Questions

Q1.

The curve C has parametric equations

$$x = 3t - 4, y = 5 - \frac{6}{t}, t > 0$$

dy

(a) Find dx in terms of t

(2)

The point *P* lies on *C* where $t = \frac{1}{2}$

(b) Find the equation of the tangent to C at the point P. Give your answer in the form y = px + q, where p and q are integers to be determined.

(3)

(c) Show that the cartesian equation for C can be written in the form

$$y = \frac{ax + b}{x + 4}, \quad x > -4$$

where a and b are integers to be determined.

(3)

(Total for question = 8 marks)

Q2.

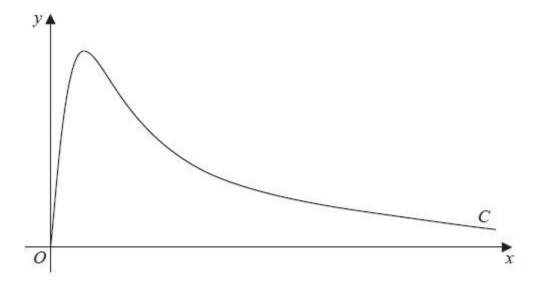


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4 \tan t$$
, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $\left(4\sqrt{3}, \frac{15}{2}\right)$.

dy

(a) Find the exact value of dx at the point P.

Give your answer as a simplified surd.

(4)

dy

The point Q lies on the curve C, where dx = 0

(b) Find the exact coordinates of the point Q.

(2)

(Total for question = 6 marks)

Q3.

The curve C has parametric equations

$$x = 2\cos t$$
, $y = \sqrt{3}\cos 2t$, $0 \le t \le \pi$

dy

(a) Find an expression for \overline{dx} in terms of t.

(2)

 $\frac{2\pi}{2}$

The point P lies on C where t = 3

The line I is the normal to C at P.

(b) Show that an equation for I is

$$2x - 2\sqrt{3}y - 1 = 0$$

(5)

The line / intersects the curve C again at the point Q.

(c) Find the exact coordinates of Q.

You must show clearly how you obtained your answers.

(6)

(Total for question = 13 marks)

Q4.

A curve C has parametric equations

$$x = 2\sin t$$
, $y = 1 - \cos 2t$, $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$

(a) Find $\frac{dy}{dx}$ at the point where $t = \frac{\pi}{6}$

(4)

(b) Find a cartesian equation for C in the form

$$y = f(x), -k \le x \le k,$$

stating the value of the constant k.

(3)

(c) Write down the range of f(x).

(2)

(Total 9 marks)

Q5.

A curve has parametric equations

$$x = \tan^2 t$$
, $y = \sin t$, $0 < t < \frac{\pi}{2}$.

dy

(a) Find an expression for dx in terms of t. You need not simplify your answer.

Give your answer in the form y = ax + b, where a and b are constants to be determined.

(3)

(b) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$.

(5)

(c) Find a cartesian equation of the curve in the form $y^2 = f(x)$.

(4)

(Total 12 marks)

Q6.

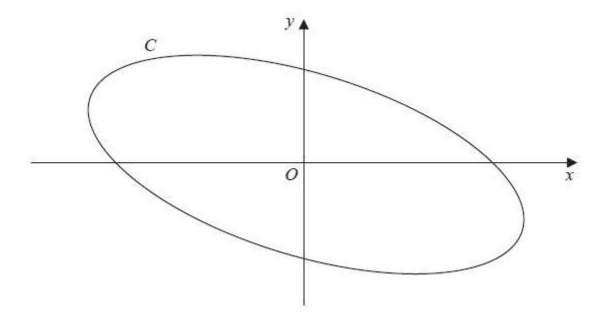


Figure 3

Figure 3 shows a sketch of the curve *C* with parametric equations

$$x = 4\cos\left(t + \frac{\pi}{6}\right), \quad y = 2\sin t, \quad 0 \le t < 2\pi$$

(a) Show that

$$x + y = \sqrt{3} \cos t$$

(3)

(b) Show that a cartesian equation of C is

$$(x+y)^2 + ay^2 = b$$

where a and b are integers to be determined.

(2)

(Total 5 marks)

Q7.

A curve C has parametric equations

$$x = \frac{t^2 + 5}{t^2 + 1} \qquad y = \frac{4t}{t^2 + 1} \qquad t \in \mathbb{R}$$

Show that all points on C satisfy

$$(x-3)^2 + y^2 = 4$$

(Total for question = 3 marks)

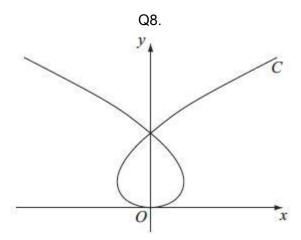


Figure 3

The curve C shown in Figure 3 has parametric equations

$$x = t^3 - 8t, y = t^2$$

where t is a parameter. Given that the point A has parameter t = -1,

(a) find the coordinates of A.

(1)

The line I is the tangent to C at A.

(b) Show that an equation for I is 2x - 5y - 9 = 0.

(5)

The line I also intersects the curve at the point *B*.

(c) Find the coordinates of *B*.

(6)

(Total 12 marks)

Q9.

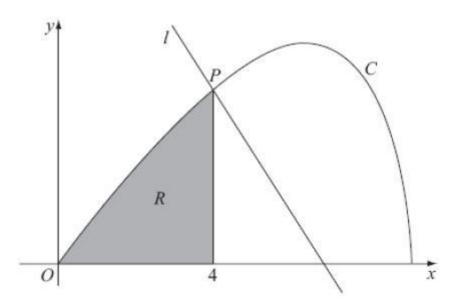


Figure 3

Figure 3 shows the curve *C* with parametric equations

$$x = 8\cos t, \qquad y = 4\sin 2t, \qquad 0 \le t \le \frac{\pi}{2}.$$

The point *P* lies on *C* and has coordinates $(4, 2\sqrt{3})$.

(a) Find the value of *t* at the point *P*.

The line I is a normal to C at P.

(b) Show that an equation for *I* is $y = -x\sqrt{3} + 6\sqrt{3}$.

(6)

The finite region R is enclosed by the curve C, the x-axis and the line x = 4, as shown shaded in Figure 3.

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 64$$

 $\sin^2 t \cos t \, dt$.

(c) Show that the area of R is given by the integral

(4)

(d) Use this integral to find the area of R, giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(4)

(Total 16 marks)

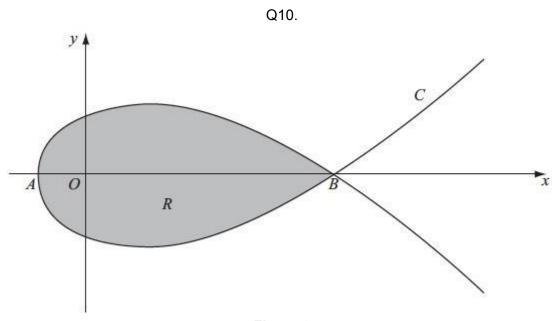


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations $\frac{1}{2} = \frac{5k^2}{4} = \frac{4}{4} = \frac{1}{4} = \frac{1}{4$

 $x = 5t^2 - 4$, $y = t(9 - t^2)$

The curve C cuts the x-axis at the points A and B.

(a) Find the x-coordinate at the point A and the x-coordinate at the point B.

(3)

The region R, as shown shaded in Figure 2, is enclosed by the loop of the curve.

(b) Use integration to find the area of R.

(6)

(Total 9 marks)

Q11.

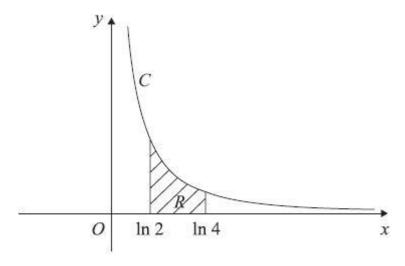


Figure 3

The curve C has parametric equations

$$x = \ln(t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x = I_n 2$ and $x = I_n 4$, is shown shaded in Figure 3.

(a) Show that the area of *R* is given by the integral

$$\int_0^2 \frac{1}{(t+1)(t+2)} \, \mathrm{d}t.$$

(4)

(b) Hence find an exact value for this area.

(6)

(c) Find a cartesian equation of the curve C, in the form y = f(x).

(4)

(d) State the domain of values for *x* for this curve.

(1)

(Total 15 marks)

Q12.

A curve C has parametric equations

$$x = 4t + 3$$
, $y = 4t + 8 + \frac{5}{2t}$, $t \neq 0$

dy

(a) Find the value of dx at the point on C where t = 2, giving your answer as a fraction in its simplest form.

(b) Show that the cartesian equation of the curve C can be written in the form

$$y = \frac{x^2 + ax + b}{x - 3}, \quad x \neq 3$$

where a and b are integers to be determined.

(3)

(Total for question = 6 marks)

Q13.

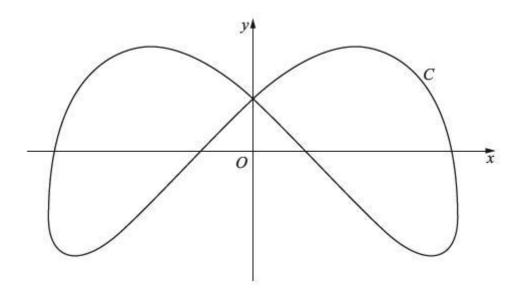


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4\sin\left(t + \frac{\pi}{6}\right), \quad y = 3\cos 2t, \quad 0 \leqslant t < 2\pi$$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t.

(3)

Find the coordinates of all the points on *C* where $\frac{dy}{dx} = 0$

(5)

(Total 8 marks)

Q14.

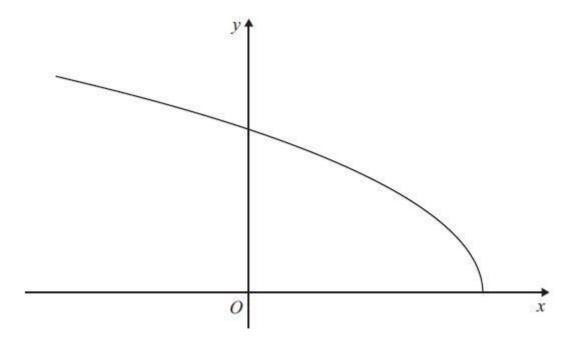


Figure 2

Figure 2 shows a sketch of the curve with parametric equations

$$x = 2\cos 2t$$
, $y = 6\sin t$, $0 \le t \le \frac{\pi}{2}$

(a) Find the gradient of the curve at the point where $t = \frac{\pi}{3}$

(4)

(b) Find a cartesian equation of the curve in the form

$$y = f(x), -k \leqslant x \leqslant k,$$

stating the value of the constant k.

(4)

(c) Write down the range of f(x).

(2)

(Total 10 marks)

Q15.

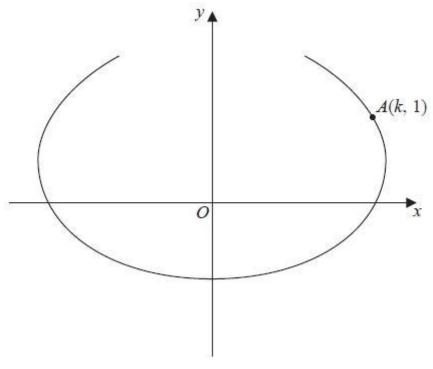


Figure 3

The curve shown in Figure 3 has parametric equations

$$x = t - 4 \sin t$$
, $y = 1 - 2 \cos t$, $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$

The point A, with coordinates (k, 1), lies on the curve.

Given that k > 0

(a) find the exact value of k,

(2)

(b) find the gradient of the curve at the point A.

(4)

There is one point on the curve where the gradient is equal to $-\frac{1}{2}$

(c) Find the value of *t* at this point, showing each step in your working and giving your answer to 4 decimal places.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(6)

(Total 12 marks)

Q16.

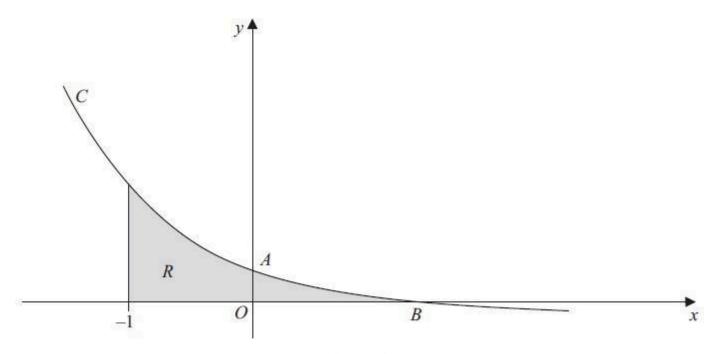


Figure 2

Figure 2 shows a sketch of part of the curve C with parametric equations

$$x = 1 - \frac{1}{2}t, \quad y = 2^t - 1$$

The curve crosses the *y*-axis at the point *A* and crosses the *x*-axis at the point *B*.

(a) Show that A has coordinates (0, 3).

(2)

(b) Find the *x* coordinate of the point *B*.

(2)

(c) Find an equation of the normal to C at the point A.

(5)

The region R, as shown shaded in Figure 2, is bounded by the curve C, the line x = -1 and the x-axis.

(d) Use integration to find the exact area of R.

(6)

(Total 15 marks)

Mark Scheme

Q1.

