
Scaling, Shaders, Filters, Aspect Ratio, and You:​
Why I’m right, and you’re wrong about Integer Scaling​

(Except, not really because what matters is the image that pleases you.)

(auth: Cantankerous Rex)

​
Other Image Credits and further reading: ​

Chrono Trigger and Super Metroid AR Comparisons:​
https://orcaapp.herokuapp.com/snes​
Megaman X Bilinear Filtering sample: ​

https://tanalin.com/en/articles/integer-scaling/ ​

Other image Thanks - Gabraham, SML ​
-Other Aspect Ratio discussion-​
Displaced Gamers - Explorations of Aspect Ratio from Arcade, SNES, and DOS games. Highly
recommended; much of my information comes from these videos and DG deserves recognition
for his attention to detail, and deep-dives into everything that is classic gaming.
https://www.youtube.com/watch?v=LHfPA4n0TRo -CPS1 as an example of PAR vs AR​
https://www.youtube.com/watch?v=ssluTgfkdlg -Why neither 8:7(PAR) or 4:3(AR) is always best ​
https://www.youtube.com/watch?v=YvckyWxHAIw - Why 640x480 isn’t always ‘correct’ for DOS. ​
​
---​
If you spot anything in here that is patently incorrect or could be worded better, just
shoot me a PM via discord or Reddit and I’ll happily correct it.

1

https://orcaapp.herokuapp.com/snes
https://tanalin.com/en/articles/integer-scaling/
https://www.youtube.com/watch?v=LHfPA4n0TRo
https://www.youtube.com/watch?v=ssluTgfkdlg
https://www.youtube.com/watch?v=YvckyWxHAIw

Christ this thing is long enough to warrant a table of contents now.​

What is this guide? …………………………… 3

Preamble and Basic Settings​
“Emulation handhelds”​
“A Note on the GBA Experience”

…………………………….. 4

System Specific Settings …………………………… 5

Settings for JZ4770 Devices …………………………… 6

Why these settings, specifically? …………………………… 7

The limitations of 640x480 …………………………… 8

Notes on Integer Scaling​
“Integer Scaling at PARs other than 1:1”​
“The ‘Circle Test’ ”

……………………………​
​
………………………………

9​
​

10

ENTER: Non-Integer scaling​
“Nearest neighbor ”​
“Bilinear/Bicubic/Trilinear Filtering”

……………………………​
………………………………​
………………………………

10​
11
11

Finding a Comfortable Medium​
“The Difference between Shaders and Filters”​
“Shader Recommendation”

…………………………… 12

Filter/Shader Comparison
Screenshots

…………………………… 13

Boring technical shit about display
panel technology​
 ”The RG280’s…special display”

……………………………​
​
………………………………

19​
​

20

Changelog ……………………………… 21

​

2

WHAT IS THIS GUIDE?​
The original content of this section included information about displays for specific devices, but with the continued
proliferation of various inexpensive handheld devices and the rapidity with which they’re released, it became apparent
that trying to keep tabs on all of them would be stupid. Rather than try to cram information about more devices here, I
thought it better to explain…why this guide exists, and why I might waste my time obsessing over picture quality for
30 year old games being run on pocket sized magic linux gameboys. ​
Handheld emulation devices have been doubtlessly growing in popularity over the last few years - if not explosively
since the Dingoo days, but historically they’ve existed within deep, niche interest spheres. Starting in early 2021, we
started seeing coverage by more mainstream internet personalities which doubtlessly generated quite a lot of new
interest (Some even having gone viral on TikTok) bringing some much-needed new blood into the communit, and a
whole fresh hell of misinformation.​
A lot of this misinformation is about image quality and display settings; oft-repeated myths that lurk and are often
vehemently defended for reasons that I won’t even attempt to fathom. While most are planted with seeds of truth,
there is a bit of nuance that is often lost in the repetition which I fear sometimes leads to tinkering decisions that might
in fact, harm a user’s overall experience or just waste their time.​
​
There are two common myths that I want to tackle: ​
1 - That Integer scaling is always best​
2 - 4:3 Apect ratio, 640x480 resolution displays are the most accurate for classic systems​
​
While this guide delves into much greater detail on why neither of these is necessarily true - or even true in most
cases, the very short versions are:​
1 - Integer scaling does not reflect a given image’s ‘natural’ display conditions, leading often to a warped
image and wasted screen real-estate​
2 - Few classic game system’s output will scale cleanly to a 640x480 resolution. Not even many classic DOS
games did this, even when they were programmed specifically for 480i displays.​

Resolution/Aspect Ratio (AR) Index

Resolution Aspect Ratio Relevant devices

320x240 4:3 RG350p, RG280m/v

480x272 16:9 Sony PSP

480x320 3:2 OGA, RG351p/m, RK2020,
RGB10(s), RGB20, etc.

