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Metrics on Matrices

Norm
a. Length / magnitude for vector
Dot Product with Self
Transpose
Inversion
Determinant
Factorizations and Decompositions
a. LU, A=LU
b. Singular Value Decomposition

Metrics between matrices

. Angle (Ratio of dot product and product of norms)

Distance (Euclidean or otherwise)
Orthogonality
Operations on Matrices

. Addition / Sum

Multiplication / Product
Types of Matrices

Invertible
Singular
a. Right Singular
b. Left Singular
Upper / Lower Triangular
Diagonal
Orthonormal
a. Unitary Matrix

Reduced Row Echelon Form / Elimination Matrix / Jordan Matrix

Cyclic Matrix
Identity Matrix
Symmetric

. Basis Matrix
1.
12.
13.
14.
15.
16.

Cofactor Matrix
Fourier Matrix
Hadamard Matrix
Stiffness Matrix
Markov Matrix
Nullspace Matrix



17.
18.
19.
20.
21.
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Permutation Matrix
Projection Matrix
Toeplitz Matrix
Eigenvector Matrix
Eigenvalue Matrix

Consilience in Linear Algebra
(14 ways to show that a matrix is invertible)

Ais invertible

The columns are independent

The rows are independent

The determinant is not zero

Ax=0 has one solution x=0

Ax=b has one solution x=A"b

A has n (nonzero) pivots (after elimination)
A has full rank r=n

The RREF is R=I (identity matrix)

. The column space is all of R"

. The row space is all or R"

. All eigenvalues are nonzero

. ATA is symmetric positive definite
. A has n (positive) singular values

Comprehensive Concept List

1.1 Vectors and Linear Combinations
o Vector
o Linear Combination
1.2 Lengths and Dot Products
o Norm/Length
Dot Product / Inner Product
Outer Product
Unit Vector
Angle between vectors
m Cosine formula
o Schwarz Inequality
o Triangle Inequality
1.3 Matrices
o Matrix
o Matrix Multiplication
o Independent / Dependent Vectors
2.1 Vectors and Linear Equations

o O O O



o Column view

o Row view

o Gaussian Elimination
o Invertibility

o Pivot

2.2 The Idea of Elimination
o Upper / Lower Triangular Matrix
2.3 Elimination Using Matrices
o Identity Matrix
o Elimination Matrices
m  Row exchange matrix
2.4 Rules for Matrix Operations
o Fundamental Law of Matrix Multiplication
o Block Matrices
m Block Multiplication
2.5 Inverse Matrices
Square Matrix
Calculating Inverse through Gauss-Jordan Elimination
Singular Matrix
Diagonally dominant matrices are invertible
m (each a; on the diagonal is larger than the sum along the rest of the row i)
2.6 Elimination = Factorization: A = LU
o LU Decomposition
2.7 Transposes and Permutations
o Transpose
o Symmetric Matrix
o Orthogonal Matrix
o Permutation Matrix
3.1 Spaces of Vectors
o Vector Space
o Subspace
o Column Space
o Row Space
o R"
3.2 The Nullspace of A: Solving Ax=0and Rx=0
o Nullspace
o Reduced Row Echelon Form
o Rank
3.3 The Complete Solutionto Ax =b
o Full column rank
o Full row rank
3.4 Independence, Basis and Dimension
o Span

O

o
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o Basis
o Dimension of a space
> 3.5 Dimensions of the Four Subspaces
o Four Subspaces
m  Column Space
m Row Space
m Nullspace
m Left nullspace
o Left nullspace
> 4.1 Orthogonality of the Four Subspaces
o Orthogonal Complements
m Nullspace and row space are orthogonal complements
m Left nullspace and column space are orthogonal complements
> 4.2 Projections
o Projection
o Projection Matrix
> 4.3 Least Squares Approximations
o Least squares
m Least squares as projection
o Normal Equation
o Minimizing the Error (Sum of squared Errors)
m By geometry

m By algebra
m By calculus
m||Ax-b|?