Question Number	Scheme	Notes	Marks
50	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$		
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3 \; , \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$		
	$\frac{dy}{dx} = \frac{6t^{2}}{3} \left\{ = \frac{6}{3t^{2}} = 2t^{-2} = \frac{2}{t^{2}} \right\}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1
		$\frac{6t^{-2}}{3}$, simplified or un-simplified, in terms of t. See note.	A1 isw
	Award Special Case 1st M1 i	f both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]
	Note: You can	recover the work for part (a) in part (b).	Į.
(a) Way 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)}$	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.	M1
way 2	$x+4$ dx $(x+4)^2$ (3t)	Correct un-simplified or simplified answer, in terms of t. See note.	A1 isw
			[2]
(b)	$\left\{t = \frac{1}{2} \Rightarrow\right\} P\left(-\frac{5}{2}, -7\right)$	$x = -\frac{5}{2}$, $y = -7$ or $P\left(-\frac{5}{2}, -7\right)$ seen or implied.	B1
	$\frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2}$ and either	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$	
	• $y - "-7" = "8" \left(x - "-\frac{5}{2}"\right)$	which contains t in order to find m_T and either	
	• "-7" = ("8")("- $\frac{5}{2}$ ") + c	applies $y - (\text{their } y_p) = (\text{their } m_T)(x - \text{their } x_p)$	M1
	4	or finds c from (their y_p) = (their m_T)(their x_p) + c	
	So, $y = (\text{their } m_{\Gamma})x + "c"$	and uses their numerical c in $y = (\text{their } m_T)x + c$	
	T: $y = 8x + 13$	y = 8x + 13 or $y = 13 + 8x$	A1 cso
	Note: their x_p , their y_p and the	heir m_T must be numerical values in order to award M1	[3]
(c) Way 1	$\left\{t = \frac{x+4}{3} \Rightarrow\right\} y = 5 - \frac{6}{\left(x+4\right)}$	An attempt to eliminate t. See notes.	M1
Way I	3	Achieves a correct equation in x and y only	A1 o.e.
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4)}{x+4}$ So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$	4	
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$	$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso
			[3]
(c)	[6] 18	An attempt to eliminate t . See notes.	M1
Way 2	$\begin{cases} l = \frac{1}{5 - y} \Rightarrow \begin{cases} x = \frac{1}{5 - y} - 4 \end{cases}$	Achieves a correct equation in x and y only	A1 o.e.
1	$\begin{cases} t = \frac{6}{5 - y} \Rightarrow \begin{cases} x = \frac{18}{5 - y} - 4 \\ \Rightarrow (x + 4)(5 - y) = 18 \Rightarrow 5x - xy - 4 \end{cases}$ $\begin{cases} \Rightarrow 5x + 2 = y(x + 4) \end{cases} \text{So, } y = \frac{5x - 4}{x + 4} \end{cases}$	$\frac{+20-4y=18}{4}, \left\{x>-4\right\} \qquad y = \frac{5x+2}{x+4} \text{ (or implied equation)}$	A1 cso
4	x+	x+4	CONTRACTOR CONTRACTOR
			[3]
	Note: Some or all of the wo	ork for part (c) can be recovered in part (a) or part (b)	8

Question Number		Scheme	Notes	Marks
(c)	3at -	4a+b 3at 4a-b 4a-b	A full method leading to the value of a being found	М1
Way 3	$y = \frac{1}{3t}$	$\frac{-4a+b}{-4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a-b}{3t} \Rightarrow a=5$	$y = a - \frac{4a - b}{3t} \text{ and } a = 5$	A1
	$\frac{4a-b}{3} =$	$6 \implies b = 4(5) - 6(3) = 2$	Both $a = 5$ and $b = 2$	A1
	9			[3]
	8		otes	
(a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1		
	Note	You can ignore subsequent working following of	dx	erms of t.
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their}} \frac{dy}{dx}$	or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$ is M0.	
	Note	Final A1: A correct solution is required from a	ax	
	Note	Final A1: You can ignore subsequent working		
(c)	Note	 1st M1: A full attempt to eliminate t is defined a rearranging one of the parametric equation the other parametric equation (only the rearranging both parametric equations to each other. 	ions to make t the subject and substituti ne RHS of the equation required for M	mark)
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent	<u> </u>	

Question Number	Scheme	Notes	Marks
	$x = 4 \tan t$, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$		
(a) Way 1	$\frac{dx}{dt} = 4\sec^2 t, \frac{dy}{dt} = 10\sqrt{3}\cos 2t$ $\Rightarrow \frac{dy}{dx} = \frac{10\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$	Either both x and y are differentiated correctly with respect to t or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
		Correct $\frac{dy}{dx}$ (Can be implied)	A1 oe
	$\left\{ \operatorname{At} P\left(4\sqrt{3}, \frac{15}{2}\right), \ t = \frac{\pi}{3} \right\}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	Al cso
(b)	$\left\{10\sqrt{3}\cos 2t = 0 \Rightarrow t = \frac{\pi}{4}\right\}$		[4]
	So $x = 4\tan\left(\frac{\pi}{4}\right)$, $y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right)$	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$ or $y = \text{awrt } 8.7$	M1
	Coordinates are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3})$ or $x = 4, y = 5\sqrt{3}$	A1
	-		[2]

- 8		Question Notes
(a)	1 st A1	Correct $\frac{dy}{dx}$. E.g. $\frac{10\sqrt{3}\cos 2t}{4\sec^2 t}$ or $\frac{5}{2}\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$ or any equivalent form.
	Note	Give the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$
13.1	Note	Give the final A0 for more than one value stated for $\frac{dy}{dx}$
(b)	Note	Also allow M1 for either $x = 4\tan(45)$ or $y = 5\sqrt{3}\sin(2(45))$
89	Note	M1 can be gained by ignoring previous working in part (a) and/or part (b)
124	Note	Give A0 for stating more than one set of coordinates for Q.
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 4)$ is A0.

Question Number	Scheme	Notes	Marks
3)	$x = 4 \tan t$, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$		
(a) Way 2	$\tan t = \frac{x}{4} \implies \sin t = \frac{x}{\sqrt{(x^2 + 16)}}, \cos t = \frac{4}{\sqrt{(x^2 + 16)}} \implies \frac{1}{\sqrt{(x^2 + 16)}}$	$y = \frac{40\sqrt{3}x}{x^2 + 16}$	
	$\begin{cases} u = 40\sqrt{3}x & v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} & \frac{dv}{dx} = 2x \end{cases}$	·	
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$	$\frac{\pm A(x^2 + 16) \pm Bx^2}{(x^2 + 16)^2}$	M1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Correct $\frac{dy}{dx}$; simplified or un-simplified	A1
	$\frac{dy}{dx} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	dependent on the previous M mark Some evidence of substituting $x = 4\sqrt{3} \text{ into their } \frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso
			[4
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$		
	$\frac{dy}{dx} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^2}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A \cos\left(2 \tan^{-1}\left(\frac{x}{4}\right)\right) \left(\frac{1}{1+x^2}\right)$	M1
	$dx \qquad (4))\left(1+\left(\frac{x}{4}\right)^2\right)(4)$	Correct $\frac{dy}{dx}$; simplified or un-simplified.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{ = 5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{$	dependent on the	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso
		nom a correct solution only	[4]

Question	Scheme	Marks	AOs
(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	M1	1.16
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{3}\sin 2t}{\sin t} \left(=2\sqrt{3}\cos t\right)$	A1	1.11
		(2)	
(b)	Substitutes $t = \frac{2\pi}{3} \text{ in } \frac{dy}{dx} = \frac{\sqrt{3} \sin 2t}{\sin t} = (-\sqrt{3})$	M1	2.1
	Uses gradient of normal = $-\frac{1}{dy/dx} = \left(\frac{1}{\sqrt{3}}\right)$	M1	2.1
	Coordinates of $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$	В1	1.11
	Correct form of normal $y + \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}(x+1)$	M1	2.1
	Completes proof $\Rightarrow 2x - 2\sqrt{3}y - 1 = 0$ *	A1*	1.11
		(5)	
(c)	Substitutes $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$	M1	3.18
	Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic in $\cos t$	M1	3.18
	$\Rightarrow 12\cos^2 t - 4\cos t - 5 = 0$	A1	1.11
	Finds $\cos t = \frac{5}{6}, \frac{1}{2}$	M1	2.4
	Substitutes their $\cos t = \frac{5}{6}$ into $x = 2\cos t$, $y = \sqrt{3}\cos 2t$,	M1	1.11
	$Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$	A1	1.11
		(6)	

Notes:

(a)

M1: Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}}$ and achieves a form $k \frac{\sin 2t}{\sin t}$ Alternatively candidates may apply the double angle identity for $\cos 2t$ and achieve a form $k \frac{\sin t \cos t}{\sin t}$

A1: Scored for a correct answer, either $\frac{\sqrt{3}\sin 2t}{\sin t}$ or $2\sqrt{3}\cos t$

(b)

M1: For substituting $t = \frac{2\pi}{3}$ in their $\frac{dy}{dx}$ which must be in terms of t

M1: Uses the gradient of the normal is the negative reciprocal of the value of $\frac{dy}{dx}$. This may be seen in the equation of l.

B1: States or uses (in their tangent or normal) that $P = \left(-1, -\frac{\sqrt{3}}{2}\right)$

M1: Uses their numerical value of $-1/\frac{dy}{dx}$ with their $\left(-1, -\frac{\sqrt{3}}{2}\right)$ to form an equation of the normal at P

A1*: This is a proof and all aspects need to be correct. Correct answer only $2x - 2\sqrt{3}y - 1 = 0$

(c)

M1: For substituting $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ into $2x - 2\sqrt{3}y - 1 = 0$ to produce an equation in t. Alternatively candidates could use $\cos 2t = 2\cos^2 t - 1$ to set up an equation of the form $y = Ax^2 + B$.

M1: Uses the identity $\cos 2t = 2\cos^2 t - 1$ to produce a quadratic equation in $\cos t$ In the alternative method it is for combining their $y = Ax^2 + B$ with $2x - 2\sqrt{3}y - 1 = 0$ to get an equation in just one variable

A1: For the correct quadratic equation $12\cos^2 t - 4\cos t - 5 = 0$ Alternatively the equations in x and y are $3x^2 - 2x - 5 = 0$ $12\sqrt{3}y^2 + 4y - 7\sqrt{3} = 0$

M1: Solves the quadratic equation in $\cos t$ (or x or y) and rejects the value corresponding to P.

M1: Substitutes their $\cos t = \frac{5}{6}$ or their $t = \arccos\left(\frac{5}{6}\right)$ in $x = 2\cos t$ and $y = \sqrt{3}\cos 2t$ If a value of x or y has been found it is for finding the other coordinate.

A1: $Q = \left(\frac{5}{3}, \frac{7}{18}\sqrt{3}\right)$. Allow $x = \frac{5}{3}, y = \frac{7}{18}\sqrt{3}$ but do not allow decimal equivalents.

(a) $\frac{dx}{dt} = 2\cos t, y = 1 - \cos 2t \left\{ = 2\sin^2 t \right\}, -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$ $At least one of \frac{dx}{dt} \text{ or } \frac{dy}{dt} \text{ correct.}$ $Both \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ accorrect.}$ $Both \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ arcorrect.}$ $Both \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ arcorrect.}$ $Applies their \frac{dy}{dt} \text{ divided by their } \frac{dx}{dt}.$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = \frac{2\sin 2t}{6}.$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = \frac{2\sin (\frac{2\pi}{6})}{2\cos (\frac{\pi}{6})}. = 1$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = \frac{2\sin (\frac{2\pi}{6})}{2\cos (\frac{\pi}{6})}. = 1$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = \frac{2\sin (\frac{2\pi}{6})}{2\cos (\frac{\pi}{6})}. = 1$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = \frac{\sin (\cot \frac{dy}{dt})}{2\cos (\frac{\pi}{6})}.$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = \frac{\sin (\cot \frac{dy}{dt})}{2\cos (\frac{\pi}{6})}.$ $At \ t = \frac{\pi}{6}, \frac{dy}{dt} = 1 - (1 - 2\sin^2 t)$ $= 2\sin^2 t$ $So, \ y = 2\left(\frac{x}{2}\right)^2 \text{ or } y = \frac{x^2}{2} \text{ or } y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ $Either \ k = 2 \ or \ -2 \leqslant x \leqslant 2$ (c) Range: $0 \leqslant f(x) \leqslant 2 \text{ or } 0 \leqslant y \leqslant 2 \text{ or } 0 \leqslant f \leqslant 2$ See notes $Bt \ Bt \$	Question Number	Scheme	Marks
(a) $y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ $= 2\sin^2 t$ So, $y = 2\left(\frac{x}{2}\right)^2$ or $y = \frac{x^2}{2}$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ $y = \frac{x^2}{2}$ or equivalent. A1 cso isw Either $k = 2$ or $-2 \le x \le 2$ $= 1$ (c) Range: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$ See notes B1 B1 [2] Notes for Question (a) B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working. B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working. M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression for $\frac{dy}{dx}$. This mark may be implied by their final answer. I.e. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied). A1: For an answer of 1 by correct solution only. Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorrect methods. Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$. Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\sin 2t$ leading to $\frac{dy}{dx} = \frac{-2\sin 2t}{-2\cos t}$	(a)	$\frac{dx}{dt} = 2\cos t, \frac{dy}{dt} = 2\sin 2t \text{or } \frac{dy}{dt} = 4\sin t \cos t$ At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. $\text{Both } \frac{dx}{dt} \text{ and } \frac{dy}{dt} \text{ are correct.}$ So, $\frac{dy}{dx} = \frac{2\sin 2t}{2\cos t} \left\{ = \frac{4\cos t \sin t}{2\cos t} = 2\sin t \right\}$ Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ $\text{And substitutes } t = \frac{\pi}{6} \text{ into their } \frac{dy}{dx}.$	B1 M1;
Either $k = 2$ or $-2 \le x \le 2$ Range: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$ See notes B1 B1 B1 B1 B1 B1 B1 B1 B1 B	(b)	$y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ $= 2\sin^2 t$	M1
B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working. B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working. M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression for $\frac{dy}{dx}$. This mark may be implied by their final answer. Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied). A1: For an answer of 1 by correct solution only. Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorrect methods. Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$. Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\sin 2t$ leading to $\frac{dy}{dx} = \frac{-2\sin 2t}{-2\cos t}$	(c)	Either $k = 2$ or $-2 \le x \le 2$	B1 [3 B1 B1 [2
B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working. B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working. M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression for $\frac{dy}{dx}$. This mark may be implied by their final answer. Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied). A1: For an answer of 1 by correct solution only. Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorrect methods. Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$. Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\sin 2t$ leading to $\frac{dy}{dx} = \frac{-2\sin 2t}{-2\cos t}$		Notes for Question	
which after substitution of $t = \frac{\lambda}{t}$, yields $\frac{dy}{dt} = 1$	(a)	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working. B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working. M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression for This mark may be implied by their final answer. Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied). A1: For an answer of 1 by correct solution only. Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorrect. Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$.	ect methods