640x480 4:3 Too damn many to list.

854x480 16:9 OGS, OGU, RGB10Max

960x544 16:9 PS Vita, RG503, RG505

1280x720 16:9 Nintendo Switch/lite

1280x800 16:10 Steam Deck; many handheld PCs

1334x750 16:9 Retroid Pocket 3 and 4 series

1920x1080 16:9 Ayn Odin; more expensive
handheld PCs

1920x1152 5:3 RG552

3

Base Settings - Getting the ‘best’ image while using Retroarch​
I want to stress that this guide and my nitpickiness should not be construed as anything like an
authoritative “This is the best look for every game ever”. These settings work well for me, but if
they’re not to your taste - you’re wrong but I won’t throw you in Mind Jail for it. Before we get
into the melee of image enhancement or CRT/LCD recreation, we should start by getting a
clean-looking picture that will occupy the full vertical space of a given display, and mitigate
scaling artifacts such as pixel wobble/distortion/shimmer, or blurring - without resorting to filters
that distort/enhance the original image beyond what is necessary:​
---​
Settings ​
​ > Video ​
​ ​ > Scaling​
​ ​ ​ - Integer Scaling: OFF (See below note on GBA/WS for more info)​
​ ​ ​ - Aspect Ratio: Core Provided ​
​ ​ ​ - Crop Overscan: ON ​
​ ​ ​
​ ​ > Bilinear Filtering: OFF ​
​ ​ > RGA Scaling: OFF (Option only available on Rockchip based devices)​
​ ​ > Video Filter: NONE ​
​
Quick Menu ​
​ > Shaders ​
​ ​ > Load ​
​ ​ ​ > Shaders ​
​ ​ ​ ​ > Interpolation​
​ ​ ​ ​ ​ - Bandlimit-Pixel.glslp​
​ ​ ​ ​ > Parameters ​
​ ​ ​ ​ ​ - Smoothness: 0.2 (or 0.3, if scaling artifacts are visible) ​
---​
​
While most systems will not be negatively impacted (I have tested using Genesis, SNES, PSX,
GB/C, GBA, NeoGeo, and CPS(1/2/3) cores) this is a somewhat demanding shader set on
lower powered hardware, and there are certain cores that will suffer while using it: SNES cores
that make use of MSU-1 features will experience frame drops on RK3326 based devices and
the shader can’t be readily used in combination with many filters on anything more demanding
than GBC, except with more powerful hardware. This is less of an issue on such hardware, but if
your daily driver is an RK3326 or equivalent device, do bear this in mind. ​
​
A note on GBA / WS: The GBA and Wonderswan use an unusual 3:2 aspect ratio. Devices
using 3:2 AR displays should mostly be able to use integer scaling with no filters or shaders to
achieve a very clean and sharp image that wastes no screen space. 16:9 displays at 480p also
work well here with integer scaling - however higher res panels at this AR will require additional
tinkering to achieve the same end. Also keep in mind that for >480p 16:9 panels or 4:3
displays, using a non-integer scaled image is likely to interfere with bezels or overlays.

4

SYSTEM SPECIFIC SETTINGS ​

GBA/Wonderswan settings for: ​
OGA, OGS, RGB10MAX, RGB10, RGB20, RG351p/m (NON MP), RK2020
---​
The below settings are for devices using either native 3:2 displays, or 16:9 displays at 480p.​
​
Settings ​
​ > Video ​
​ ​ > Scaling​
​ ​ ​ - Integer Scaling: ON​
---​
 A well known ‘quirk’ of GBC and (particularly, earlier) GBA titles, was the use of highly
saturated colors to compensate for the desaturating effect of the GBC/GBA LCD panels. My
personal preference is to apply settings to correct the oversaturation because I love my retinas.​
​
For color adjustment and LCD display simulation:​
Quick Menu ​
​ > Shaders ​
​ ​ > Load​
​ ​ ​ >Shaders_glsl​
​ ​ ​ ​ > handheld​
​ ​ ​ ​ ​ >gba-color.glslp​
​ ​ >Shader Passes: 2​
​ ​ >Shader #1 > shaders_glsl > handheld > shaders > lcd3x.glsl​
​ ​ >Shader #1 Filter: Default​
​ ​ >Shader #1 Scale: 2x ​

