 second sampling intervals per-node-pool aggregated by
kubepods vs node-system.

●​ Get cgroup-level utilization for all nodes
●​ Sum utilization by node-system vs kubepods cgroup

Before: Not possible

●​ Missing granularity
●​ Missing scopes

Architecture

Node Sampler
●​ DaemonSet run on each node and mounts cgroups filesystem
●​ Scrapes cgroup filesystem periodically and stores samples in a ring buffer

○​ By pod UID and container ID
○​ By cgroup

●​ Pushes periodically all samples to the collector
○​ Collector resolves pod UI + container ID to pods

Prometheus Collector
●​ Implements prometheus Collector interface and exposes /metrics endpoint
●​ Receives utilization samples from the sampler
●​ Joins namespace, pod, node, quota, workload resource data
●​ Pre-aggregates metrics to reduce cardinality of data in prometheus

Prometheus + Grafana
●​ Run standard prometheus + grafana instances to scrape the collector

Capabilities

Operations
●​ Histograms
●​ Max
●​ P95
●​ Average
●​ Sum

Sources
●​ Containers

○​ Requests
○​ Limits
○​ Utilization (1 second sampling rate)

●​ Pods
○​ Utilization (1 second sampling rate)
○​ Count

●​ Quota
○​ Requests
○​ Limits
○​ Used

●​ Nodes
○​ Capacity
○​ Allocatable
○​ Requests
○​ Limits
○​ Utilization (1 second sampling rate)

●​ Cgroups (Nodes)
○​ Utilization (1 second sampling rate)

●​ PVs + PVCs
○​

Container / Pod Labels
●​ Container Name (container only)
●​ Pod Name
●​ Pod Namespaces
●​ Workload Name + API GVK
●​ Priority Class
●​ Node
●​ App
●​ Scheduled
●​ Extensions

○​ Namespace Annotations / Labels
○​ Pod Annotations / Labels
○​ Node Annotations / Labels

Node Labels
●​ Node Name
●​ Unschedulable
●​ Extensions

○​ Node Annotations / Labels

Example Collector Configurations

mounted in the Collector as a file through a ConfigMap
Get p95 utilization (cpu and memory) using 1 second sampling intervals for all containers
in each workload.

resources:
 "cpu": "cpu_cores" # get cpu metrics
 "memory": "memory_bytes" # get memory metrics
aggregations:
- sources:
 type: "container"
 container: ["utilization"] # export container utilization
 levels:
 - mask:
 name: "container"
 builtIn: # aggregate on these labels
 exported_container: true
 exported_namespace: true
 workload_name: true
 workload_kind: true
 workload_api_group: true
 workload_api_version: true
​ operation: "p95" # take the 95th percentile sample

Result Metrics:

workload_p95_utilization_cpu_cores{exported_container="",exported_nam
espace="",workload_name="",
workload_kind="",workload_api_group="",workload_api_version=""}

workload_p95_utilization_memory_bytes{exported_container="",exported_
namespace="",workload_name="",
workload_kind="",workload_api_group="",workload_api_version=""}

Get total utilization (cpu and memory) for each team’s namespaces broken down by
priority class.

extensions:
 namespaceLabels:

 - name: team # define a team label for metrics
 annotation: team # populate from this namespace annotation
resources:
 "cpu": "cpu_cores"
 "memory": "memory_bytes"
aggregations:
- sources:
 type: "container"
 container: ["utilization"]
 levels:
 - mask:
 name: "container"
 builtIn:
 exported_container: true
 exported_pod: true
 exported_namespace: true
 priority_class: true
 extensions:
 team: true # keep the team label
​ operation: "average" # take the average for each container
 - mask:
 name: "team"
 builtIn:
 priority_class: true # aggregate on priority_class + team
 extensions:
 team: true # aggregate on priority_class + team
​ operation: "sum" # sum containers across namespaces

Result Metrics:

team_sum_utilization_cpu_cores{team="", priority_class=""}
team_sum_utilization_memory_bytes{team="", priority_class=""}

Get total node capacity metrics per-node-pool

resources:
 "cpu": "cpu_cores"
 "memory": "memory_bytes"
extensions:
 nodeLabels:
 - name: node_pool # create a metrics label called node_pool
 annotation: node_pool # get value from this node annotation
aggregations:
- sources:

 type: "node"
 node:
 - "node_capacity" # capacity of the node
 - "node_allocatable" # allocatable of the node
 - "node_requests" # requests scheduled to node
 - "node_limits" # limits scheduled to node
 - "node_allocatable_minus_requests" # remaining schedulable
 levels:
 - mask:
 name: "nodepool"
 extensions:
 node_pool: true
​ Operation: sum

Result Metrics:

nodepool_sum_node_capacity_cpu_cores{node_pool=""}
nodepool_sum_node_capacity_memory_bytes{node_pool=""}

nodepool_sum_node_allocatable_cpu_cores{node_pool=""}
nodepool_sum_node_allocatable_memory_bytes{node_pool=""}

nodepool_sum_node_requests_cpu_cores{node_pool=""}
nodepool_sum_node_requests_memory_bytes{node_pool=""}

nodepool_sum_node_limits_cpu_cores{node_pool=""}
nodepool_sum_node_limits_memory_bytes{node_pool=""}

nodepool_sum_node_allocatable_minus_requests_cpu_cores{node_pool=""}
nodepool_sum_node_allocatable_minus_request_memory_bytes{node_pool=""
}

Get a p95 utilization using 1 second sampling intervals per-node-pool aggregated by
kubepods vs node-system.

resources:
 "cpu": "cpu_cores"
 "memory": "memory_bytes"
extensions:
 nodeLabels:
 - name: node_pool # create a metrics label called node_pool
 annotation: node_pool # get value from this node annotation
cgroupMetrics:
 sources:

 "/": {name: "utilization"} # define source for cgroups at /
 rootSource: {name: "root_utilization"} # define total node source
aggregations:
- sources:
 type: "cgroup"
 cgroup:
 - "utilization"
 - "root_utilization"
 levels:
 - mask:
 name: "nodepool"
 builtIn:
 cgroup: true # aggregate on cgroup + node_pool
 extensions:
 node_pool: true # aggregate on cgroup + node_pool
 operation: "p95" # get 95th percentile of samples

Result Metrics:

nodepool_p95_utilization_cpu_cores{node_pool="", cgroup=""}
nodepool_p95_utilization_memory_bytes{node_pool="", cgroup=""}

nodepool_p95_root_utilization_cpu_cores{node_pool=""}
nodepool_p95_root_utilization_memory_bytes{node_pool=""}

	Capacity and Usage Metrics In Kubernetes
	Authors:
	TLDR
	TLDR Example

	Mission
	Extensible + Rich
	Minimal Toil

	Motivation
	Non-Goals
	Example Use Cases
	Architecture
	Node Sampler
	Prometheus Collector
	Prometheus + Grafana

	Capabilities
	Operations
	Sources
	Container / Pod Labels
	Node Labels

	Example Collector Configurations
	mounted in the Collector as a file through a ConfigMap

