Proposal: Increasing the WASM heap pages.

Recently, we’ve noticed that some validator nodes on polkadot, encounter a “allocator failed to
allocate memory” error around the time when the staking election (phragmen) is being
computed. Recall that this computation is happening in an offchain worker thread.
Nonetheless, in the current implementation, the offchain worker thread, which itself is executed
in WASM, uses the same WASM environment as the canonical runtime, and therefore has
limited memory. To prevent the situation where no validator submits an election solution, the
amount of memory accessible to the offchain worker environment should be increased.

Note that ideally, this change should only affect the offchain worker thread, and not the main
runtime. But as mentioned, currently they share the same configurations. A long term solution is
to separate these configurations and only increase the amount of memory that is accessible to
the offchain worker (PR). But, since this is not readily possible, we opt to propose increasing the
overall WASM runtime memory pages, which affects both block execution and offchain worker.
We expect this decision to have no notable effect on the main runtime’s progress and
execution.

The amount of memory available to WASM is determined in the number of “pages of memory”
that can be allocated in the called, aka. “Heap pages”. This value lives on-chain, and you can
inspect it similar to other well-known-keys via “:heappages”. Currently, no value is set there and
a default of 1024 is used.

hex-encoded storage key

heappages e
heappages: Raw

0x

code: Raw

0x%0061736d40100000001£2023560037£7£7£017£60027£7£017£60017£0060027£..302d6e696768746c79202864366561656131633820323032312d30332d313429

Luckily, an_extrinsic is _already exposed in the system pallet that exactly sets this value.
Therefore, the proposal is simply this call, giving us the proposal hash of:
0x5423d109316e89a312b0f92bbfb7c46b390f5a0480b8b75bdadc9b204d28ffab

propose @ The image (proposal) will be stored on-chain against the
system ~ setHeapPages(pages) + | hashof the contents.
When submitting a proposal the hash needs to be known.

Proposals can be submitted with hash-only, but upon
2048 dispatch the preimage needs to be available.

pages: ubd

preimage hash @
0x5423d109316e89a312b0f92bbfb7c46b320f5a0480b8b75bdadec9b204d28ffab

Note that a reason for the urgency of this proposal is that if the offchain election fails due to any
reason, the chain does the on-chain backup election. This election does not have a

https://github.com/paritytech/substrate/pull/8885
https://github.com/paritytech/substrate/blob/28107d402cb88cf50119c4ecb16555fcacf3a3e6/primitives/storage/src/lib.rs#L166
https://github.com/paritytech/substrate/blob/ef0e22e11535abaa393122209f83ed02a068a464/client/executor/src/native_executor.rs#L48
https://github.com/paritytech/substrate/blob/972e493910fdd3e59c881c75f65a238aec68f34b/frame/system/src/lib.rs#L328

post-processing that trims nominations as much as possible, therefore most nominators will split
their backing between many validators, instead of backing just one of them. This will in turn
cause the validators to become severely oversubscribed. An example of this can be seen
here.

https://github.com/polkadot-js/api/issues/3561#issuecomment-846587295

	Proposal: Increasing the WASM heap pages.