Exception: ​
The KT-R1 C uses a 3:2 display, however the resolution is not an integer scale of the GBA’s
native output resolution of 240x160. Integer scaling will not fill the entire display. ​
​
A couple notes on LCD grid shaders/filters:​
There are a number of different ways to achieve this effect, however bear in mind:​
- There are very few LCD filters/shaders (if any) that will scale cleanly unless integer scaling is
used. A 720p or greater display is recommended if you want to use an LCD filter/shader while
using the full vertical screen space, at the ‘correct’ aspect ratio, or the grid will appear uneven.
- You will need to experiment with different shaders and filters to achieve good results. Due to
the wide variety of different outcomes for different displays, resolutions, aspect ratios, shaders,
and video filters, I simply don’t have the energy to cover this subject with the attention it
deserves.

5

GBC settings (Gambatte core)​
---​
The below settings are best for displays with a resolution of 640x480 or less. ​
​
Settings ​
​ > Video
​ > Scaling​
​ ​ - Integer Scaling: OFF ​
Quick Menu ​
​ > Shaders ​
​ ​ > Load ​
​ ​ ​ > Shaders ​
​ ​ ​ ​ > Interpolation​
​ ​ ​ ​ ​ - Bandlimit-Pixel.glslp​
​ ​ ​ ​ > Parameters ​
​ ​ ​ ​ ​ - Smoothness: 2.0 (or 3.0, if scaling artifacts are visible) ​
​
---​
 A well known ‘quirk’ of GBC and (particularly, earlier) GBA titles, was the use of highly
saturated colors to compensate for the desaturating effect of the GBC/GBA LCD panels. My
preference is to apply settings to correct the oversaturation.​
​
Quick Menu​
​ > Options​
​ ​ > Color Correction: GBC only ​
​ ​ ​ > Accurate ​
​ ​ ​ > Above Screen (Note: This is strongly a matter of personal preference.)​
​
---​
EXCEPTIONS: For emulating the GB/C on displays with a resolution of 640x480 or less, As
stated above: there are very few LCD filters/shaders (if any) that will scale cleanly unless integer
scaling is used. A 720p or greater display is recommended if you want to use an LCD
filter/shader while using the full vertical screen space, at the ‘correct’ aspect ratio.
​
NOTE: For replicating the original Gameboy DMG screen look The ‘Gameboy3x_DMG’ filter is
remarkably accurate, however running this filter with the Bandlimit-pixel shader will cause
performance issues on lower powered devices. If you must use this filter, it’s best to stick with
integer scaling. However there are in my opinion ‘good enough’ alternatives available by
adjusting the color settings in the Gambatte core options, and sticking to the LCD2x video filter
(not the shader!)