o Pseudoinverse
o Fitting by Parabola
> 4.4 Orthonormal Bases and Gram-Schmidt
o Orthogonal matrix
o Orthonormal
o Gram-Schmidt
o QR Factorization
> 5.1 Determinants
o Determinant
m Determinant is zero when a matrix has no inverse.
The product of the pivots is the determinant of a 2x2 matrix.
Determinant of the identity matrix is 1.
Determinant changes sign when two rows are exchanged.
When the rows of your matrix are points of a box, the volume of the box is
the absolute value of the determinant.
m det(AB) = det(A)*det(B)
m  det(A”) = det(A)
> 5.2 Permutations and Cofactors
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Determinant of 3 by 3 matrices.
det(A) = sum over all n! Column permutations

m  Number of terms involved in computing the determinant is n!.
Determinant by cofactors

> 5.3 Cramer’s Rule, Inverses, and Volumes

O

o
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Cramer’s Rule
Determinant to compute volume of a box / area of a parallelogram
Cross Product

> 6.1 Eigenvalues and Eigenvectors

>

>
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Eigenvector

Eigenvalue

Projections have lam=1 and 0. Reflections have 1 and -1. Rotations have e""*®
and e-i*theta_

Markov matrix

det(A-lambda*l) = 0

Characteristic Polynomial

6.2 Diagonalizing a Matrix
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6.4
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o
o
o
o
o
S
o
o

Eigenvalue matrix

Diagonalization via n independent eigenvectors
Geometric multiplicity

Algebraic multiplicity

Differential equations

Converting constant-coefficient differential equations into linear algebra
Stable matrix

Matrix exponentials

First / Second order equation

Difference Equations

ymmetric Matrices

A symmetric matrix has real eigenvalues and orthonormal eigenvectors
Spectral Theorem:
m A real symmetric matrix can be diagonalized by its eigenvector matrix
times its diagonal eigenvalue matrix times its eigenvector matrix
transpose (inverted)

6.5 Positive Definite Matrices

O

O

Positive definite
m all eigenvalues > 0
m All pivots >0
m  All upper left determinants > 0
Positive semidefinite
m Allows for eigenvalue / pivot / determinant = 0

7.1 The Singular Value Decomposition

o

Singular Vectors



m Eigenvectors of ATA
m Eigenvectors of AAT
> 7.2 Bases and Matrices in the SVD
o Singular value
m Singular value matrix sigma
o Singular Value Decomposition
o A=UzVT
> 7.3 Principal Component Analysis (PCA by SVD)
o Principal Component Analysis
o Largest singular value => axis of greatest variance
o Covariance Matrix
o Principal components
> 7.4 The Geometry of the SVD
o A =UZXV factors into (rotation)(stretching)(rotation)
o The geometry of SVD matrix A transforms vectors on a circle into an ellipse.
o Polar Decomposition
> 8.1 The Idea of a Linear Transformation
o Linear Transformation
m Requirements to make a transformation linear
o Differentiation is a linear transformation
o Integration is linear transformation (pseudoinverse of differentiation)
> 8.2 The Matrix of a Linear Transformation
o Change of Basis
o Choosing the Best Bases (eigen / singular vectors)
> 8.3 The Search for a Good Basis
o Fourier Matrix
Jordan Matrix (The Jordan Form)
Circulant Matrix
Fourier Basis
Legendre Basis
Chebyshev Basis
Legendre Polynomials
o Chebyshev Polynomials
> 9.1 Complex Numbers
o Complex Numbers
o Imaginary Number
o Complex conjugate
o Polar Form
> 9.2 Hermitian and Unitary Matrices
o Hermitian Matrix (Conjugate transpose)
o Complex Inner Products
o Unitary Matrix
> 9.3 The Fast Fourier Transform