Notes for Question Continued

- (b) M1: Uses the correct double angle formula $\cos 2t = 1 2\sin^2 t$ or $\cos 2t = 2\cos^2 t 1$ or $\cos 2t = \cos^2 t \sin^2 t$ in an attempt to get y in terms of $\sin^2 t$ or get y in terms of $\cos^2 t$ or get y in terms of $\sin^2 t$ and $\cos^2 t$. Writing down $y = 2\sin^2 t$ is fine for M1.
 - A1: Achieves $y = \frac{x^2}{2}$ or un-simplified equivalents in the form y = f(x). For example:

$$y = \frac{2x^2}{4}$$
 or $y = 2\left(\frac{x}{2}\right)^2$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ or $y = 1 - \frac{4 - x^2}{4} + \frac{x^2}{4}$

and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation. IMPORTANT: Please check working as this result can be fluked from an incorrect method. Award A0 if there is a +c added to their answer.

- B1: Either k = 2 or a candidate writes down $-2 \le x \le 2$. Note: $-2 \le k \le 2$ unless k stated as 2 is B0.
- (c) Note: The values of 0 and/or 2 need to be evaluated in this part

B1: Achieves an inclusive upper or lower limit, using acceptable notation. Eg: $f(x) \ge 0$ or $f(x) \le 2$

B1: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$

Special Case: SC: B1B0 for either 0 < f(x) < 2 or 0 < f < 2 or 0 < y < 2 or (0, 2)

Special Case: SC: B1B0 for $0 \le x \le 2$.

IMPORTANT: Note that: Therefore candidates can use either y or f in place of f(x)

Examples: $0 \le x \le 2$ is SC: B1B0 0 < x < 2 is B0B0 $x \le 0$ is B0B0 $x \le 2$ is B0B0 $x \le 2$ is B0B0 $x \le 0$ is B0B0 $x \ge 0$ is B0B0 $0 \ge f(x) \ge 2$ is B0B0 $0 \le f(x) \le 2$ is B1B0

 $0 \le f(x) \le 2 \text{ is B1B0}.$ $f(x) \ge 0 \text{ is B1B0}.$

 $f(x) \le 2$ is B1B0 $f(x) \ge 0$ and $f(x) \le 2$ is B1B1. Must state AND {or}

 $2 \le f(x) \le 2 \text{ is B0B0}$ $f(x) \ge 0 \text{ or } f(x) \le 2 \text{ is B1B0}.$

 $|f(x)| \le 2$ is B1B0 $|f(x)| \ge 2$ is B0B0 $1 \le f(x) \le 2$ is B1B0 1 < f(x) < 2 is B0B0 $0 \le f(x) \le 4$ is B1B0 0 < f(x) < 4 is B0B0

 $0 \leqslant \text{Range} \leqslant 2$ is B1B0 Range is in between 0 and 2 is B1B0

0 < Range < 2 is B0B0. Range ≥ 0 is B1B0

Range ≤ 2 is B1B0 Range ≥ 0 and Range ≤ 2 is B1B0.

[0, 2] is B1B1 (0, 2) is SC B1B0

Aliter
(a) $\frac{dx}{dt} = 2\cos t$, $\frac{dy}{dt} = 2\sin 2t$,

Way 2 π dx (π)

At $t = \frac{\pi}{6}$, $\frac{dx}{dt} = 2\cos\left(\frac{\pi}{6}\right) = \sqrt{3}$, $\frac{dy}{dt} = 2\sin\left(\frac{2\pi}{6}\right) = \sqrt{3}$

Hence $\frac{dy}{dx} = 1$

So B1, B1.

So implied M1, A1.

	Notes for Que	estion Continued	
Aliter (a)	$y = \frac{1}{2}x^2 \Rightarrow \frac{dy}{dx} = x$	Correct differentiation of their Cartesian equation.	B1ft
Way 3	$y - \frac{1}{2}x - \frac{1}{dx} = x$ Finds	$\frac{dy}{dx} = x$, using the correct Cartesian equation only.	B1
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = 2\sin\left(\frac{\pi}{6}\right)$	Finds the value of "x" when $t = \frac{\pi}{6}$ and substitutes this into their $\frac{dy}{dx}$	M1
	= 1	Correct value for $\frac{dy}{dx}$ of 1	A1
Aliter (b)	$y = 1 - \cos 2t = 1 - (2\cos^2 t - 1)$	M1	
Way 2	$y = 2 - 2\cos^2 t \implies \cos^2 t = \frac{2 - y}{2} \implies 1 - \sin^2 t$	$t = \frac{2 - y}{2}$	
	$1 - \left(\frac{x}{2}\right)^2 = \frac{2 - y}{2}$	(Must be in the form	$v = \mathbf{f}(x)$).
	$y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$	A1	
Aliter (b)	$x = 2\sin t \implies t = \sin^{-1}\left(\frac{x}{2}\right)$		
Way 3	((x))	Rearranges to make t the subject and substitutes the result into y.	11
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	((x), (x))	1 oe
Aliter (b)	$y = 1 - \cos 2t \implies \cos 2t = 1 - y \implies t = \frac{1}{2}\cos 2t$	s ⁻¹ (1 – y)	
Way 4	So, $x = \pm 2 \sin \left(\frac{1}{2} \cos^{-1} (1 - y) \right)$	Rearranges to make t the subject and substitutes the result into y .	11
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	$y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right) A$	l oe
Aliter (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin t = x \implies y = \frac{1}{2}x^2 + c$	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \implies y = \frac{1}{2}x^2 + c \mathbf{N}$	11
Way 5	Eg: when eg: $t = 0$ (nb: $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$),	Full method of finding $y = \frac{1}{2}x^2$.1
	$x = 0, y = 1 - 1 = 0 \Rightarrow c = 0 \Rightarrow y = \frac{1}{2}x^2$	using a value of $t : -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$	
	Note: $\frac{dy}{dx} = 2\sin t = x \implies y = \frac{1}{2}x^2$, with no atte	empt to find c is M1A0.	

Question Number	Scheme	Marks
(a)	$x = \tan^2 t$, $y = \sin t$	
	$\frac{dx}{dt} = 2(\tan t)\sec^2 t$, $\frac{dy}{dt} = \cos t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	B1
	$\therefore \frac{dy}{dx} = \frac{\cos t}{2 \tan t \sec^2 t} \left(= \frac{\cos^4 t}{2 \sin t} \right)$ $\frac{\pm \cos t}{\text{their } \frac{dx}{dt}}$ $+ \cos t$ $\frac{dy}{dt} = \frac{\cos^4 t}{2 \sin t}$	M1 A1√
(b)	When $t = \frac{\pi}{4}$, $x = 1$, $y = \frac{1}{\sqrt{2}}$ (need values) The point $(1, \frac{1}{\sqrt{2}})$ or $(1, \text{ awrt } 0.71)$ These coordinates can be implied. $(y = \sin(\frac{\pi}{4}) \text{ is not sufficient for B1})$	[3] B1, B1
S: (2)	When $t = \frac{\pi}{4}$, $m(T) = \frac{dy}{dx} = \frac{\cos \frac{\pi}{4}}{2 \tan \frac{\pi}{4} \sec^2 \frac{\pi}{4}}$	
	$=\frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{2}\right)} = \frac{\frac{1}{\sqrt{2}}}{2.(1)(2)} = \frac{1}{4\sqrt{2}} = \frac{1}{8}$ any of the five underlined expressions or awrt 0.18	B1 aef
	Finding an equation of a tangent with their point and their tangent gradient or finds c by using $y = (\underline{\text{their gradient}})x + \underline{\underline{c}}$.	M1√ aef
/	T: $y = \frac{1}{4\sqrt{2}} X + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8} X + \frac{3\sqrt{2}}{8}$ Correct simplified EXACT equation of <u>tangent</u>	A1 aef
	or $\frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(1) + C \implies C = \frac{1}{\sqrt{2}} - \frac{1}{4\sqrt{2}} = \frac{3}{4\sqrt{2}}$	
	Hence T : $y = \frac{1}{4\sqrt{2}} x + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8} x + \frac{3\sqrt{2}}{8}$	[5]
	A candidate who incorrectly differentiates $\tan^2 t$ to give $\frac{dx}{dt} = 2\sec^2 t$ or $\frac{dx}{dt} = \sec^4 t$ is then able to fluke the correct answer in part (b). Such candidates can potentially get: (a) B0M1A1 $\sqrt{}$ (b) B1B1B1M1A0 cso . Note: cso means "correct solution only". Note : part (a) not fully correct implies candidate can achieve a maximum of 4 out of 5 marks in part (b).	

(c) Way 1	$x = \tan^2 t = \frac{\sin^2 t}{\cos^2 t}$ $y = \sin t$		
illuy i	$x = \frac{\sin^2 t}{1 - \sin^2 t}$	$Uses \cos^2 t = 1 - \sin^2 t$	M1
	$x = \frac{y^{2}}{1 - y^{2}}$ $x(1 - y^{2}) = y^{2} \implies x - xy^{2} = y^{2}$	Eliminates 't' to write an equation involving x and y.	M1
	$x(1-y^2) = y^2 \implies x - xy^2 = y^2$ $x = y^2 + xy^2 \implies x = y^2(1+x)$	Rearranging and factorising with an attempt to make y^2 the subject.	ddM1
	$y^2 = \frac{x}{1+x}$	$\frac{x}{1+x}$	A1 [4]
Aliter (c)	$1 + \cot^2 t = \cos^2 t$	Uses $1 + \cot^2 t = \cos^2 t$	M1
Way 2	$=\frac{1}{\sin^2 t}$	Uses $\csc^2 t = \frac{1}{\sin^2 t}$	M1 implied
	Hence, $1 + \frac{1}{x} = \frac{1}{y^2}$	Eliminates 't' to write an equation involving x and y.	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	A1 [4]

 $\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final accuracy A1 mark.

Aliter			
(c)	$x = \tan^2 t$ $y = \sin t$		
Way 3	$1 + \tan^2 t = \sec^2 t$	Uses $1 + \tan^2 t = \sec^2 t$	M1
	$=\frac{1}{\cos^2 t}$	Uses $\sec^2 t = \frac{1}{\cos^2 t}$	M1
	$=\frac{1}{1-\sin^2 t}$		
	Hence, $1+x = \frac{1}{1-y^2}$	Eliminates 't' to write an equation involving x and y.	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	A1
			[4]
Aliter (c) Way 4	$y^2 = \sin^2 t = 1 - \cos^2 t$	$Uses \sin^2 t = 1 - \cos^2 t$	M1
,	$= 1 - \frac{1}{\sec^2 t}$	Uses $\cos^2 t = \frac{1}{\sec^2 t}$	M1
	$= 1 - \frac{1}{(1 + \tan^2 t)}$	then uses $\sec^2 t = 1 + \tan^2 t$	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)} \text{or} \frac{x}{1+x}$	A1 [4]

 $\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final accuracy A1 mark.

Aliter (c) Way 5	$x = \tan^2 t$ $y = \sin t$		
y c	$x = \tan^2 t \implies \tan t = \sqrt{x}$		
	\sqrt{x} $\sqrt{(1+x)}$	Draws a right-angled triangle and places both \sqrt{x} and 1 on the triangle	M1
	1 t	Uses Pythagoras to deduce the hypotenuse	M1
	Hence, $y = \sin t = \frac{\sqrt{x}}{\sqrt{1+x}}$	Eliminates 't' to write an equation involving x and y.	ddM1
	Hence, $y^2 = \frac{x}{1+x}$	$\frac{x}{1+x}$	A1 [4]
			12 mark

 $\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final accuracy A1 mark.

There are so many ways that a candidate can proceed with part (c). If a candidate produces a correct solution then please award all four marks. If they use a method commensurate with the five ways as detailed on the mark scheme then award the marks appropriately. If you are unsure of how to apply the scheme please escalate your response up to your team leader.