6

For lower powered Devices with 640x480 displays (inc. Miyoo Mini, and RG35xx caveats.)​
On devices running on older ingenic SOCs like the JZ4770 or other lower-power devices, some
of the above options will not be available (particularly, shaders) or will harm performance. In
these cases, your options will be limited to filters and other, simpler scaling settings.​
If you’re using a device on this chipset with a smaller resolution screen like the 280v/m, it’s a bit
of a struggle to get a clean picture, so you’re likely to get the best results using bilinear filtering
or integer scaling. That said, the bicubic artifacting is less noticeable on smaller screens; YMMV.​
Worth noting that SNES and CPS1/2/3 emulation will rarely run at full speed with any filters
beyond bilinear/bicubic on JZ4770 devices.​
--​
SNES / CPS(1/2/3) (JZ4770)​
Settings > Video > Scaling​
​ ​ ​ >Integer Scaling: OFF​
​ ​ ​ >Keep Aspect Ratio: OFF ​
​ ​ > Image Interpolation: Bilinear​
​ ​ > Video Filter: NONE (Any of these will tank performance for SNES/CPS.)​
Gameboy DMG/Color/Advance​
Settings > Video > Scaling​
​ ​ ​ >Integer Scaling: OFF​
​ ​ ​ >Keep Aspect Ratio: ON​
​ ​ > Image Interpolation: Bicubic*​
​ ​ > Video Filter: Grid3x (for nostalgia) or Normal4x (for clarity) ​
​ ​ ​ ​ - For GBA, use Grid2x or Normal2x​
NES / TG16(CD) / NeoGeo​
Settings > Video > Scaling​
​ ​ ​ >Integer Scaling: OFF​
​ ​ ​ >Keep Aspect Ratio: OFF​
​ ​ > Image Interpolation: Bilinear​
​ ​ > Video Filter: Normal2x ​
​ ​ ​ - For NeoGeo, use Upscale_256x-320x240 ​
Sega Genesis​
Settings > Video > Scaling​
​ ​ ​ >Integer Scaling: OFF​
​ ​ ​ >Keep Aspect Ratio: OFF​
​ ​ > Image Interpolation: Bicubic*​
​ ​ > Video Filter: Upscale1.5x (any higher and you start taking performance hits.)​
​
*Bicubic filtering artifacts are reduced by upscaling; provides a sharper image than bilinear.​
​
A NOTE ON THE MIYOO MINI AND RG35xx: ​
This devices are beefy enough to handle the normal3x filter and bilinear filtering enabled without
a performance hit in almost all cases. PSX titles may suffer a bit, however for all others, it looks
pretty good. The Miyoo Mini can take this up to 4x for all but PSX.

7

So, why these settings, specifically?​
There are a number of differing opinions regarding what the ‘best’ possible image for a game
will be. My goal with these settings is to:​
- Get the sharpest possible image While using as much of the screen space as is sensible,​
- Without introducing blur, scaling/sharpening artifacts, or other unpleasant ‘smooth’ filtering,​
- At the ‘intended’ aspect ratio for each given system or game, which is not always native PAR.​
- Which is useful to determine a baseline image expectation.​
​
Achieving these goals on modern displays for 8, 16, and 32 bit titles can be tricky. Any given
game title will have been made at a set internal aspect ratio and resolution. But the CRT
displays these games were originally designed to be played on will display whatever is pumped
into their inputs at the *display’s* aspect ratio - not at the AR of the game content itself. So, most
system developers of the day had little reason to consider the ‘raw’/native aspect ratio of the
resolution they were working at, except to compensate for the difference in the games’ internal
Display Aspect Ratio (DAR), and the CRTs literal dimensions (or in some cases, manipulate
assets to play nice with CRT artifacts.) Developers were not, however, always consistent about
their approach to this as there were few industry standard development resolutions beyond what
worked for the developers.​
​
This results in a phenomenon where, despite the fact that most CRT displays of the time were of
of a 4:3 (or somewhat less commonly 5:4) aspect ratio - you still see games with native Pixel
Aspect Ratios (PAR) of 8:7 (SNES, Genesis) 10:7 (Genesis, NeoGeo), 12:7 (CPS1/2/3) - with
quite a few others being used by more obscure platforms. But the point here is to demonstrate,
the ‘internal’ image geometry does not have a 1:1 relationship with that of the ‘external’ display,
and so very few games’ native internal resolution will scale ‘cleanly’ on modern displays - even
and particularly, the oft cited 640x480/4:3 ‘golden standard’. There are multiple reasons for this,
which make more sense if we define three different types of aspect ratio:​
1 - “Pixel Aspect Ratio” or PAR - This is the aspect ratio of each individual pixel. While this is
mostly an incidental quality, Retroarch allows you to set the PAR to 1:1. More on this later.​
2 - “Display Aspect Ratio” or DAR - aspect ratio of the image to be displayed on the screen. This
is the aspect ratio of the ‘final’ image, once it has been fully rendered.​
3 - the native Aspect Ratio of the display itself, or just AR. This is the real world-measurement
ratio of the length and width of the display. Most of
the time this will be proportional to the DAR, but
there are exceptions. (the RG280m/v, for
example.)

