
 Architectural Document

A project by Team SEGFAULT ​
For EPI-USE LABS

COS301 Capstone Project

University of Pretoria

Mihir Arjun ​ - 21458759

Troy Clark ​​ - 21436933

Deetlef Koen ​ - 20577304

Aliyah Limbada ​ - 22621522​
Luke Nobrega ​ - 22517244

Table of Contents

Introduction​ 2
Design Patterns​ 3

1. Strategy​ 3
Class Diagram​ 4
Quality Attributes​ 5

1. Security​ 5
2. Availability​ 5
3. Usability​ 6
4. Scalability/Performance​ 6
5. Reliability​ 7

Architectural Styles​ 8
Architectural Patterns​ 9

1. Services-Oriented Architecture (SOA)​ 9
2. Repository Architecture pattern​ 10
3. Model-View-Controller (MVC)​ 11

Architecture Diagram​ 12
Constraints​ 13

Architectural Constraints​ 13
Performance Constraints​ 13
Availability Constraints​ 13

Technology Choices​ 15
Front-end Technologies​ 15
Backend Technologies​ 16
Database Technologies​ 18
Deployment Technologies​ 19
Final Technology Stack​ 21

1​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Introduction​

Lookout is a modern Progressive Web Application that envisions a user-friendly

platform revolutionising how nature enthusiasts, conservationists and hikers interact

with and share information about their experiences in the outdoors. Lookout focuses

on two main functionalities: Proof of sightings and Social interaction. It will allow

users to download the application as a PWA to their native mobile devices, enabling

easy access and usage on the go. The application is not just a tool limited to recording

animal sightings; it's a community-driven platform that brings together nature

enthusiasts from around the world. By combining modern technologies with a

user-friendly interface, Lookout aims to enhance the animal spotting experience,

making it more social, interactive, and rewarding for users.

2​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Design Patterns

1.​ Strategy

Defining a family of algorithms, encapsulating each one, and making them

interchangeable. This is useful for implementing different search or filter strategies

for points of interest.

3​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Class Diagram

4​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Quality Attributes

1.​ Security

Security is a critical requirement for Lookout as it deals with sensitive user data,

including location information and photos. Ensuring that this data is securely stored

and transmitted is vital to protect users from privacy breaches and potential misuse

of their personal information. The use of Google OAuth for secure login adds an extra

layer of security by leveraging Google’s robust authentication mechanisms. This

protects user accounts from unauthorised access and ensures that data remains

secure during the login process. Additionally, the system will include regular security

audits and vulnerability assessments to identify and mitigate potential risks

proactively, maintaining user trust and compliance with relevant data protection

regulations.

Quantifications:

●​ All sensitive data must be encrypted using AES-256 during storage and TLS

1.3 during transmission.

●​ Implement multi-factor authentication (MFA) for additional security layers.

●​ Conduct quarterly security audits and vulnerability assessments.

●​ Ensure compliance with GDPR and other relevant data protection regulations.

2.​Availability

Lookout must be available offline to accommodate users in remote areas with poor or

intermittent internet connectivity. Offline functionality is essential for users who are

often in areas with limited network coverage, such as hiking trails or remote camping

sites. Ensuring the app works offline means users can still capture and save data

locally, which will be synced once a connection is re-established. This functionality is

crucial for maintaining user engagement and ensuring the app is useful in real-world

scenarios where internet access may be unpredictable, thus fostering a seamless user

experience regardless of connectivity.

Quantifications:

●​ Ensure offline data synchronisation within 30 seconds of regaining internet

connectivity.

●​ Provide 99.9% uptime for the online services.

●​ Implement a local storage mechanism that can handle up to 1000 offline posts

per user.

5​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

3.​Usability

The application must be user-friendly and accessible to users of all ages. Given the

target audience, which includes avid bird-watchers, hikers, and nature enthusiasts,

the interface should be intuitive and easy to navigate. High usability ensures that

users can efficiently interact with the application, post photos, join groups, and view

maps without unnecessary complications. By reducing the learning curve, the app

enhances user satisfaction and encourages more frequent use. Additionally, an

emphasis on accessibility ensures that users with disabilities can also benefit from

the app, broadening its usability and appeal.