Question Number	Scheme	Marks
	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
(a)	$\frac{\text{Main Scheme}}{x = 4 \left(\cos t \cos \left(\frac{\pi}{6} \right) - \sin t \sin \left(\frac{\pi}{6} \right) \right)} \qquad \qquad \cos \left(t + \frac{\pi}{6} \right) \to \cos t \cos \left(\frac{\pi}{6} \right) \pm \sin t \sin \left(\frac{\pi}{6} \right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$= 4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$ $= 2\sqrt{3}\cos t *$ Correct proof	A1 *
(a)	Alternative Method 1	[-
	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$	
	So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in x , y and t .	dM1
	$x + y = 2\sqrt{3}\cos t$ * Correct proof	A1 *
	Main Scheme	,
(b)	$\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.	M1
	$\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$	
	The state of the s	A1
	$\{a=3, b=12\}$	1
(b)	Alternative Method 1 $(x + y)^2 = 12\cos^2 t = 12(1 - \sin^2 t) = 12 - 12\sin^2 t$	
	So $(x + y)^2 = 12 - 3y^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an	M1
	equation containing only x's and y's. $\Rightarrow (x+y)^2 + 3y^2 = 12$ $(x+y)^2 + 3y^2 = 12$	A1
(b)	Alternative Method 2	[
	$(x+y)^2 = 12\cos^2 t$	
	As $12\cos^2 t + 12\sin^2 t = 12$ then $(x + y)^2 + 3y^2 = 12$	M1, A
		1

		Question Notes
(a)	M1	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$
	Note	If a candidate states $\cos(A+B) = \cos A \cos B \pm \sin A \sin B$, but there is an error in its application then give M1. Awarding the dM1 mark which is dependent on the first method mark
Main	dM1	Adds their expanded x (which is in terms of t) to $2 \sin t$
	Note	Writing $x + y =$ is not needed in the Main Scheme method.
Alt 1	dM1	Forms an equation in x , y and t .
	A1*	Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.
	Note	${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0.
(b)	M1	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.
	A1	leading $(x+y)^2 + 3y^2 = 12$
	sc	Award Special Case B1B0 for a candidate who writes down either
		 (x + y)² + 3y² = 12 from no working a = 3, b = 12, but does not provide a correct proof.
	Note	Alternative method 2 is fine for M1 A1
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$ • states $a = 3$, $b = 12$
		 and refers to either cos² t + sin² t = 1 or 12cos² t + 12sin² t = 12 and there is no incorrect working would get M1A1

Q7.

Question	Scheme	Marks	AOs
	$(x-3)^2 + y^2 = \left(\frac{t^2 + 5}{t^2 + 1} - 3\right)^2 + \left(\frac{4t}{t^2 + 1}\right)^2$	M1	3.1a
	$=\frac{\left(2-2t^2\right)^2+16t^2}{\left(t^2+1\right)^2}=\frac{4+8t^2+4t^4}{\left(t^2+1\right)^2}$	dM1	1.1b
	$\frac{4(t^4 + 2t^2 + 1)}{(t^2 + 1)^2} = \frac{4(t^2 + 1)^2}{(t^2 + 1)^2} = 4*$	A1*	2.1
	Vist 150 (150)	(3)	

M1: Attempts to substitute the given parametric forms into the Cartesian equation or the lhs of the Cartesian equation. There may have been an (incorrect) attempt to multiply out the $(x-3)^2$ term. dM1: Attempts to combine (at least the lhs) using correct processing into a single fraction, multiplies out and collects terms on the numerator.

A1*: Fully correct proof showing all key steps

Question	Scheme	Marks	AOs
Alt	$x = \frac{t^2 + 5}{t^2 + 1} \Rightarrow xt^2 + x = t^2 + 5 \Rightarrow t^2 = \frac{5 - x}{x - 1}$ $y = \frac{4t}{t^2 + 1} \Rightarrow y^2 = \frac{16t^2}{\left(t^2 + 1\right)^2} = \frac{16\left(\frac{5 - x}{x - 1}\right)}{\left(\frac{5 - x}{x - 1} + 1\right)^2}$	M1	3.1a
	$y^{2} = \frac{16\left(\frac{5-x}{x-1}\right)}{\left(\frac{5-x}{x-1}+1\right)^{2}} = 16\left(\frac{5-x}{x-1}\right) \times \left(\frac{(x-1)}{5-x+x-1}\right)^{2} \Rightarrow y^{2} = (5-x)(x-1)$	dM1	1.1b
	$y^{2} = (5-x)(x-1) \Rightarrow y^{2} = 6x - x^{2} - 5$ $\Rightarrow y^{2} = 4 - (x-3)^{2} \text{ or other intermediate step}$ $\Rightarrow (x-3)^{2} + y^{2} = 4*$	A1*	2.1
		(3)	
		(3	marks)
	Notes		

M1: Adopts a correct strategy for eliminating t to obtain an equation in terms of x and y only. See scheme. Other methods exist which also lead to an appropriate equation. E.g using $t = \frac{y}{x-1}$

dM1: Uses correct processing to eliminate the fractions and start to simplify

A1*: Fully correct proof showing all key steps

Question Number	Scheme		Marks
(a)	At A, $x = -1 + 8 = 7$ & $y = (-1)^2 = 1 \implies A(7,1)$	A(7,1)	B1 (1
(b)	$x = t^3 - 8t, y = t^2,$ $\frac{dx}{dt} = 3t^2 - 8, \frac{dy}{dt} = 2t$		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t}{3t^2 - 8}$	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ Correct $\frac{dy}{dx}$	M1 A1
	At A, $m(T) = \frac{2(-1)}{3(-1)^2 - 8} = \frac{-2}{3 - 8} = \frac{-2}{-5} = \frac{2}{5}$	Substitutes for t to give any of the four underlined oe:	
	T: $y - (\text{their } 1) = m_T (x - (\text{their } 7))$ or $1 = \frac{2}{5}(7) + c \implies c = 1 - \frac{14}{5} = -\frac{9}{5}$	Finding an equation of a tangent with their point and their tangent gradient or finds c and uses y = (their gradient)x + "c".	dM1
	Hence T: $y = \frac{2}{5}x - \frac{9}{5}$ gives T: $2x - 5y - 9 = 0$ AG	2x - 5y - 9 = 0	A1 cso
(c)	$2(t^3 - 8t) - 5t^2 - 9 = 0$	Substitution of both $x = t^3 - 8t$ and $y = t^2$ into T	м1
	$2t^3 - 5t^2 - 16t - 9 = 0$		
	$(t+1)\{(2t^2-7t-9)=0\}$ $(t+1)\{(t+1)(2t-9)=0\}$	A realisation that $(t+1)$ is a factor.	dM1
	$\{t = -1 \text{ (at } A)\}\ t = \frac{9}{2} \text{ at } B$	$t = \frac{9}{2}$	A1
	$x = \left(\frac{9}{2}\right)^2 - 8\left(\frac{9}{2}\right) = \frac{729}{8} - 36 = \frac{441}{8} = 55.125 \text{ or awrt } 55.1$	Candidate uses their value of to find either the x or y coordinate	ddM1
	$y = \left(\frac{9}{2}\right)^2 = \frac{81}{4} = 20.25 \text{ or awrt } 20.3$	One of either x or y correct. Both x and y correct.	A1 A1
	Hence $B\left(\frac{441}{8}, \frac{81}{4}\right)$	awrt	[12

Question Number	Scheme	Marks
(a)	At $P(4, 2\sqrt{3})$ either $4 = 8\cos t$ or $2\sqrt{3} = 4\sin 2t$	M1
	\Rightarrow only solution is $t = \frac{\pi}{3}$ where 0,, t ,, $\frac{\pi}{2}$	A1
(b)	$x = 8\cos t, \qquad y = 4\sin 2t$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t , \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	M1 A1
	At P , $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	M1
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{(-8)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	
	Hence $m(N) = -\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{5}}}$	M1
	N: $y-2\sqrt{3}=-\sqrt{3}(x-4)$	M1
	N: $y = -\sqrt{3}x + 6\sqrt{3}$ (*)	A1 cso (6)
(c)	$A = \int_{0}^{4} y dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 4\sin 2t \cdot (-8\sin t) dt$	M1 A1
	$A = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} -32\sin 2t \cdot \sin t dt = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} -32(2\sin t \cos t) \cdot \sin t dt$	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} -64 \cdot \sin^2 t \cos t dt$	
	$A = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64.\sin^2 t \cos t dt (*)$	A1 (4)
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \qquad \text{or} \qquad A = 64 \left[\frac{u^3}{3} \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$	M1
	$A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$	A1 (4)
		(16 marks)

Question Number	Scheme	Marks	5
	(a) $y = 0 \Rightarrow t(9-t^2) = t(3-t)(3+t) = 0$ t = 0, 3, -3 Any one correct value	B1	
	At $t = 0$, $x = 5(0)^2 - 4 = -4$ Method for finding one value of x At $t = 3$, $x = 5(3)^2 - 4 = 41$ (At $t = -3$, $x = 5(-3)^2 - 4 = 41$)	M1	
	At A, $x = -4$; at B, $x = 41$ Both	A1	(3)
	(b) $\frac{dx}{dt} = 10t$ Seen or implied	B1	
	$\int y dx = \int y \frac{dx}{dt} dt = \int t \left(9 - t^2\right) 10t dt$ $= \int \left(90t^2 - 10t^4\right) dt$	M1 A1	
	$=\frac{90t^3}{3} - \frac{10t^5}{5} (+C) \qquad \left(=30t^3 - 2t^5 (+C)\right)$	A1	
	$\left[\frac{90t^3}{3} - \frac{10t^5}{5}\right]_0^3 = 30 \times 3^3 - 2 \times 3^5 (=324)$	M1	
	$A = 2 \int y dx = 648 \left(\text{units}^2 \right)$	A1	(6) [9]

Q11.

Question Number	Scheme		Marks
(a)	$\left[x = \ln(t+2), \ y = \frac{1}{t+1}\right], \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t+2}$	Must state $\frac{dx}{dt} = \frac{1}{t+2}$	В1
	Area(R) = $\int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx$; = $\int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$	$\label{eq:Area} \text{Area} = \int\!\!\frac{1}{t+1} \text{d}x.$ Ignore limits. $\int\!\!\left(\frac{1}{t+1}\right) \!\!\times\!\!\left(\frac{1}{t+2}\right) \!$	M1; A1 AG
	Changing limits, when: $x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t = 0$ $x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t = 2$	changes limits $x \rightarrow t$ so that $\ln 2 \rightarrow 0$ and $\ln 4 \rightarrow 2$	B1
	Hence, Area(R) = $\int_0^2 \frac{1}{(t+1)(t+2)} dt$		[4]
(b)	$\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$	$\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found	M1
	1 = A(t+2) + B(t+1)		
	Let $t = -1$, $1 = A(1) \implies A = 1$	Finds both A and B correctly. Can be implied.	A1
	Let $t = -2$, $1 = B(-1) \implies B = -1$	(See note below)	
	$\int_0^2 \frac{1}{(t+1)(t+2)} dt = \int_0^2 \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$		
	$= \left[\ln(t+1) - \ln(t+2)\right]_0^2$	Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$ Both ln terms correctly ft.	dM1 A1√
	$= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	Substitutes both limits of 2 and 0 and subtracts the correct way round.	ddM1
	$= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right)$	$\frac{\ln 3 - \ln 4 + \ln 2}{\text{or } \ln \left(\frac{3}{4}\right) - \ln \left(\frac{1}{2}\right)}$ or $\frac{\ln 3 - \ln 2}{\ln 2} \text{ or } \ln \left(\frac{3}{2}\right)$	A1 aef isw
M.		(must deal with ln 1)	[6]

Takes out brackets.

Writing down
$$\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} + \frac{1}{(t+2)}$$
 means first M1A0 in (b).

Writing down
$$\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$$
 means first M1A1 in (b).

Question Number	Scheme		Ma	rks
(c)	$x = \ln(t+2), y = \frac{1}{t+1}$ $e^{x} = t+2 \implies t = e^{x} - 2$ $y = \frac{1}{e^{x} - 2 + 1} \implies y = \frac{1}{e^{x} - 1}$	Attempt to make $t =$ the subject giving $t = e^x - 2$ Eliminates t by substituting in y giving $y = \frac{1}{e^x - 1}$	M1 A1 dM1 A1	[4]
Aliter (c) Way 2	$t+1 = \frac{1}{y} \implies t = \frac{1}{y} - 1 \text{ or } t = \frac{1-y}{y}$ $y(t+1) = 1 \implies yt + y = 1 \implies yt = 1 - y \implies t = \frac{1-y}{y}$ $x = \ln\left(\frac{1}{y} - 1 + 2\right) \text{ or } x = \ln\left(\frac{1-y}{y} + 2\right)$	Attempt to make $t =$ the subject Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$ Eliminates t by substituting in x	M1 A1 dM1	[4]
	$x = \ln\left(\frac{1}{y} + 1\right)$ $e^{x} = \frac{1}{y} + 1$ $e^{x} - 1 = \frac{1}{y}$	1		
(d)	$y = \frac{1}{e^x - 1}$ Domain: $x > 0$	giving $y = \frac{1}{e^x - 1}$ $\underline{x > 0}$ or just > 0		[4 [1
			15 m	

Question Number	Scheme	-8	Mari	ks
Aliter (c) Way 3	$e^x = t + 2 \implies t + 1 = e^x - 1$	Attempt to make $t+1 =$ the subject giving $t+1 = e^x -1$	M1 A1	
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1	[4]
Aliter (c) Way 4	$t+1=\frac{1}{y} \implies t+2=\frac{1}{y}+1 \text{ or } t+2=\frac{1+y}{y}$	Attempt to make $t+2=$ the subject Either $t+2=\frac{1}{y}+1$ or $t+2=\frac{1+y}{y}$	M1 A1	100010
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates t by substituting in x	dM1	
	$x = \ln\left(\frac{1}{y} + 1\right)$			
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$			
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1	[4]