Enter: Scaling. In the simplest sense scaling is
what happens when you stretch an image out to
avoid playing Video Games for Ants. As an
example, Chrono Trigger for the SNES uses an
8:7 DAR (along with most SNES titles), at a
resolution of 256×224. On a 640x480 display, with
no scaling, you don’t get a very large image:​

8

​

Notes on the limitations of 640x480 displays - And the NES overscan quagmire​
Often touted as the ‘gold standard’ for classic gaming - and not entirely without good reason.
The 640x480 resolution is usually high enough to minimize most scaling or stretching artifacts,
while allowing a generous amount of the display space to account for a number of
scaling/stretching preferences.​
​
But it’s not without limitations: it’s commonly believed that SNES, Genesis, and other consoles
of the day were ‘designed’ for this resolution, but this is unfortunately false. In many cases, the
console designer’s primary concern in regards to
output resolution was to utilize a resolution high
enough to allow for good visual fidelity without
needing to employ overly expensive hardware to
achieve this. The NES made use of a 256x240
resolution - an unusual 16:15 AR (which does not
scale cleanly to 640x480, for obvious reasons.).
However, this doesn’t account for the fact that some
display areas wouldn’t be visible on most CRT
displays; as they live in the overscan area - space
that would ordinarily be drawn outside of a CRT’s
vertical or horizontal range wjocj normally contain
nothing, or garbage visual data You can see this in
in Super Mario Bros. 3. Where a column of 8 pixels
straddles either side of the image. By default, you’ll see a column of noisy visuals on the right,
and a blank column on the left. (above, delineated in red) ​
If you want to do more reading on what why this space existed, research terms: Vblank, Hblank​

​
This throws the notion of clean 640x480 into
further disarray - since not all games used the
overscan space as anything other than part of the
display. That same left column in Castlevania, for
example, contains part of the HUD, and hiding this
portion of the overscan (A feature of most NES
emulators) truncates the text to confusingly, refer
to CORE, LAYER, and NEMY. While this is a quirk

unique to the NES, no two games necessarily use the overscan space in the same fashion, so
there is no universal setting that works best for all. ​
​
Best advice I can give is to be willing to tinker, or adopt a mindset towards overscan artifacts
that allows you to find zen in the face of this overwhelming visual obnoxiousness. And good on
you if you do - I’m personally way too neurotic about this shit and will never get over it.​

9

Notes on Integer scaling ​
(1:1 PAR and why many people recommend it) ​
Integer scaling is a scaling method that simply
multiplies the X and Y pixel-dimensions of the
image by a fixed, whole number. PAR, or ‘Pixel
Aspect’ ratio is the aspect ratio of each pixel on the
screen - 1:1 assumes perfectly square pixels. Most
LCD-based displays have a native PAR of 1:1. So
a 256x224 image at a 2x integer scale, becomes a
512x448 image. Not quite 640x480 but a much
more practical viewing space. It will however still be
at 8:7 DAR, which will not fill the entire display. The
main advantage to 1:1 PAR integer scaling is the very sharp, ‘clean’ look. Every pixel is a
perfect square and aligns with the pixels of the display itself - so there is no distortion or
blurring, as one might see with other scaling or filtering methods. Another advantage is that the
processing overhead for this method is virtually nonexistent. ​
​
“Okay but….what about Integer scaling at PARs other than 1:1?”​
There is no reason to do this. If you change the DAR to anything other than a game’s native 1:1
PAR while also using integer scaling, your image is no longer truly integer scaled. So you get
the disadvantages of both integer scaling (lost screen space; possible bad geometry) AND
filters (Distortion) - with the advantages of neither. It is possible to effect this on exceptionally
high resolution displays (1440p and up) without artifacting, but it’s a pain to set up.​
​
There are two main downsides to 1:1 PAR Integer scaling: ​
1 - The obvious one - You sacrifice some screen space. Since the native resolution of the
image doesn’t scale neatly to the 640x480 display, you get a black border around the image. ​
​
2 - The less obvious, but in my opinion, more important one:​
Many games of the 8-to-32 bit eras were designed to be played on 4:3 displays, with art assets
made to compensate for the difference between the system’s native output and that of the target
display. An easy example of this in action, comes (again) from Chrono Trigger. CT displayed in
its native 8:7 results in the geometric distortion of certain images​

In the ‘native’ example to the left, we
can see that the globe is slightly
narrower than the circle that’s been
drawn around it. In 4:3, we see where
the globe fills the circle accurately.​