O O O O O O



o Roots of Unity
o Fourier Transform
m Represent a function as a sum of harmonics (in frequency space)
o Fast Fourier Transform Algorithm
> 11.1 Gaussian Elimination in Practice
o Partial Pivoting
o Sparse Matrices
o Householder reflections (in QR Factorization)
> 11.2 Norms and Condition Numbers
Growth Factor
Norm of A is the square root of the maximum eigenvalue of ATA?!?
Condition Number
Solution Error
Problem Error
Relative Error
> 11.3 Iterative Methods and Preconditioners
Replacing A by a simpler matrix S and using an iterative method to solve Ax=b
Preconditioner
Jacobi’s method
Gauss-Seidel method
Incomplete LU method
Iteration Matrix
Spectral radius
Successive Overrelaxation Method (SOR)
Multigrid
Conjugate Gradients
Power Methods
m Inverse Power Methods
> 12. Mean, Variance and Probability
Mean
Variance
Probabilities
Sample Values
Sample Mean
Sample Variance
Expected Value
Variance
Standard Deviation
Probability Distribution
m  Uniform Distribution
m Normal Distribution
m Binomial Distribution
o Cumulative Distribution

o O O O O O
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Probability Density Function
Integration
Central Limit Theorem
Monte-Carlo Estimation Methods
> 12.2 Covariance Matrices and Joint Probabilities
o Covariance (again, in more detail)
o Joint Probability
o Correlation
> 12.3 Multivariate Gaussian and Weighted Least Squares
Independence
Multivariate Gaussian probability distribution
Weighted Least Squares
Kalman Filter
m Kalman update
m Kalman gain matrix

O O O O

o O O O

Ch. 1 Introduction to Vectors

Plan:
30m asking what is here, why it matters, where it can be applied.

Ontology:
1. Vectors and Linear Combinations
2. Lengths and Dot Products
3. Matrices

Axioms & Recombination

There are two operations at the heart of linear algebra, both with vectors. Addition and
multiplication.

Almost every operation is a function of these operations, whether it be matrix multiplication,
singular value decomposition or whatever. Everything can be broken down into vector additions
and multiplications.

Notes

The length of a vector is the square root of the dot product. Which is how you quickly compute
distances in KNN / Kmeans!! You use matrix multiplication, followed by a square root!



You can think of the product of norms as being equal to the dot products when the vectors go in
the same direction.

1.

Questions
I wonder - how stochastic is SGD? That is, how far are sampled gradients from the true
gradient, on average? Can we say something about the optimal batch size for
generalization, using this angle? How well does a notion of angles between matricies
hold up? Is it just the average angle between every vector in the matrix? Or should it be
represented as a vector of angles?

2. People don’t talk about matrix angles. | wonder why?
3. How would we do deep learning without this representation of parameters / outputs? Is
there are workable alternate representation?
Ch. 2. Solving Linear Equations

Ontology:

1. Vectors and Linear Equations

2. The Idea of Elimination

3. Elimination Using Matrices

4. Rules for Matrix Operations

5. Inverse Matrices

6. Elimination = Factorization: A = LU

7. Transposes and Permutations

Ch. 3. Vector Spaces and Subspaces

Ontology:

1. Spaces of Vectors

2. The Nullspace of A: Solving Ax=0 and Rx=0

3. The Complete Solution to Ax=b

4. Independence, Basis and Dimension

5. Dimensions of the Four Subspaces

Ch. 4. Orthogonality

Ontology:

1. Orthogonality of the Four Subspaces

2. Projections

3. Least Squares Approximations

4. Orthonormal Bases and Gram-Schmidt



Notes

For projection onto a subspace, it looks like you have to take a set of vectors that span that
subspace and compute a projection onto each one, and then sum those projections to get your
matrix.

There has to be an efficient way to compute this...

Questions
1. | see a lot of value to doing projections in the training processes of algorithms - would be
great to have a notebook with a nice example of the projection of one numpy array onto
another.

a. These are the projections of a matrix onto another matrix. So | guess there’s an
adaptive range / manifold for each layer? What if it's different at each layer (it
probably is)?

2. Can we find a projection matrix that will project a matrix onto our adaptive range?
3. Why does numpy not have a projection function?
a. Why do people almost exclusively talk about / look at orthogonal projections?
4. Looks like you need to do an inversion to do an oblique projection.
5. Could use random projections to speed up k-means for high dimensional data,
computing distance on a lower dimensional space