Question Number	Scheme	Marks
	Note: You can mark parts (a) and (b) together.	
(a)	$x = 4t + 3$, $y = 4t + 8 + \frac{5}{2t}$	
	$\frac{dx}{dt} = 4, \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4$ or $\frac{dt}{dx} = \frac{1}{4}$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$	B1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
	Way 2: Cartesian Method	[3
	$\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$ $\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$, simplified or un-simplified.	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda \pm \frac{\mu}{(x-3)^2}, \lambda \neq 0, \mu \neq 0$	М1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
	Way 3: Cartesian Method	[3
	$\frac{dy}{dx} = \frac{(2x+2)(x-3)-(x^2+2x-5)}{(x-3)^2}$ Correct expression for $\frac{dy}{dx}$, simplified or un-simplified.	B1
	$\left\{ = \frac{x^2 - 6x - 1}{(x - 3)^2} \right\} \qquad \frac{dy}{dx} = \frac{f'(x)(x - 3) - 1f(x)}{(x - 3)^2},$ where $f(x) = \text{their } "x^2 + ax + b", g(x) = x - 3$	М1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$ or 0.84375 cao	
(b)	$\left\{t = \frac{x-3}{4} \implies\right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and y	M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$	•••••
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} \text{or} y(x-3) = (x-3)(x-3) + 8(x-3) + 10$ $\text{or} y = \frac{(x+5)(x-3) + 10}{x-3} \text{or} y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$ See notes	dM1
	x-3 $y = -x-3$ $x-3$	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}, \{a = 2 \text{ and } b = -5\}$ $y = \frac{x^2 + 2x - 5}{x - 3} \text{or } a = 2 \text{ and } b = -5$ Correct algebra leading to	A1 cso
		[3

Question Number	Scheme	Marks
(b)	Alternative Method 1 of Equating Coefficients $y = \frac{x^2 + ax + b}{x - 3} \Rightarrow y(x - 3) = x^2 + ax + b$ $y(x - 3) = (4t + 3)^2 + 2(4t + 3) - 5 = 16t^2 + 32t + 10$ $x^2 + ax + b = (4t + 3)^2 + a(4t + 3) + b$	
	$(4t+3)^2 + a(4t+3) + b = 16t^2 + 32t + 10$ Correct method of obtaining equation in only t, a ar	
	t: $24+4a=32 \Rightarrow a=2$ Equates their coefficients in t finds both $a=$ and b constant: $9+3a+b=10 \Rightarrow b=-5$	= dM1
(b)	Constant. $9 + 3a + b = 10$ $\Rightarrow b = -3$ $a = 2$ and $b = -3$ Alternative Method 2 of Equating Coefficients	-5 A1
(0)	$\left\{t = \frac{x-3}{4} \Rightarrow \right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and a sequence of the content of the	1 M1
	$y = x - 3 + 8 + \frac{10}{x - 3} \implies y = x + 5 + \frac{10}{(x - 3)}$ $\underline{y(x - 3)} = (x + 5)(x - 3) + 10 \implies x^2 + ax + b = \underline{(x + 5)(x - 3) + 10}$	dM1
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ or equating coefficients to give $a = 2$ and $b = -5$ $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$ or $a = 2$ and $b = -5$	

		Question Notes
(a)	В1	$\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ or $\frac{dy}{dt} = \frac{8t^2 - 5}{2t^2}$ or $\frac{dy}{dt} = 4 - 5(2t)^{-2}(2)$, etc.
	Note	$\frac{dy}{dt}$ can be simplified or un-simplified.
	Note	You can imply the B1 mark by later working.
	M1	Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$ or $\frac{dy}{dt}$ multiplied by a candidate's $\frac{dt}{dx}$
	Note	M1 can be also be obtained by substituting $t = 2$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then
		dividing their values the correct way round.
	Al	27 or 0.84375 cao
(b)	M1	Eliminates t to achieve an equation in only x and y.
	dM1	dependent on the first method mark being awarded. Either: (ignoring sign slips or constant slips, noting that k can be 1) • Combining all three parts of their $x - 3 + 8 + (10)$ to form a single fraction with a
		common denominator of $\pm k(x-3)$. Accept three separate fractions with the same denominator.
		• Combining both parts of their $\underline{x+5} + \left(\frac{10}{x-3}\right)$, (where $\underline{x+5}$ is their $4\left(\frac{x-3}{4}\right) + 8$),
		to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separa
		fractions with the same denominator.
		• Multiplies both sides of their $y = \underline{x-3} + 8 + \left(\frac{10}{x-3}\right)$ or their $y = \underline{x+5} + \left(\frac{10}{x-3}\right)$ by
		$\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$.
	Note	Condone "invisible" brackets for dM1.
	Al	Correct algebra with no incorrect working leading to $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$
	Note	Some examples for the award of dM1 in (b):
		dM0 for $y = x - 3 + 8 + \frac{10}{x - 3}$ $\rightarrow y = \frac{(x - 3)(x - 3) + 8 + 10}{x - 3}$. Should be + 8(x - 3) +
		dM0 for $y = x - 3 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 10}{x - 3}$. The "8" part has been omitted.
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y = \frac{x(x - 3) + 5 + 10}{x - 3}$. Should be + 5(x - 3) +
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y(x - 3) = x(x - 3) + 5(x - 3) + 10(x - 3)$. Should be just 10.
	Note	$y = x + 5 + \frac{10}{x - 3} \rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ with no intermediate working is dM1A1.

Question Number	Scheme	Marks
- Tunnoci	$x = 4\sin\left(t + \frac{\pi}{6}\right)$, $y = 3\cos 2t$, $0 \dots t < 2\pi$	
	3)	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\cos\left(t + \frac{\pi}{6}\right), \frac{\mathrm{d}y}{\mathrm{d}t} = -6\sin 2t$	B1 B1
	So, $\frac{dy}{dx} = \frac{-6\sin 2t}{4\cos\left(t + \frac{\pi}{6}\right)}$	B1√ oe
		13
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies\right\} - 6\sin 2t = 0$	M1 oe
	(ii) $t = 0$, $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3$ \rightarrow (2,3)	M1
	(a) $t = \frac{\pi}{2}$, $x = 4\sin\left(\frac{2\pi}{3}\right) = \frac{4\sqrt{3}}{2}$, $y = 3\cos \pi = -3 \rightarrow (2\sqrt{3}, -3)$	
	$@ t = \pi, x = 4\sin\left(\frac{7\pi}{6}\right) = -2, y = 3\cos 2\pi = 3 \rightarrow (-2, 3)$	
	(a) $t = \frac{3\pi}{2}$, $x = 4\sin\left(\frac{5\pi}{3}\right) = \frac{4(-\sqrt{3})}{2}$, $y = 3\cos 3\pi = -3 \rightarrow (-2\sqrt{3}, -3)$	A1A1A1
		[5
(a)	B1: Either one of $\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right)$ or $\frac{dy}{dt} = -6\sin 2t$. They do not have to be simplified.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. They do not have to be simplified.	
	Any or both of the first two marks can be implied. Don't worry too much about their notation for the first two B1 marks.	
	B1: Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}(\frac{dx}{dt})}$. Note: This is a follow through n	nark.
	Alternative differentiation in part (a) $x = 2\sqrt{3}\sin t + 2\cos t \Rightarrow \frac{dx}{dt} = 2\sqrt{3}\cos t - 2\sin t$	
	$y = 3(2\cos^2 t - 1) \implies \frac{dy}{dt} = 3(-4\cos t \sin t)$	
	or $y = 3\cos^2 t - 3\sin^2 t$ $\Rightarrow \frac{dy}{dt} = -6\cos t \sin t - 6\sin t \cos t$	
	or $y = 3(1 - 2\sin^2 t) \Rightarrow \frac{dy}{dt} = 3(-4\cos t \sin t)$	
(b)	M1: Candidate sets their numerator from part (a) or their $\frac{dy}{dt}$ equal to 0.	
	Note that their numerator must be a trig function. Ignore $\frac{dx}{dt}$ equal to 0 at this stage.	
	M1: Candidate substitutes a found value of t , to attempt to find either one of x or y . The first two method marks can be implied by ONE correct set of coordinates for (x, y) or (y, x)	r) interchanged
	A correct point coming from NO WORKING can be awarded M1M1. A1: At least TWO sets of coordinates. A1: At least THREE sets of coordinates.	
	A1: ONLY FOUR correct sets of coordinates. If there are more than 4 sets of coordinates then: Note: Candidate can use the diagram's symmetry to write down some of their coordinates.	award A0.
	Note: When $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3$ is acceptable for a pair of coordinates.	
	Also it is fine for candidates to display their coordinates on a table of values. Note: The coordinates must be exact for the accuracy marks. Ie (3.46, -3) or (-3.46, -3) is	A0.
	Note: $\frac{dy}{dx} = 0 \Rightarrow \sin t = 0$ ONLY is fine for the first M1, and potentially the following M1A1A0	
	Note: $\frac{dy}{dx} = 0 \Rightarrow \cos t = 0$ ONLY is fine for the first M1 and potentially the following M1A1A0.	A0.
	Note: $\frac{dy}{dx} = 0 \Rightarrow \sin t = 0 \& \cos t = 0$ has the potential to achieve all five marks. Note: It is possible for a candidate to gain full marks in part (b) if they make sign errors in part (c)	(a).
	(b) An alternative method for finding the coordinates of the two maximum points.	
	Some candidates may use $y = 3\cos 2t$ to write down that the y-coordinate of a maximum point is They will then deduce that $t = 0$ or π and proceed to find the x-coordinate of their maximum point.	int. These
	candidates will receive no credit until they attempt to find one of the x-coordinates for the maxim M1M1: Candidate states $y = 3$ and attempts to substitute $t = 0$ or π into $x = 4\sin\left(t + \frac{\pi}{6}\right)$.	um point.
	M1M1 can be implied by candidate stating either $(2,3)$ or $(2,-3)$.	
	Note: these marks can only be awarded together for a candidate using this method. A1: For both (2, 3) or (-2, 3). A0A0: Candidate cannot achieve the final two marks by using this method. They can be a constant to the final two marks by using this method.	

A0A0: Candidate cannot achieve the final two marks by using this method. They can, however, achieve these marks by subsequently solving their numerator equal to 0.

Q14.

Question Number			
Q (a)	$\frac{dx}{dt} = -4\sin 2t, \frac{dy}{dt} = 6\cos t$ $dy \qquad 6\cos t \qquad (3)$	B1, B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6\cos t}{4\sin 2t} \left(= -\frac{3}{4\sin t} \right)$	M1	
	At $t = \frac{\pi}{3}$, $m = -\frac{3}{4 \times \frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2}$ accept equivalents, awrt -0.8	7 A1 (4)	
(b)	Use of $\cos 2t = 1 - 2\sin^2 t$	м1	
	$\cos 2t = \frac{x}{2}, \ \sin t = \frac{y}{6}$		
	$\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$	M1	
	Leading to $y = \sqrt{(18-9x)} \left(=3\sqrt{(2-x)}\right)$ can	A1	
	$-2 \le x \le 2$ $k = 2$	B1 (4)	
(c)	$0 \le f(x) \le 6$ either $0 \le f(x)$ or $f(x) \le 6$	B1	
	Fully correct. Accept $0 \le y \le 6$, $[0, 6]$	B1 (2)	
		[10]	
	Alternatives to (a) where the parameter is eliminated		
	① $y = (18 - 9x)^{\frac{1}{2}}$		
	$\frac{dy}{dx} = \frac{1}{2} (18 - 9x)^{-\frac{1}{2}} \times (-9)$	В1	
	At $t = \frac{\pi}{3}$, $x = \cos \frac{2\pi}{3} = -1$	В1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{1}{\sqrt{(27)}} \times -9 = -\frac{\sqrt{3}}{2}$	M1 A1 (4)	
	$y^2 = 18 - 9x$		
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = -9$	B1	
	At $t = \frac{\pi}{3}$, $y = 6\sin\frac{\pi}{3} = 3\sqrt{3}$	В1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9}{2 \times 3\sqrt{3}} = -\frac{\sqrt{3}}{2}$	M1 A1 (4)	

Question Number	Scheme	Marks
(a)	$x = t - 4\sin t, y = 1 - 2\cos t, -\frac{2\pi}{3} \leqslant t \leqslant \frac{2\pi}{3} A(k, 1) \text{ lies on the curve, } k > 0$ $\{\text{When } y = 1,\} \ 1 = 1 - 2\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$ $\text{Sets } y = 1 \text{ to find and uses their } t \text{ to find and uses } t$	$\frac{\pi}{2}$ A1
(b)	$\frac{dx}{dt} = 1 - 4\cos t, \frac{dy}{dt} = 2\sin t$ At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the following series of $\frac{dx}{dt}$ and $\frac{dx}{dt}$ are corresponds to the followi	_
	So, $\frac{dy}{dx} = \frac{2\sin t}{1 - 4\cos t}$ Applies their $\frac{dy}{dt}$ divided by their $\frac{dy}{dt}$ and substitutes their t into their $\frac{dy}{dt}$ Correct value for $\frac{dy}{dt}$ of $\frac{dy}{dt}$	$\frac{dx}{dt}$ $\frac{dy}{dx}$. M1;
(c)	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$ gives $4\sin t - 4\cos t = -1$ See not	-
	So $4\sqrt{2}\sin\left(t - \frac{\pi}{4}\right)$; = -1 or $-4\sqrt{2}\cos\left(t + \frac{\pi}{4}\right)$; = -1 $t = \sin^{-1}\left(\frac{-1}{4\sqrt{2}}\right) + \frac{\pi}{4} \text{or} t = \cos^{-1}\left(\frac{1}{4\sqrt{2}}\right) - \frac{\pi}{4}$ See not $t = 0.6076875626 = 0.6077 \text{ (4 dp)}$ anything that rounds to 0.60	tes dM1
	Question Notes	
(c)	NOTE NOTE FOR PART (c) Candidates who state $t = 0.6077$ with no intermediate working from $4 \sin t - 4 \cos t$ will get 2^{nd} M0, 2^{nd} A0, 3^{rd} M0, 3^{rd} A0. They will not express $4 \sin t - 4 \cos t$ as either $4 \sqrt{2} \sin \left(t - \frac{\pi}{4} \right)$ or $-4 \sqrt{2} \cos \left(t - \frac{\pi}{4} \right)$ OR use any acceptable alternative method to achieve $t = 0.6077$	
	NOTE Alternative methods for part (c) are given on the next page.	