10

While the ‘circle test’ is not aways (nor should it be) the sole determinant for a game’s intended
aspect ratio, it is a useful quick-reference. There are some titles where this is even an
exceptionally bad benchmark, because circular objects are not consistently circular; such as
Castlevania: SotN. There are many other examples in other games, but I won’t bore you with all
the ones I know of - I think you get the idea.​

Amusingly - a lot of games were *not* designed with this compensation in mind, including Super
Mario World and pictured here - Super Metroid:

​
Which of these was intentional, or even just looks better is obviously debatable - but at the very
least we have some visual evidence that game devs were not consistent about whether or not
their work compensated for the difference in display and native aspect ratios. ​
​
ENTER: Non-Integer scaling​
This is where the raw image is scaled using fractional, rather than whole numbers. In most
cases, turning integer scaling off will adjust the image to fill as much of the screen as possible
while maintaining the defined DAR, per the examples below:
​

​
​
​

11

This is where filters and shaders become a factor. While we’ve expanded the image to fill the
display (or as much of the screen as possible, given the DAR we’ve set.) we now have the
problem of everything looking...kind of janky:​

​
Nearest Neighbor Filtering​
The image to the left is being
displayed using ‘nearest neighbor’
filtering. It may seem
initially fine as a still
picture but if you look
closely, you can see the
distorting effect of
non-uniform pixels on
Megaman’s life bar:​
​
This is caused by the
system approximating
rows/columns of pixels
where the resolution of the image
does not evenly match that of the
display, which results in the output
image suffering from columns and
rows being rendered with
non-uniform widths and heights..

You might see this effect called ‘pixel distortion’, or when in motion, ‘wobble’ or ‘shimmer’. The
lower the resolution of the display, the more pronounced these artifacts
will be. A more extreme example might look like the image to the right: ​
​
So how do we compensate for these new problems?​
Filters and Shaders! If you want my recommendations for filter and shader
settings, scroll back up to page 2 of the document. This will eliminate almost all visible distortion
and shimmer, while still providing a very crisp image. But for the sake of being thorough, I will go
over some of the more common filtering methods:​
​
Bilinear / Bicubic/ Trilinear Filtering​
These filtering types are handy, low impact and
some of the most common methods of
addressing pixel distortion on non-integer scaled
images. However, The end results are ‘soft’
looking, and while bicubic/trilinear filters reduce
the fuzz, they leave sharpening artifacts. ​
An example of bilinear filtering:​

I’ll add Bicubic and bilinear here at some point…

12

Finding a comfortable medium
Retroarch provides a number of shaders and filters that allow you to further manipulate the
image to reduce the distortion artifacts of non-integer scaling, as well as sharpen the image to
something more visually appealing than the blurry results of bilinear/trilinear/bicubic
interpolations. ​
​
The difference between Shaders and Filters:
The technical specifics are complicated, but the end result is that they’re both different methods
of applying image enhancement, that can be combined with one another for various results.​