Quantifications:

●​ Conduct usability testing with at least 20 users from diverse age groups.

●​ Ensure that 95% of users can complete core tasks (posting photos, joining

groups) without guidance.

●​ Achieve a system usability score (SUS) of 80 or higher.

4.​Scalability/Performance

Efficient image loading and data handling are critical for the scalability and

performance of Lookout. As the user base grows and the volume of photos increases,

the app must be able to handle large amounts of image data quickly and efficiently.

Scalability ensures that the app can accommodate an increasing number of users and

a growing dataset without degrading performance. This is essential for maintaining a

smooth user experience and ensuring that the app remains responsive and fast. This

includes optimising backend processes to handle peak loads effectively and ensuring

the app performs well even under high user demand.

Quantifications:

●​ Support up to 10,000 concurrent users with a response time of less than 2

seconds for any request.

●​ Optimise image loading times to be under 1 second for images under 5MB.

●​ Ensure the system can handle a 20% increase in user base per month without

performance degradation.

6​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

5.​Reliability

Reliability is essential for building user trust in Lookout. The application must

consistently perform its functions accurately, from posting photos to updating

real-time location data. Reliability also involves ensuring that data is not lost and

that offline posts are correctly synced once online. A reliable app ensures users can

depend on it for accurate and timely information, especially in critical scenarios such

as tracking animal sightings or reporting security concerns. Additionally,

implementing robust error handling and recovery procedures will minimise

downtime and enhance the overall user experience.

Quantifications:

●​ Achieve a Mean Time Between Failures (MTBF) of 6 months for critical

systems and 3 months for non-critical systems.

●​ Ensure a Mean Time To Repair (MTTR) of less than 2 hours for minor issues

and less than 5 hours for major issues.

●​ Implement redundant data storage solutions to prevent data loss, with data

recovery time under 1 hour.

7​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Architectural Styles

Our architecture employs a Service-Oriented Architecture (SOA) to divide the system

into independent, modular services, each responsible for specific functions such as

authentication, post management, group interactions, and map services. SOA

enhances flexibility and reusability across different applications, allowing services to

be independently scaled based on demand. By enabling each service to operate

autonomously, we ensure high reliability and resilience, with robust failover and

redundancy mechanisms. This separation also supports integrability and

interoperability, facilitating the addition of new features and services without

disrupting existing ones.

In addition to SOA, we adopt a Repository Architecture. This structure enhances

security and scalability, The Data Access manages database interactions, ensuring

data consistency and integrity. We chose the Repository Architecture specifically

because it aligns well with our mono-repo setup, which houses both the frontend and

backend in a single repository. This integration facilitates streamlined development

and deployment processes, enhancing collaboration and consistency across the

project.

We also integrate the Model-View-Controller (MVC) pattern to further organise our

codebase and promote separation of concerns. The Model represents the data and

business logic, handling data access and including reusable business services. The

View is responsible for presenting data to users and handling client-side logic,

ensuring a responsive user interface. The Controller acts as an intermediary,

processing user inputs, managing data flow, and coordinating interactions between

the Model and View. MVC enhances maintainability by allowing developers to work

on different components independently, reducing the risk of unintended side effects

and facilitating collaboration.

Overall, our architectural approach—comprising SOA, Repository Architecture, and

MVC—ensures a robust, flexible, and scalable system. It supports efficient

development, easy maintenance, and seamless integration of new features, while

maintaining high performance, security, and reliability. This comprehensive strategy

is designed to meet the diverse needs of our users, providing a seamless and

engaging experience for nature enthusiasts, conservationists, and hikers using

Lookout.

8​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Architectural Patterns

1.​ Services-Oriented Architecture (SOA)

We chose SOA for its ability to divide the system into independent services, each

responsible for a specific function, which communicates over a network. This pattern

enables separate services for authentication, posts, groups, maps, and more. SOA

enhances flexibility, allowing service reuse across different applications, and offers

high scalability as services can be independently scaled based on demand. Its

independent service nature ensures high reliability and resilience with robust failover

and redundancy mechanisms.

