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Southern California Montane Forests Threat Assessment
Southern montane forests

Prior to Euro-American settlement, the composition of yellow pine mixed conifer (YPMC) forests was
dominated by Ponderosa (Pinus ponderosa) and Jeffrey pines (Pinus jeffreyi). In southern California,
leffrey pine is the dominant yellow pine species above 1600m (5,000 ft) and on the drier north and east
sides of major mountain ranges™?. Canyon live oak (Quercus chrysolepis) and black oak (Quercus
kelloggii) are hardwood associates at most elevations. Dense shrub cover can occur in disturbed areas
and sites with low tree density’. Pre-settlement conditions consisted primarily of large trees (dbh > 67
cm?) at low densities, but selective logging and fire exclusion over the last century or more have greatly
increased forest densities statewide®. The pre-settlement YPMC fire regime predominantly consisted of
low intensity>® fires at short fire return intervals (generally <15 years).

Threats to montane forests in southern California

Fire Exclusion

® |narecent assessment of USFS lands in Southern California, half of sampled YPMC stands
experienced no fire in the past 100 years and current mean fire return interval is more than
four times longer than pre-settlement levels’.

e Accumulated fuels have also contributed to increased mean and maximum high severity
patch size, as well as an increase in the mean proportion of high severity area per fire’.

® Increasing fire risk has translated to increasing fire sizes in southern California conifer forest
since 1910’. Throughout the 2000s, severe wildfires have burned large areas of montane
forest’.

e High severity fire effects over large land areas can delay or prevent YPMC forest recovery
postfire because YPMC conifer species are not adapted to regenerate after high severity fire.
In some burned areas, conifer forests have converted to hardwood and shrub-dominated
landscapes®®1%1t,

Climate - Temperature

e Under current emissions scenarios, projections show that, by midcentury, maximum
temperatures are projected to increase by an average of 3.2° Cin currently forested
montane areas above 1200 m.

e By the end of the century, maximum temperatures at montane elevations could increase on
average by 5.0° C**%3,

e Warming temperatures increase fuel aridity, length of the fire season, and the number of
high fire danger days™.

e Warming can also lead to plant mortality, especially during establishment of young shrubs
and trees with shallow roots.

Climate - Precipitation

® Projections are uncertain about whether precipitation will increase or decrease across
southern California.

® Precipitation is likely to be more variable than current conditions, with a higher percentage
of annual rainfall occurring during extreme atmospheric river storm events*>*.
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e By the second half of the century, increasingly frequent drought during winter months is
expected"’.

Climate - Snowpack

e Mean winter snowfall is projected to be 70% of current levels by midcentury (2060), and fall
to 50% of current levels by end of century (2081-2100).

® By 2060, earlier spring snowmelt is projected to shift the first snowpack-free date 1-3 weeks
earlier, especially at lower and middle montane elevations®.

Climate - Drought

e Higher evaporative demand from higher temperatures will increase drought levels by
creating more frequent and persistent dry conditions**°.

e Widespread, severe droughts are projected to occur over many land areas in the next 30-90
years and may exceed historical drought conditions®.

e For forests in the southwestern U.S., average drought stress is projected to be higher by
2050 than in the previous 1000 years®.

e Drought is a major driver of forest mortality®®. During the California drought of 2012-2016
mortality was associated with the combination of dry conditions and dense forest stands®*.
In sampled stands across the Sierra Nevada Mountains, 90% of ponderosa pines were lost®®.

Ozone and other atmospheric pollution

e In conifer forests, nitrogen deposition stimulates new foliar growth, premature needle loss,
and higher leaf turnover. Increased ozone and nitrogen deposition from air pollution can
increase the amount of leaf and branch litter and retard litter decomposition rates by
50-125% over less polluted sites*, contributing to an increase in fire hazards.

e (Ozone pollution both increases water loss through the canopy and impedes root water
uptake, increasing drought stress levels?.

Insect and fungal agents

e The mechanisms of bark beetle and fungal attacks are highly co-evolved with tree defenses,
but tree defenses are weakened under drought conditions?®?°. A major conifer mortality
event in southern California was triggered by drought between 1999 and 2003, followed by
one of the most severe outbreaks of western pine beetle and associated fungi up to that
time2’26'30’31.

e Tree mortality from bark beetles is much higher under severe drought compared to
moderate drought®*2,

e Increases in temperature are predicted to result in more beetle outbreaks*® and upward
elevational and latitudinal shifts beyond current distribution limits®*.

® Outbreaks of bark beetles have been associated with years with warmer overall year-round
temperatures and lacking very low winter temperatures®?.
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Invasive species (Gold spotted oak borer)

® Ongoing invasion by the Gold spotted oak borer beetle (Agrilus auroguttatus, GSOB) is killing
large numbers of oaks in southern California. GSOB causes 80-90% mortality in regional red
oak species (coast live oak, California black oak). Approximately 60% mortality occurs in
canyon live oak (Q. chrysolepis), and has not been observed in white oaks (Q. engelmannii

e Llarger trees (greater than 12.5 cm dbh) are more susceptible to GSOB, with widespread
mortality possible among old growth oaks®.

e Contact insecticides have some limited efficacy for protecting uninfested, high-value trees,
but are not likely to control larvae in infested trees®’.

)35.
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