15		ative Methods for Part (c)	
(c)	Alternative Method 1: $\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$	Sets their $\frac{dy}{dx} = -\frac{1}{2}$	M1
	eg. $\left(\frac{2\sin t}{1-4\cos t}\right)^2 = \frac{1}{4}$ or $(4\sin t)^2 = (4\cos t - 1)^2$ or $(4\sin t + 1)^2 = (4\cos t)^2$ etc.	Squaring to give a correct equation. This mark can be implied by a "squared" correct equation.	A1
		Note: You can also give 1^{st} A1 in this method for $4\sin t - 4\cos t = -1$ as in the main scheme.	
	Squares their e	quation, applies $\sin^2 t + \cos^2 t = 1$ and achieves a	
		equation of the form $\pm a\cos^2 t \pm b\cos t \pm c = 0$	M1
		$c^2 t \pm b \cos t = \pm c$ where $a \neq 0, b \neq 0$ and $c \neq 0$.	
	• Either $32\cos^2 t - 8\cos t - 15 = 0$ • or $32\sin^2 t + 8\sin t - 15 = 0$	For a correct three term quadratic equation.	A1
	• Either $\cos t = \frac{8 \pm \sqrt{1984}}{64} = \frac{1 + \sqrt{31}}{8} \implies t$	on the 2 nd M1 mark. Uses correct algebraic	dM1
	• or $\sin t = \frac{-8 \pm \sqrt{1984}}{64} = \frac{-1 \pm \sqrt{31}}{8} = t = 0.6076875626 = 0.6077 (4 dp)$	processes to give $t =$ anything that rounds to 0.6077	A1
(c)	$\frac{\text{Alternative Method 2:}}{\frac{2\sin t}{1 - 4\cos t}} = -\frac{1}{2}$	Sets their $\frac{dy}{dx} = -\frac{1}{2}$	M1
	eg. $(4\sin t - 4\cos t)^2 = (-1)^2$	Squaring to give a correct equation. This mark can be implied by a correct equation. Note: You can also give 1^{st} A1 in this method for $4\sin t - 4\cos t = -1$ as in the main scheme.	A1
	So $16\sin^2 t - 32\sin t \cos t + 16\cos^2 t = 1$		
	leading to $16 - 16\sin 2t = 1$	Squares their equation, applies both $\sin^2 t + \cos^2 t = 1$ and $\sin 2t = 2\sin t \cos t$ and then achieves an equation of the form $\pm a \pm b \sin 2t = \pm c$	M1
		$16 - 16\sin 2t = 1$ or equivalent.	A1
		which is dependent	
	$\left\{\sin 2t = \frac{15}{16} \Rightarrow \right\} \ t = \frac{\sin^{-1}(\dots)}{2}$	on the 2^{nd} M1 mark. Uses correct algebraic processes to give $t =$	dM1
	$\left\{ \sin 2t = \frac{15}{16} \Rightarrow \right\} \ t = \frac{\sin^{-1}()}{2}$ $t = 0.6076875626 = 0.6077 \text{ (4 dp)}$	on the 2 nd M1 mark.	dM1 A1

		Question Notes
(a)	M1	Sets $y = 1$ to find t and uses their t to find x .
	Note	M1 can be implied by either x or $k = 4 - \frac{\pi}{2}$ or 2.429 or $\frac{\pi}{2} - 4$ or -2.429
	A1	$x \text{ or } k = 4 - \frac{\pi}{2} \text{ or } \frac{8 - \pi}{2}$
	Note	A decimal answer of 2.429 (without a correct exact answer) is A0.
	Note	Allow A1 for a candidate using $t = \frac{\pi}{2}$ to find $x = \frac{\pi}{2} - 4$ and then stating that k must be $4 - \frac{\pi}{2}$ o.e
(b)	B1	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.
	B1	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.
	M1	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute their t into their expression for $\frac{dy}{dx}$
	Note	This mark may be implied by their final answer.
		i.e. $\frac{dy}{dx} = \frac{2 \sin t}{1 - 4 \cos t}$ followed by an answer of -2 (from $t = -\frac{\pi}{2}$) or 2 (from $t = \frac{\pi}{2}$)
	Note	Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$.
	A1	Using $t = -\frac{\pi}{2}$ and not $t = \frac{3\pi}{2}$ to find a correct $\frac{dy}{dx}$ of -2 by correct solution only.
(c)		
	NOTE	If a candidate uses an incorrect $\frac{dy}{dx}$ expression in part (c) then the accuracy marks are not obtainable
	1 st M1	Sets their $\frac{dy}{dx} = -\frac{1}{2}$
	1" A1	Rearranges to give the correct equation with $\sin t$ and $\cos t$ on the same side.
		eg. $4\sin t - 4\cos t = -1$ or $4\cos t - 4\sin t = 1$ or $\sin t - \cos t = -\frac{1}{4}$ or $\cos t - \sin t = \frac{1}{4}$
		or $4\sin t - 4\cos t + 1 = 0$ or $4\cos t - 4\sin t - 1 = 0$ or $\sin t - \cos t + \frac{1}{4} = 0$ etc. are fine for A1
	2 nd M1	Rewrites $\pm \lambda \sin t \pm \mu \cos t$ in the form of either $R\cos(t \pm \alpha)$ or $R\sin(t \pm \alpha)$
	F0 38645.3	where $R \neq 1$ or 0 and $\alpha \neq 0$
	2 nd A1	Correct equation. Eg. $4\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -1$ or $-4\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = -1$
		or $\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -\frac{1}{4}$ or $\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = \frac{1}{4}$, etc.
	Note	Unless recovered, give A0 for $4\sqrt{2}\sin(t-45^\circ)=-1$ or $-4\sqrt{2}\cos(t+45^\circ)=-1$, etc.
	3rd M1	which is dependent on the 2^{nd} M1 mark. Uses correct algebraic processes to give $t =$
	4th A1	anything that rounds to 0.6077
	Note	Do not give the final A1 mark in (c) if there any extra solutions given in the range $-\frac{2\pi}{3} \leqslant t \leqslant \frac{2\pi}{3}$.
	Note	You can give the final A1 mark in (c) if extra solutions are given outside of $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$.