SOA aligns well with our quality requirements by supporting scalability/performance

and reliability, as services can be scaled and maintained independently without

affecting the entire system.

9​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

2.​Repository Architecture pattern

The Repository pattern was chosen for its ability to encapsulate data access logic,

promoting code reusability and maintainability. It also allows us to manage data

consistency and integrity efficiently. By isolating data access in the repository, we

ensure that business logic remains decoupled from specific database concerns,

enhancing scalability and performance. This pattern aligns well with our mono-repo

setup, where both the frontend and backend are integrated within a single repository,

streamlining development and deployment processes. Additionally, the repository

pattern contributes to the security, scalability, and availability of the system by

providing well-defined interfaces and ensuring that distinct layers can be

independently secured and scaled based on demand. Repository Architecture pattern

is great for security because it prevents the business logic from directly

communicating with the database.

10​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

3.​Model-View-Controller (MVC)

The MVC architectural pattern is essential for designing and organizing code in a

maintainable and scalable manner. This pattern divides the application into three

interconnected components, which helps separate the internal representations of

information from the ways that information is presented and accepted by the user.

●​ Model:

○​ Represents the data and business logic of the application.

○​ Handles data access and includes reusable business services.

○​ Interacts with the database to fetch and store data, providing it to the

Controller and View as needed.

●​ View:

○​ Acts as the presentation layer, displaying data to the user in a specific

format.

○​ Receives data from the Model and sends user inputs to the Controller.

●​ Controller:

○​ Intermediary between the View and the Model, processing user inputs.

○​ Manages the flow of data, updating the Model or View as necessary.

○​ Handles user interactions such as creating geo-tagged points,

managing authentication, and coordinating with the Model for data

operations.

MVC was chosen for its responsive design due to the dedicated View component and

its simplicity in implementation and maintenance. It also offers excellent scalability,

aligning with our quality requirements for usability, scalability/performance, and

reliability. The clear separation of concerns within MVC allows for efficient parallel

development and reduces the risk of unintended side effects during updates.

11​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Architecture Diagram

12​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Constraints ​

Architectural Constraints

●​ The application must be implemented as a Progressive Web App (PWA) to

ensure cross-platform compatibility and ease of access on both desktop and

mobile devices.

●​ The use of a web framework is mandatory, and the solution must be

deliverable to mobile devices using PWA technologies.

●​ The system architecture must support offline functionality, allowing the

application to store data locally and synchronise with the server when an

internet connection is available.

●​ The application must use Google OAuth for user authentication to ensure

secure and reliable login functionality.

●​ The solution must be hosted on cloud platforms such as AWS, Azure, or GCP

to leverage scalable and reliable infrastructure services.

●​ The system architecture must be developed through Domain Driven Design as

per the request of our clients so that we can better understand the problem

that we are solving.

●​ The system architecture must also make use of the Real-time Architecture for

animal sightings in particular as requested by the clients.

Performance Constraints

●​ The architecture must support efficient image loading and handling to ensure

smooth performance, even with a large volume of image data.

●​ The solution should aim to load all pages within a 1-second timeframe to

provide a responsive user experience.

Availability Constraints

●​ The system must support offline functionality, enabling users to capture and

save data locally and synchronise it with the server when online.

13​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

●​ Cloud hosting on platforms like AWS, Azure, or GCP ensures high availability

and reliability, leveraging the infrastructure's built-in redundancy and failover

mechanisms.

●​ The application should be designed to handle increased loads without

sacrificing availability, utilising scalable cloud resources to accommodate

growing user demand.

14​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Technology Choices

Front-end Technologies

React: is a popular JavaScript library used for building user interfaces, especially

single-page applications where dynamic user interactions are frequent. This was

requested by the client due to its component-based architecture, performance, and

strong PWA support.

●​ Pros:

○​ Component-Based Architecture: Promotes reusability and

maintainability of UI components, essential for a scalable PWA.