Shader recommendations​
Interpolation - Shaders in this group are designed to mitigate visual artifacts introduced by
non-integer scaling, or to smooth the image for people who aren’t into the chunky, pixelated
look. In recommended order:
- Bandlimit-Pixel: ​ ​ ​ Eliminates almost all blurring and‘wobble’. Somewhat​
​ ​ ​ ​ ​ resource hungry. Adjustable blur to tailor to personal​
​ ​ ​ ​ ​ Preferences and to reduce what little wobble remains.
- Quilez : ​ ​ ​ ​ Eliminates most wobble and pixel distortion; less effective​
 ​ ​ ​ ​ ​ than Bandlimit-Pixel, but lower performance impact.Slightly ​
​ ​ ​ ​ ​ blurry though less blurry than bilinear filters. Low overhead.​
- Sharp-Bilinear-2x-Prescale: ​ Mitigates blurring, but leaves some ‘wobble’ artifacting. ​
​ ​ ​ ​ ​ Low resource consumption, so can be useful if you​
 ​ ​ ​ ​ ​ Experience poor performance using other shaders.
- Smoothstep / Smuberstep:​ I can’t tell much difference between these, but they’re a ​
​ ​ ​ ​ ​ sort of midpoint between Sharp-Bilinear-2x-Prescale​
​ ​ ​ ​ ​ And Quilez with similar overhead.
NOTE: depending on the retroach version and device, the above shaders may be in the ‘pixel’
folder.
Handheld - Shaders that emulate the look of LCD screens on various handheld systems
 - LCD3x: A nice ‘grid’ that emulates the look of older handheld gaming systems. Primarily
useful on handhelds with a native AR equal to or wider than 3:2; may experience artifacting on
480p displays.
- GBA-Color - Useful to mute the garish colors of GBA, NGPC, and Wonderswan Color titles.​
Many developers purposefully manipulated the palettes of games for these systems to
compensate for the darkening/desaturating effects of their screens, which results in a picture
that, at least in my opinion, looks awful. This shader reduces the eye-burn effect, and will look
more accurate to the original systems. Most GB/GBC/GBA emulators include this as a feature.
Filter/Shader Comparison Screenshots​
- I took these from my PC, using an arbitrary window size. I know it isn’t scientific, but I couldn’t
find any option in RA to set a specific window resolution. I opted for a window AR that is close to
4:3, but it isn’t precisely so. This is to give you an idea of what the various filters and shaders
will do and look like on your handheld. I fully admit that this is not the most accurate way to go
about it, but if you want to take the time to make some better images, I’ll be happy to add them
to this guide, with attribution. ​

13

​
Two things to keep in mind:​
1 - These images are blown up from a significantly smaller image, and thus will appear slightly
more blurry in the document than all of their real-life examples.​
2 - If you’re viewing this document on a PC, the image will be substantially larger than you’d see
on any 3.5” - 5” screen size handheld device. I didn’t try to compensate for this, because I
wanted to keep honest about the shortcomings of non-integer scaling.​
3 - A lot of people won’t be able to tell much difference between some of these options, and
that’s fine. Again, the settings that make you happy are the best settings!​

​
As described previously, this provides a very clean image, but leaves a lot of unused screen
space. If you’re accustomed to playing on 4:3 CRT displays, this probably looks slightly too
narrow - being at an 8:7 AR. Many (if not most games) assets were designed to compensate
for the fact that they would have been stretched to 4:3.

14

Here we fill up much more of the available screen space (on an actual 4:3 display, this would be ‘all of it’) However, the scaling
artifacts are big, obvious and ugly when you look at Megaman’s life bar, or the grille on the platform he’s standing on. The mix of
fat/skinny/tall/short pixels looks hideous.

15

The filter eliminates most of the distortion by blurring everything together. Some people like this softer look, but I find it a bit muddy
for my tastes.

16

​
While this shader eliminates most of the distortion and blurring, both are still present if you look closely. It is most evident when
looking at Megaman’s Life bar. Games that feature heavy dithering will readily bring out the flaws of this shader.

17

​
NOTE: The above caption contains a typo: The ‘2.0’ should be ‘0.2’
Eliminates nearly all pixel distortion, with some - albeit very little - visible blurring compared to any of the above solutions. Though,
again - if you’re viewing this document on a PC, the image is going to be much larger than any RK3326 handheld, so while some
blurring artifacts are visible here, they are borderline imperceptible on a 3.5” - 5” display. As a side note, adjusting the ‘smoothness’
shader parameter will allow you to further balance the blur/distortion ratios. It’s not a perfect solution but it’s a damn fine compromise.

18

Just a touch blurrier than Bandlimit-Pixel, but overall similar results with less overhead. If you find certain games performing badly
while using Bandlimit-Pixel, try this one for a potentially better experience.

(To be added: Smoothstep/Smuberstep)

19

Some technical information regarding LCD displays and pixels (Added 12/9/2021)​
While most people using handheld devices (or have used LCD-based displays in the
now-decades they’ve been prominent) are likely already familiar with this, I think some of the
above might make more sense if it is explained why the image behaves the way it does on LCD
screens.​
​
LCD screen pixels are (mostly!) square, with a PAR of 1:1.
However, each pixel is made up of a single red, green, and blue
LCD ‘subpixel’. Different displays may use different subpixel
formats, with the most common subpixel format being “RGB”​
The image to the right shows some common subpixel layouts, with
the devices we’re discussing using the listed “LCD” example. The
vividness and color of each pixel is manipulated by altering the
values of its constituent subpixels. ​
​
One of the reasons that many CRT displays have a somewhat
‘fuzzy’ look, is that the subpixel aperture grid is not a square grid.