mber.	Forking parameteristy:		Ma	
100		ALEXANDER OF THE PARTY OF THE P		
00.	$\{x=0, m\}$ $0 = 1 - \frac{1}{2}r$ $m r = 2$ When $r=2$, $y=2^{2}-1=3$	Applies a will to obtain a value for t. Consert value for p.	MI	
80		Applies y = 0 to obtain a value for t		p
die .	(para) naf-turan	(blust be seen in part (b)).	541	
	When $r = 0$, $x = 1 - \frac{1}{2}(0) + 1$	1+1	AL	11
60	$\frac{ds}{ds} = -\frac{1}{2}$ and other $\frac{ds}{ds} = 2 \ln 2$ or $\frac{ds}{ds} = e^{2s} \ln 2$	20	Bi	,
	$\frac{dr}{dr} = \frac{2 \ln 2}{1}$	Alterspicture $\frac{dr}{dr}$ divided by their $\frac{dr}{dr}$	141	
		17.	1000	
	$A(A, t = 12^{4})$, so $\phi(T) = -12a/2 \Rightarrow \phi(N) = \frac{1}{12a/2}$	Applies $\ell={}^{n}\mathbb{Z}^{n}$ and $m(N)=\frac{-1}{m(1)}$	501 501 A1	
	$y - 3 + \frac{1}{80\pi 2}(x - 0)$ or $y = 3 + \frac{1}{60\pi 2}$ it or equivalent	lest. See activ.	000	1
10	$Aara(R) = \int (2^r - 1) \left[-\frac{\lambda}{\epsilon} \right] dr$	Chargints culturations for both y middle	MI	ľ
	10-1-1-1 md (01-104		Bi	
		Notice $\vec{z} \rightarrow \frac{\vec{z}}{\ln 2}$		
	$=\left\{-\frac{t}{t}\right\}\left(\frac{d^2}{\ln d}-t\right)$	or $(2^i-1) \Rightarrow \frac{(2^i)}{2\pi (\ln 2)} = 1$	Mis	
	F. 1985 T. 1987 S.	$m: (T-1) \rightarrow \pm m \ln D(T) - 1$		
	Factor of Section 1	$(2^i-1) \rightarrow \frac{2}{\ln 2} - 1$ Depends on the portions method mark.	Al	
	$\left \left\{ -\frac{1}{2} \left[\frac{2^2}{\ln 2} - t \right] \right = -\frac{1}{2} \left(\left(\frac{1}{\ln 2} \right) - \left(\frac{44}{\ln 2} - 4 \right) \right\}$	Substitutes their changed limits in road subtracts within way round.	(MI)	
	= <u>10</u> - 2	15 - 2 or reparatest	AL	
				k
60.	M1: Applies s = 0 and obtains a value of / A1: For y = 2" - 1 + 3 or y + 4 - 1 + 3			
	-discreptive Solution I : $MI1: \mbox{ For substituting } \beta = 2 \mbox{ as to reflect stor } g$			
	Alt: $x = 1 - \frac{1}{4}(2) = 0$ and $y = 2^{n} - 3 = 3$			
	attenuative Selection 2: SEL: Applies y = 3 and obtains a value of r			
	A1: For $x = 1 - \frac{1}{2}(2) = 0$ or $x = 1 - 1 = 0$.			
	Allerantor Astation 5. M1: Applies y=3 or x=0 and obtains a value of	i.		
80	A1: Show, that t = 2 for both y = 1 and z = 0. M1: Applies y = 0 and obtains a value of t. Week			
55	At: For fading v = 1. Nee: Award MIA1 for v = 1.			
00.	E) Soft de sed de corret. The mek on be at	glied by later moduling		
		A section & constraint	a of t	
	The second secon	at the same of the		
	MI: Uses their value of a franch as part to and applicable	$s \phi(\mathbf{N}) = \frac{1}{\phi(\mathbf{T})}$		
	Mit: y = 2 = (their montal gradient) s wir y = (their			
	All $y - 3 = \frac{1}{10 k_2^2} (1 - 9)$ or $y + 3 + \frac{1}{10 k_2^2} x$ or	$p = 8 \approx \frac{1}{\ln 258} \left(t = 0 \right) \text{ or } \left(0 \ln 2 \right) p = 24 \ln 2$	+8	
	is: $\frac{y-\lambda}{(x-0)} = \frac{1}{\ln 2}$. You can apply you be:	#		
	Working in decimals is of for the three method and	in Bt. At region exert takes.	61	
(0)	NII Complete substitution for both y and do to on ID: Changes limits from x +1 - x + -1 +1 +4 +		#5 II	
		mf $t = 1 \rightarrow r = 0$. Sinte $t = 4$ and $r = 0$ so		
		ud x+1→r+0. Sinur+4aadr+6 se		
	M1°: Integrates Z' correctly to good $\frac{Z'}{MZ}$			
	M1°: Integrates 2° correctly to goe $\frac{2^n}{6n^2}$ on subspaces (2° -1) to give other $\frac{(2^n}{2\pi i \Omega)}$) nl)-t or imbalk()-r		
	MIT: Integrates Z' correctly to got $\frac{Z'}{MZ}$ $=$ on integrates $(Z-1)$ to give either $\frac{1Z'}{20\Omega}$ AT: Correct integration of $(Z'-1)$ with respect to (MZ') . Depends upon the protons method matrix) n2) -t or indeDCT) -r report #2 -f		
	MIT: Integrates Z' connectly to goe $\frac{Z'}{MT}$ — or integrates $(Z-1)$ to goe other $\frac{Z'}{2000}$ All: Correct integration of $(Z'-1)$ with respect to M AMT: Repeats upon the printion method mark.	$\frac{1}{\ln 2}$ -t or induCCC)-r or $\frac{1}{\ln 2}$ c	on (a [51]	
	M1°: hierarchy 2' correctly to goe $\frac{d}{dx}$ — or integrates $(7-1)$ to give other $\frac{d^2}{2\pi^2}$ All Correct integration of $(7-1)$ with respect to 12 M1°: Repeate upon the printing method marks All Discussment of $\frac{d}{2\pi}$ and $\frac{d}{2\pi}$	$\frac{1}{4(3)} - t$, or $\sin(k(3)(7) - t)$, or $\sin \frac{2t}{k(2)} + t$, or $\cos \sin t$ $-\sin t = \frac{73}{k(3)} - 2$, or $\frac{19}{2} \log_2 t - 2 \cos t$	on (a [51]	
00	MIT: Integrates Z' connectly to goe $\frac{Z'}{MT}$ — or integrates $(Z-1)$ to goe other $\frac{Z'}{2000}$ All: Correct integration of $(Z'-1)$ with respect to M AMT: Repeats upon the printion method mark.	1	on p B1	
000	MIT: his pairs J correctly to go $\frac{J}{M_{\odot}}$, $\frac{J}{M_{\odot}}$ an integration $\{J-1\}$ to give other $-\frac{J^2}{2000}$. All Correct integrations of $\{J-1\}$ with respect to 11 MSET. Depends upon the printing mathematical collection of the form of an interface of the J Depends upon the printing mathematical collection of J Depends upon the J Depends of J Depends on J Depe	1. In (3) — the or manifold (3) — t and t and t and t are given $\frac{dt}{dt} > t$. In the order points $t = \frac{2}{\ln 2} = \frac{7}{\ln 2} - 2$ or $\frac{13}{2} \log_4 t - 2$ are equal to $t = \frac{1}{\ln 2} = \frac{7}{\ln 2} - 2$ or $\frac{13}{2} \log_4 t - 2$ are equal $t = \frac{1}{2} \log_4 t - 2$.	on p B1	
	MIT: Integrates 2' correctly to good $\frac{2}{3}$, $\frac{1}{3}$. All Correct stripation of $\{T-1\}$ to give other $-\frac{1}{2}$ and MIT: Dispersit upon the previous method mass, Automatic them been in an all analysis of the All Discontinuous of $\frac{1}{3}$, $\frac{1}{$	1. In the proof of the proof o	on o Bil	
	MIT: Integrates 2' correctly to good $\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ or magazine $\{2,-1\}$ to give other $-\frac{12}{2300}$. All Correct strepation of $\{2,-1\}$ to give other $-\frac{1}{2300}$. Beyond upon the proteon method mass, Automatic the lemins in an admitistic of the All 2' Doct survey of $\frac{10}{28}$, $2 - \frac{10}{3}$, $2 - \frac{10}{3}$. Observations: Contraction on a Correction quantity $\{x,0,0,0\}$ yield: $\{x,0,0\}$ yield: $\{x,0\}$ yield:	1 t or 1etho207) - r to ger 2	on a Billion and a second and a	
	MIT: Integrates 2' correctly to good $\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ or magazine $\{2-1\}$ to give other $-\frac{12}{2300}$. All Correct strepation of $\{2-1\}$ to give other $-\frac{1}{2300}$. Beyond upon the proteon method mass, Automatic the lesions in an admitistic role. All 2 December of $\frac{10}{28}$, $2-\frac{1}{3}$, $2-\frac{1}{3}$, $2-\frac{1}{3}$. Observations: Correction on a Correction of $\frac{10}{3}$, $2-\frac{1}{3}$, $2-\frac$	1 c or 1etho2CT) - r or per	Mil. All	p
do.	MIT: Integrates 2' correctly to good $\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ or magazine $\{2,-1\}$ to give other $-\frac{12}{2300}$. All Correct strepation of $\{2,-1\}$ to give other $-\frac{1}{2300}$. Beyond upon the proteon method mass, Automatic the lemins in an admitistic of the All 2' Doct survey of $\frac{10}{28}$, $2 - \frac{10}{3}$, $2 - \frac{10}{3}$. Observations: Contraction on a Correction quantity $\{x,0,0,0\}$ yield: $\{x,0,0\}$ yield: $\{x,0\}$ yield:	1 t or 1etho207) - r to ger 2	on a Billion and a second and a	p
do.	MIT: his parts $2'$ correctly to go $2'$ $\frac{2}{m^2}$. In integration $(7-1)$ to give other $-\frac{12}{2000}$. Alt: Correct strepations of $(2'-1)$ with respect to 1 dMit: Beyond upon the greatment sold of mark. Noticities the stress in a substant or other than $(2-1)$ and $(2-1)$ and $(2-1)$ determines of $(2-1)$ and $(2-1)$ determines $(2-1)$ and $(2-1)$ determines $(2-1)$ and $(2-1)$ determines $(2-1)$ and	1 t or 1m(a2007) - r 23 t or 1m(a2007) - r 24 per \(\frac{\pi_{\text{2}}}{\pi_{\text{2}}} \) - t 24 per \(\frac{\pi_{\text{2}}}{\pi_{\text{2}}} \) - t 25 per \(\frac{\pi_{\text{2}}}{\pi_{\text{2}}} \) - 2 or \(\frac{13}{2} \text{log}_{\text{2}} \) - 2 or \(\frac{13}{2} \text{log}_{\text{2}} \) - 2 or \(\frac{13}{2} \text{log}_{\text{2}} \) - 1 or organism 45 per \(\frac{1}{2} \) - 10 and the first Curlentian 45 per \(\frac{1}{2} \) - 10 and the first Curlentian (Moss be seen support (b), \frac{1}{2} \) 42 \(\frac{1}{2} \) - 3 set -1 \(\frac{1}{2	Milani Ali Milani Ali	p
do.	MIT: his parts $2'$ correctly to go $\frac{2'}{8!}$. In integration $(7-1)$ to give other $-\frac{12'}{2000}$. All Correct strepation of $(7-1)$ to give other $-\frac{12'}{2000}$. All Correct strepation of $(7-1)$ with respect to 1 dMit: Bepeak upon the printians matter in other $-\frac{1}{2000}$. The printial matter is other from $-\frac{1}{2000}$. In $-\frac{1}{2000}$ and $-\frac{1}{2000}$. The $-\frac{1}{2000}$ is $-\frac{1}{2000}$. All $-\frac{1}{2000}$ is $-\frac{1}{2000}$. The $-\frac{1}{2000}$ is $-\frac{1}{2000}$.	1 to respect to the second of	Mil-All Mil-	p
do.	MIT: his parts $2'$ correctly to go $2'$ $\frac{2}{m^2}$. In integration $(7-1)$ to give other $-\frac{12}{2000}$. Alt: Correct strepations of $(7-1)$ to give other $-\frac{12}{2000}$. Alt: Correct strepation of $(7-1)$ with respect to 1 dMit: Bepeak upon the given to make in order to other the $-\frac{1}{2000}$ and $-\frac{1}{200$	1 t or 1m(a2007) - r 23 t or 1m(a2007) - r 24 per \(\frac{\pi_{\text{2}}}{\pi_{\text{2}}} \) - t 24 per \(\frac{\pi_{\text{2}}}{\pi_{\text{2}}} \) - t 25 per \(\frac{\pi_{\text{2}}}{\pi_{\text{2}}} \) - 2 or \(\frac{13}{2} \text{log}_{\text{2}} \) - 2 or \(\frac{13}{2} \text{log}_{\text{2}} \) - 2 or \(\frac{13}{2} \text{log}_{\text{2}} \) - 1 or organism 45 per \(\frac{1}{2} \) - 10 and the first Curlentian 45 per \(\frac{1}{2} \) - 10 and the first Curlentian (Moss be seen support (b), \frac{1}{2} \) 42 \(\frac{1}{2} \) - 3 set -1 \(\frac{1}{2	Milani Ali Milani Ali	the state of the s
(c)	M1°: hierarchy $2'$ correctly to goar $\frac{2'}{m^2}$ or misgratus of $(2'-1)$ to give other $-\frac{12'}{2\pi^20}$ A1: Correct subgratum of $(2'-1)$ to give other $-\frac{12'}{2\pi^20}$ A1: Correct subgratum of $(2'-1)$ to give other $-\frac{12'}{2\pi^20}$ and $-\frac{12'}{2\pi^20}$ an	1 to or surfacility of the sequence of the se	MI AI MI AI MI AI MI AI	p
(c)	M1°: hierarchy 2' correctly to gas $\frac{d^2}{dx^2}$, 2 an integration $(7-1)$ to give other $-\frac{12}{2000}$. Als Correct strengthms of $(7-1)$ to give other $-\frac{12}{2000}$. Als Correct strengthms of $(7-1)$ to give other product $(7-1)$ in the respect to $(7-1)$ in the product of $(7-1)$ in the respect to $(7-1)$ in	1 to 1 and DCT) = 1 10.11 to 1 and DCT) = 1 10.21 to 1 and DCT) = 1 10.22 to 2 and DCT) = 1 10.24 to 2 and DCT) = 2 and DCT 10.25 to 2 and DCT and DCT 10.25 to 3 and DCT and DC	Mil. All Mil. All Mil. All Mil. All Mil.	p
(c)	M1°: hierarchy 2' correctly to gas $\frac{d^2}{dx^2}$, 2 an integration $(7-1)$ to give other $-\frac{12}{2000}$. Als Correct strengthms of $(7-1)$ to give other $-\frac{12}{2000}$. Als Correct strengthms of $(7-1)$ to give other product $(7-1)$ in the respect to $(7-1)$ in the product of $(7-1)$ in the respect to $(7-1)$ in	1 c or selledZCT) = r or gere $\frac{\pi}{ha^2} + f$ or over small - data 2 m/2 - f or 2 m/2 m/2 m/2 Applies r = 0 to flow Curtains applies r = 0 to flow Curtains Applies r = 0 to flow Curtains (Moss be seen super (6). (Moss be seen super (6). - 122 m/2 fast o applies at - 212 m/2 fast o applies at Applies r = 0 and m(5) = -1 At 6 the seighbout ordene. For the integral of their Curtains For 2 m/2 - 1 m/3 fast of the Curtains For 2 m/2 - 1 m/3 fast of the response of C. For 2 m/3 - 1 m/3 fast of the Curtains	MI AI MI AI MI AI MI AI	p
(c)	M1°: hierarchy $2'$ correctly to goar $\frac{2'}{m^2}$ or misgratus of $(2'-1)$ to give other $-\frac{12'}{2\pi^20}$ A1: Correct subgratum of $(2'-1)$ to give other $-\frac{12'}{2\pi^20}$ A1: Correct subgratum of $(2'-1)$ to give other $-\frac{12'}{2\pi^20}$ and $-\frac{12'}{2\pi^20}$ an	1 t or 1 mile 2CT) = r 1	Milani Milani Milani Milani Milani Milani	p
(c)	MIT: hargories 2' correctly to gas $\frac{d}{dt}$, $\frac{1}{2}$ or margories $\{7-1\}$ to gave other $-\frac{12}{2400}$. All Correct streptions of $\{7-1\}$ to gave other $-\frac{12}{2400}$. All Correct streptions on the protection section contained and the following of the strength of the strength of address of the strength of the strength of address of the strength of the strengt	1 c. or _ sethe 2CC) = r or $gen \frac{r}{ha2} + f$ or $gen \frac{r}{ha2} + g$ or $\frac{r}{2} \log_4 x - 1$ or $ggn \frac{r}{ha2} + g$ or $\frac{r}{2} \log_4 x - 1$ or $ggn \frac{r}{ha2} + g$ of $\frac{r}{a} \log_4 x - 1$ or $ggn \frac{r}{ha2} + g$ of $\frac{r}{a} \log_4 x - 1$ or $ggn \frac{r}{ha2} + g$ of $\frac{r}{a} \log_4 x - 1$ or $\frac{r}{a} \log_4 x$	MI AI	p