○​ Virtual DOM: Enhances performance by reducing the number of

direct manipulations to the actual DOM.

○​ Strong Ecosystem: A wealth of libraries and tools for routing, state

management, and more.

●​ Cons:

○​ Learning Curve: Requires understanding JSX, a syntax extension,

and component lifecycle methods.

○​ Additional Setup: Needs supplementary libraries (e.g., Redux for

state management, React Router for routing).

Fit with Lookout’s Architecture: React’s component-based structure and

extensive ecosystem align well with Lookout’s need for a dynamic and responsive

PWA. It supports the requirement to create an interactive user interface that can

handle real-time updates efficiently.

15​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Backend Technologies

Spring Boot with Kotlin: Spring Boot is a Java-based framework used for

creating stand-alone, production-grade Spring applications quickly. Kotlin is a

modern, concise, and safe programming language that fully interoperates with Java.

This was requested by the client due to its rapid development capabilities, scalability,

and modern syntax.

●​ Pros:

○​ Rapid Development: Spring Boot’s auto-configuration and starter

dependencies accelerate development.

○​ Microservices Support: Facilitates building scalable and

maintainable microservices architectures.

○​ Kotlin Compatibility: Kotlin’s concise syntax reduces boilerplate

code, and its null safety features enhance reliability.

●​ Cons:

○​ Complexity: Can be complex for beginners due to its extensive

features and configurations.

○​ Memory Usage: Java-based frameworks can be more

memory-intensive compared to some other languages.

Fit with Lookout’s Architecture: Spring Boot’s robust ecosystem and Kotlin’s

concise syntax are well-suited for Lookout’s backend. They support building scalable

and maintainable services, aligning with the need for real-time data processing and

integration with a PostgreSQL database.

Python: Python is a versatile, high-level programming language renowned for its

simplicity and extensive library support. In Lookout’s architecture, Python is

leveraged both for building the backend services and developing AI models that

predict points of interest based on collected data. This dual usage is driven by

Python’s robust ecosystem, ease of integration, and strong community support.

●​ Pros:

○​ Extensive Libraries and Frameworks: Python boasts powerful

libraries such as TensorFlow, PyTorch, and scikit-learn, facilitating the

development and deployment of sophisticated AI models.

○​ Scalability and Flexibility: Python can handle various aspects of the

application, from serving RESTful APIs to managing real-time data

processing, making it adaptable to evolving project needs.

○​ Rapid Development and Prototyping: Python’s concise and

readable syntax accelerates development cycles, allowing for quick

16​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

iteration and prototyping, which is essential for meeting Lookout’s

tight delivery requirements.

●​ Cons:

○​ Performance Limitations: Python is generally slower compared to

compiled languages like Java or Kotlin. This can impact the

performance of real-time features, especially under high load,

potentially affecting Lookout’s requirement for near real-time data

processing.

○​ Deployment Overhead: Managing Python environments and

dependencies can be more involved, especially when ensuring

consistency across development, testing, and production environments.

Fit with Lookout’s Architecture: Python is well-suited as a backend technology

for Lookout’s architecture, handling core tasks like user authentication, API

development, and real-time data processing. Its powerful web frameworks like

Django and Flask efficiently manage server-side logic, while libraries for machine

learning enable predictive AI models. Python’s extensive support for database

management and integration with tools like Prometheus makes it ideal for the

scalable, data-driven features of Lookout. However, performance optimization may

be necessary to ensure smooth real-time functionality and efficient handling of

multiple tasks.

17​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Database Technologies

PostgreSQL: PostgreSQL is an advanced, open-source relational database system

known for its robustness and standards compliance. This was requested by the client

due to its reliability, performance, and advanced features make it the best choice for

managing Lookout’s data.

●​ Pros:

○​ ACID Compliance: Ensures reliable transactions.

○​ Extensibility: Supports advanced data types and custom functions.

○​ Performance: Handles complex queries efficiently.

●​ Cons:

○​ Setup Complexity: Initial setup and configuration can be complex.

○​ Resource Intensive: May require more resources compared to some

lightweight databases.