What this means for your image
Because each screen pixel of the image may not line up
neatly with the grid of pixels on your display, the image has
to be scaled. Integer scaling, as previously detailed, simply
blows the image up by a fixed, whole number multiplier
(usually 2x or 3x, depending on the native resolution of the
image) The “W” to the left is displayed at its native
resolution, with each pixel of the image, occupying 1 pixel on
the display. A 2x integer scale makes each source pixel
occupy 4 pixels of the display.​

Of course, we can’t always do this and also have the image fill the
entire display, so various methods of filling the gaps have to have
been engineered. A black pixel can’t just be expanded to occupy
neighboring subpixels without creating chromatic aberrations or
‘color fringing’. With no filtering, the image stretches; occupying
whole pixels of the display. ​

​
Color fringing is most often seen with ‘cleartype’ text. This is a type of
anti-aliasing used to smooth the pixelated look of certain fonts, which
dims/brightens a neighboring subpixel. This results in text having a

multicolored, somewhat nauseating ‘halo’. Many shaders and filters have been made as means
of addressing these sorts of artifacts.​
​
For some Information on what nearest-neighbor scaling/interpolation actually is and why it looks
bad, check out - https://en.wikipedia.org/wiki/Texture_filtering#Nearest-neighbor_interpolation

20

The RG280m/RG280v - (Added 01/05/2022)​
(Thanks to user ‘Gabraham’ in the RG Handhelds discord for the closeups, and sweet
unintentionally synthwave samus; user SML from the Dingoonity forums for Mario’s very
flattering closeup shot)​
The smaller anbernic handhelds in the RG280 lines make use of a unique (and in my opinion)
interesting subpixel layout quite unlike most other LCD panels. It is well known at this point that
RG280 devices have an unusual PAR. However the actual screen aspect ratio is still 4:3 despite
being a 480x320 display, but because
single pixels are much wider than they are
tall, the ‘functional’ resolution is closer to
240x320, as the images are doubled in
height to compensate for the squat pixels.​
​
Thanks to Gabraham, we have some
images of what this screen looks like up
close and it reveals that the subpixel
layout of the display is not only unusual in
shape, but also an unusual configuration:​

​
The pixels are made up of 3 subpixels like most LCD
displays - but in a non-RGB format (RBG? GRB? Someone
let me know what the correct naming here should be.) and
a staggered subpixel grid. Since the input image needs to
be doubled in height to avoid a terrible, squatty
appearance, this gives the ‘final’ display pixels an almost
rhomboid appearance. While the 2.8” screen is small
enough to make this less noticeable to most, when zoomed
in we can see the artifacts of this layout more clearly.​
​
​

There is the screen door effect, and the corners of the pixels look
a little bit…drunk due to the staggered nature of the grid. Though,
speaking personally - this can look pretty awesome in some
contexts. Using Synthwave Samus’ closeup to the right - vertical
and horizontal lines suffer a bit, the ‘/ ’diagonals are quite sharp.
‘\’ diagonals break up a bit, which gives this a somewhat hatched
appearance.

21

Thanks for reading.
Nerd​
​
Changelog:​
​
01/27/2022 ​
- Figured it might be handy for my personal reference to start keeping track of changes and
corrections. So this changelog is here, now. ​
- Moved all settings sections together. Previously, system specific settings were near the end of
the document, and JZ4770 device retroarch settings even further in. These were moved to near
the beginning for better organization. ​
- TOC updated to reflect new page numbers.​
​
11/21/2022​
- Added a section explaining why the guide exists
- Removed the ‘device index’ section from the TOC (Too many devices to keep meaningful track
of) ​
- Added section detailing common screen aspect ratios and resolutions for popular handheld
devices​
- Working on removing language specific to the RK3326 chipset, since most of the information
here is no longer specific to it. ​

07/26/2024​
This guide is now pushing three years old! I’ve made a few stylistic changes and made
corrections to recommended bandlimit pixel shader settings - ‘smoothness’ should be set to 0.2
in most cases, not 2.0. The latter makes the image extremely blurry.​

08/30/2024​
Removed some incorrect information about filters and shaders; edited the first 15 pages or so
for style and clarity.

22