(tc)	M1°: hierarchy 2' correctly to gas $\frac{d^2}{dx^2}$, 2 an integration $(7-1)$ to give other $-\frac{12}{2000}$. Als Correct strengthms of $(7-1)$ to give other $-\frac{12}{2000}$. Als Correct strengthms of $(7-1)$ to give other product $(7-1)$ in the respect to $(7-1)$ in the product of $(7-1)$ in the respect to $(7-1)$ in	1 to r - $2\pi i \ln 2D(r) - r$ or $2\pi i \ln 2 - r$	Milani Milani Milani Milani Milani Milani	p p
(c)	MIT: hargories 2' correctly to gas $\frac{d}{dt}$, $\frac{1}{2}$ or margories $\{7-1\}$ to gave other $-\frac{12}{2400}$. All Correct streptions of $\{7-1\}$ to gave other $-\frac{12}{2400}$. All Correct streptions on the protection section contained and the following of the strength of the strength of address of the strength of the strength of address of the strength of the strengt	1 to or surfacility $-\tau$ or $-\tau$ and $-\tau$ or	MI AI	p
(c)	MIT: hierarchy S' correctly to gas $\frac{S'}{m_1}$	1 to 1 and 0.2007 or $\frac{1}{2}$ to $\frac{1}{2}$	MI AI	p
(tc)	MIT: hargories 2' correctly to good $\frac{2}{m_1^2}$, or margories $\{7-1\}$ to give other $-\frac{12}{2400}$. All Correct strepation of $\{7-1\}$ to give other $-\frac{12}{2400}$. Biggraph upon the proteon matter role of the 1 in the product of the first in a situation of the 1 in the product of $\frac{1}{2m_1^2} = \frac{1}{2m_1^2} = \frac$	1 to or surfacility $-\epsilon$ or $\frac{12}{2}\log_2 \epsilon - 1$ or open $\frac{12}{2}\log_2 \epsilon - 1$ or $\frac{12}{2}\log_2 \epsilon - 1$ or open $\frac{12}{2}\log_2 \epsilon - 1$ or $\frac{12}{2}\log_2 \epsilon - 1$ or open $\frac{12}{2}\log_2 \epsilon - 1$ or $\frac{12}{2}\log_2 \epsilon - 1$	MI AI	b b
(c)	M1°: hierarchy 2' correctly to gas $\frac{d}{dx}$: $-\infty$ managemen $(7-1)$ to gave other $-\frac{12}{2000}$ A3: Correct strepation of $(7-1)$ to gave other $-\frac{12}{2000}$ A3: Correct strepation of $(7-1)$ to gave other $-\frac{12}{2000}$ A3: Describe upon the greatest mathem code of the street of an address other than $-\frac{1}{2000}$ A3: Describe upon the greatest part $-\frac{1}{2000}$ A3: Describe upon the $-\frac{1}{2000}$ A4: $-\frac{1}{2000}$ A4: $-\frac{1}{2000}$ A5: $-\frac{1}{2000}$ A6: $-\frac{1}{2000}$ A6: $-\frac{1}{2000}$ A6: $-\frac{1}{2000}$ A6: $-\frac{1}{2000}$ A6: $-\frac{1}{2000}$ A7: $-\frac{1}{2000}$	1 to or substitution of the substitution of t	MI AI MI AI	() ()
(c)	MIT: hierarchy S' correctly to gas $\frac{S'}{m_1}$	1 to $r = 2\pi i \ln 2D(r) - r$. 10 grow $\frac{r}{\ln 2} = r$. 11 vary small $r = \frac{1}{2} = $	MI AI MI AI AI AI AI AI	h b
(4)	$\begin{aligned} & \mathbf{M}^{n}, \ \text{ heightes} \ \ 2' \text{ correctly to gas } \frac{d}{ds^{2}}, \\ & = \infty \ \text{ misignitis} \ \ (7-1), \ \text{ to give other} \frac{d^{2}}{2\pi \sigma^{2}}, \\ & \mathbf{A}). \ \mathbf{Correct subgrations} \ \ d^{2} (-1), \ \text{ with respect to } 1 \\ & \mathbf{M}^{n}, \ \ \text{ important pages the privates mathest model.} \\ & \mathbf{M}^{n}, \ \ \text{ important pages the private mathest order.} \\ & \mathbf{M}^{n}, \ \ \ \text{ important pages to } \frac{1}{2\pi \sigma^{2}}, \ \ 1 \ \text{ order} \frac{1}{2\pi \sigma^{2}}, \ \ 2 \ \text{ order} \frac{1}{2$	1 to or settleDCT) = t or $t = t = t$ or $t = t $	MI AI MI AI	h b
(4)	MIT: hierarchy 2' correctly to good $\frac{2}{m_1^2}$, or integration $(7-1)$ to give other $-\frac{12}{2400}$. All Correct integration of $(7-1)$ to give other $-\frac{12}{2400}$. All Correct integration of $(7-1)$ to give other $-\frac{12}{2400}$. All Executions of $\frac{10}{280}$, $2 = \frac{10}{194}$, $2 = \frac{10}{2}$. Obtainable: Contracting p as C correction equation $(7-1)$ and $(7-1$	1 c.	MI AI MI AI	p p
(4)	MIT: hierarchy 2' correctly to good $\frac{2}{m_1^2}$, or integration $(7-1)$ to give other $-\frac{12}{2400}$. Alt: Correct streptions of $(7-1)$ to give other $-\frac{12}{2400}$. Alt: Correct streptions of $(7-1)$ to give other $-\frac{12}{2400}$. Alt: Executions of $\frac{10}{260}$, $\frac{1}{2}$ in $\frac{1}{194}$, $\frac{1}{2}$ in $\frac{1}{194}$, $\frac{1}{2}$ in $\frac{1}{194}$, $\frac{1}{2}$ in $\frac{1}{$	1 to $r = 2\pi i k_0 2 C T - r$ or $2\pi i k_0 2 C T - r$ or $2\pi i k_0 2 - t$	MI AI MI AI	p p
(6)	MIT: hierarchy 2' correctly to good $\frac{2}{84}$, 2 or integration $(7-1)$ to give other $-\frac{12}{2300}$. All Correct strepation of $(7-1)$ to give other $-\frac{12}{2300}$. All Correct strepation of $(7-1)$ to give other $-\frac{12}{2300}$. Suppose the state of an address of the Mitter of the state of an address of the $-\frac{1}{2300}$ of $-\frac{1}{23000}$ of $-\frac{1}{23000}$ of $-\frac{1}{230000}$ of $-\frac{1}{23000000000000000000000000000000000000$	1 c.	MI AI MI AI	p p
(6)	MIT: hierarchy 2' correctly to good $\frac{2}{34}$, 2 or mingratus $(7-1)$ to give other $-\frac{12}{2400}$. All Cerror strepation of $(7-1)$ to give other $-\frac{12}{2400}$. All Cerror strepation of $(7-1)$ to give other $-\frac{12}{2400}$. All Doct moves of $\frac{12}{36}$, $2 = \frac{16}{34}$, $2 = \frac{12}{3}$. Observations: Contraction as Controlling against $(3-2)$ and $(3-2)$	1 c.) c or _sethelect - f . 2.) c or _sethelect - f . 3.) c or _sethelect - f . 4.) c or _sethelect	MI AI MI AI	p p
(6)	MIT: hierarchy J' correctly to good $\frac{J'}{mJ}$, or integration $(J'-1)$ to give other $-\frac{J'}{2\pi J}$. All Certain streptions of $(J'-1)$ to give other $-\frac{J'}{2\pi J}$. All Certain streptions of $(J'-1)$ to give other $-\frac{J'}{2\pi J}$. All Decembers of $\frac{J'}{2mJ} = \frac{J'}{mJ} + \frac{J'}{2mJ} = \frac{J'}{2mJ}$. Although the streption of $\frac{J'}{2mJ} = \frac{J'}{mJ} + \frac{J'}{2mJ} = \frac{J'}{2mJ}$. Although the $\frac{J'}{2mJ} = \frac{J'}{2mJ} = \frac{J'}{2mJ} = \frac{J'}{2mJ}$. Although the $\frac{J'}{2mJ} = \frac{J'}{2mJ} = \frac{J'}{2mJ} = \frac{J'}{2mJ}$. Although the $\frac{J'}{2mJ} = \frac{J'}{2mJ} = \frac$	1 c. c or _ senholocy - r	MI AI MI AI MI AI MI AI MI AI	p p
(6)	MIT: hierarchy 2' correctly to good $\frac{2}{34}$, 2 or integration $(7-1)$ to give other $-\frac{12}{2400}$. All Correct strepation of $(7-1)$ to give other $-\frac{12}{2400}$. All Correct strepation of $(7-1)$ to give other $-\frac{12}{2400}$. All Doct moves of $\frac{12}{36}$, $2 = \frac{16}{34}$, $2 = \frac{12}{3}$. Observations: Contraction as Correction quarks $(7-1)$ and $(7-2)$ and $(7-2$	1 c.) c or _sethelect - r . 1 c.) c or _sethelect - r . 1 or open sethelect - r . 2 or open setter - r . 2 or open sethelect	MI AI	p p
(6)	MIT: histophics 2' correctly to good $\frac{d}{dx^2}$, 2 managemen $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. Mischael the stress of $-\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Executions of $\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Corrections g are Correction equation $(7-1)$ and $(7-2)$ an	1 c. or _ sethelect - r . 1 c. or _ sethelect - r . 1 or over small - she' = 12 or _ 2 or	MI AI MI AI MI AI MI AI MI AI	p p
(6)	MIT: hierarchy Z' correctly to gas $\frac{Z'}{2\pi J}$, Z' mategrates $\{Z'-1\}$ to gave other $-\frac{Z'}{2\pi J}$. All Correct streptions of $\{Z'-1\}$ to gave other $-\frac{Z'}{2\pi J}$. All Correct streptions of $\{Z'-1\}$ to gave other $-\frac{Z'}{2\pi J}$. All Correct streptions of $\{Z'-1\}$ to gave other $-\frac{Z'}{2\pi J}$. All $-\frac{Z'}{2\pi J}$ is $-\frac{Z'}{2\pi J} = \frac{Z'}{2\pi J}$. All $-\frac{Z'}{2\pi J} = \frac{Z'}{2\pi J} = \frac{Z'}{2\pi J}$. All $-\frac{Z'}{2\pi J} = \frac{Z'}{2\pi J} = \frac{Z'}{2\pi J}$. All $-\frac{Z'}{2\pi J} = \frac{Z'}{2\pi J} = \frac{Z'}{2\pi J}$. All $-\frac{Z'}{2\pi J} = \frac{Z'}{2\pi J} = $	1 c. c or _sethelectr - r or _se	MI AI	b b
(6)	MIT: histophics 2' correctly to good $\frac{d}{dx^2}$, 2 managemen $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. Mischael the stress of $-\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Executions of $\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Corrections g are Correction equation $(7-1)$ and $(7-2)$ an	1 c. or _ senhold(r) = r or ger \(\frac{1}{2} \) = \(\frac{1}{2} \) \(\text{or} \) = \(\text{or} \) \(\text{or} \) = \(\text{or} \) = \(\text{or} \) = \(\text{or} \) \(\text{or} \) =	MI AI	b b
(6)	MIT: histophics 2' correctly to good $\frac{d}{dx^2}$, 2 managemen $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. Mischael the stress of $-\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Executions of $\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Corrections g are Correction equation $(7-1)$ and $(7-2)$ an	1 c.) c or $2 \operatorname{erilo}(2) \operatorname{CP} + c$ or 2	MI AI	b b
(6)	MIT: hierarchy Z' correctly to good $\frac{Z'}{mZ}$. — or integration $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Cerricr strepation of $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Cerricr strepation of $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Cerricr strepation of $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Disposition upon the proteins mathematical states of the strepation of $-\frac{1}{2}Z$. $-\frac{1}{2}Z$ $-\frac{1}{2}Z$ Alternative. Contraction on a Controlled controlled $-\frac{1}{2}Z$ $-\frac{1}{2}Z$ $-\frac{1}{2}Z$ Alternative. Controlled as a Controlled controlled $-\frac{1}{2}Z$ $-\frac{1}{$	1 c. c or _senholocy - r or _senholocysenholocy - r or _senholocy - r or _senhol	MI AI	b b
(6)	MIT: histophics 2' correctly to good $\frac{d}{dx^2}$, 2 managemen $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. All Correct strepation of $(7-1)$ to give other $-\frac{d^2}{2\pi G}$. Mischael the stress of $-\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Executions of $\frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G} = \frac{d^2}{2\pi G}$. All Corrections g are Correction equation $(7-1)$ and $(7-2)$ an	1 c. 1 or _ sethelector = r or _ sethelector = _ sethelector = r or _ se	MI AI	b b
do d	MIT: hierarchy Z' correctly to good $\frac{Z'}{mZ}$. — or integration $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Cerricr strepation of $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Cerricr strepation of $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Cerricr strepation of $(Z-1)$ to give other $-\frac{1}{2}Z$ Alt: Disposition upon the proteins mathematical states of the strepation of $-\frac{1}{2}Z$. $-\frac{1}{2}Z$ $-\frac{1}{2}Z$ Alternative. Contraction on a Controlled controlled $-\frac{1}{2}Z$ $-\frac{1}{2}Z$ $-\frac{1}{2}Z$ Alternative. Controlled as a Controlled controlled $-\frac{1}{2}Z$ $-\frac{1}{$	1 c.) c or $2 \sin (2007) - c$ or $2 \cos (2007) $	MI AI	b b
(6)	MIT: hierarchy I' correctly to good $\frac{I'}{m I}$, I' an integration $(I'-1)$ to give other $\frac{I'}{2 \times 0}$. All Correct strepation of $(I'-1)$ to give other $\frac{I'}{2 \times 0}$. All Correct strepation of $(I'-1)$ to give other $\frac{I'}{2 \times 0}$. All Expectations of I' and the residue is not all ordinates of the following of the strepation of $\frac{10}{100}$. If $\frac{1}{100} = 2 = \frac{10}{100}$. All Expectations of $\frac{10}{100} = 2 = \frac{10}{100} = 2 = \frac{10}{100}$. All Expectations of $\frac{10}{100} = 2 = \frac{10}{100} = 2 = \frac{10}{100}$. If $I' = 0$ and $I' = 2^{1/4} = 1$ and $I' = 2^{1/4} = 2 = \frac{10}{100}$. All $I' = 0$, is $I' = 0$. All $I' = 0$,	1 c. 1 c. or 2 cells 2007 − r . 1 c. 1 c. or 2 cells 2007 − r . 1 c. or or years and . 2 c. or or or . 1 c. or	MI AI MI	p p
(6)	$\begin{aligned} & \text{MIT- Integration 2 } d = \min_{x \in X} \frac{1}{ x ^2} \\ & = \text{on integration of } \{T-1\} \text{ to give other } -\frac{1}{2 \times 3} \\ & = \text{All Correct subgration of } \{T-1\} \text{ to give other } -\frac{1}{2 \times 3} \\ & \text{All Correct subgration of } \{T-1\} \text{ to give other } -\frac{1}{2} \\ & \text{All Correct subgration of } \{T-1\} \text{ to give other } -\frac{1}{2} \\ & Matthias of the limits of an address of other subgration of the limits of an address of other subgration of the limits of an address of the limits of the l$	1 c. or _ 2mb2DCT = r. 1 c. or _ 2mb2DCT = r. 1 or you small	MI AI	p p
(80)	MIT: hierarchy I' correctly to good $\frac{I'}{m I}$, I' an integration $(I'-1)$ to give other $\frac{I'}{2 \times 0}$. All Correct strepation of $(I'-1)$ to give other $\frac{I'}{2 \times 0}$. All Correct strepation of $(I'-1)$ to give other $\frac{I'}{2 \times 0}$. All Expectations of I' and the residue is not all ordinates of the following of the strepation of $\frac{10}{100}$. If $\frac{1}{100} = 2 = \frac{10}{100}$. All Expectations of $\frac{10}{100} = 2 = \frac{10}{100} = 2 = \frac{10}{100}$. All Expectations of $\frac{10}{100} = 2 = \frac{10}{100} = 2 = \frac{10}{100}$. If $I' = 0$ and $I' = 2^{1/4} = 1$ and $I' = 2^{1/4} = 2 = \frac{10}{100}$. All $I' = 0$, is $I' = 0$. All $I' = 0$,	1 c. 1 c. or 2 cells 2007 − r . 1 c. 1 c. or 2 cells 2007 − r . 1 c. or or years and . 2 c. or or or . 1 c. or	MI AI MI	p p