Fit with Lookout’s Architecture: PostgreSQL’s robustness and support for

complex queries and transactions align well with Lookout’s need for reliable and

efficient data storage and retrieval. Its extensibility and performance capabilities

support the application’s geospatial and real-time data requirements.

18​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Deployment Technologies

AWS: Amazon Web Services (AWS) is a comprehensive cloud platform offering a

wide range of services for computing, storage, and networking.

●​ Pros:

○​ Scalability: Easily scales resources up or down based on demand.

○​ Security: Offers robust security features and compliance

certifications.

○​ Global Reach: Extensive global infrastructure ensures low latency

and high availability.

●​ Cons:

○​ Cost: Can become expensive with large-scale usage.

○​ Complexity: Steeper learning curve due to the wide range of services

and configurations.

Fit with Lookout’s Architecture: AWS’s scalability, security, and extensive

service offerings align well with Lookout’s requirements for a reliable and scalable

deployment environment. It supports the use of various services such as EC2, S3,

RDS, and Lambda, which are essential for a PWA.

GCP: Google Cloud Platform (GCP) offers a suite of cloud computing services similar

to AWS.

●​ Pros:

○​ Big Data and Machine Learning: Strong capabilities in data

analytics and machine learning.

○​ Performance: High-performance network and compute options.

○​ Competitive Pricing: Often more cost-effective for certain

workloads.

●​ Cons:

○​ Service Range: Slightly fewer services compared to AWS.

○​ Ecosystem: Smaller community and ecosystem than AWS.

Fit with Lookout’s Architecture: GCP’s strong data analytics and machine

learning capabilities can be beneficial for Lookout, especially for advanced features

like AI predictions. Its high-performance infrastructure ensures a reliable

deployment environment.

Azure: Microsoft Azure is a cloud computing service offering a range of services for

building, testing, and managing applications.

19​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

●​ Pros:

○​ Integration with Microsoft Products: Seamless integration with

Microsoft tools and software.

○​ Hybrid Cloud Support: Strong support for hybrid cloud

deployments.

○​ Enterprise Support: Robust support for enterprise applications and

workloads.

●​ Cons:

○​ Complexity: Can be complex to set up and manage.

○​ Service Range: Some services may not be as mature as those offered

by AWS.

Fit with Lookout’s Architecture: Azure’s integration with Microsoft products

and enterprise support can be advantageous for organisations already using

Microsoft tools. Its hybrid cloud capabilities offer flexibility in deployment options.

Deployment Decision:Given its comprehensive services, scalability, and global

infrastructure, AWS is the optimal choice for deploying Lookout. While GCP is a

strong contender, AWS is chosen due to its broader range of services and larger

ecosystem, which better supports the overall architecture needs of Lookout. On the

other hand, Azure offers strong enterprise support, however AWS is preferred for

Lookout due to its comprehensive service range and extensive global infrastructure.

20​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

Final Technology Stack​

●​ Frontend: React for its component-based architecture, performance, and

strong PWA support.

●​ Backend: Spring Boot with Kotlin and Python for its rapid

development capabilities, scalability, and modern syntax.

●​ Database: PostgreSQL for its robustness, performance, and advanced

features.

●​ Deployment: AWS for its comprehensive services, scalability, and global

infrastructure.

21​
team.segfault.capstone@gmail.com

mailto:team.segfault.capstone@gmail.com

	
	
	
	Introduction​
	
	Design Patterns
	
	
	1.​Strategy

	
	
	
	Class Diagram
	Quality Attributes
	1.​Security
	2.​Availability
	3.​Usability
	4.​Scalability/Performance
	5.​Reliability

	
	Architectural Styles
	
	Architectural Patterns
	1.​Services-Oriented Architecture (SOA)
	2.​Repository Architecture pattern
	3.​Model-View-Controller (MVC)

	Architecture Diagram
	Constraints ​
	Architectural Constraints
	Performance Constraints
	Availability Constraints
	

	Technology Choices
	
	Front-end Technologies
	
	
	Backend Technologies
	

	Database Technologies
	

	Deployment Technologies
	

	Final Technology Stack​

