Bonding-Topic 14 (AHL)

A 97-16.	Which of the following decrease(s) as the number of bonds between two atoms increases? I. Bond length II. Bond strength					
	A. I only	B. II only	C. Both I and II	D. Neither I nor II		
A 96-17.	7. How many of the molecules below are polar?					
	BF_3	CF ₄	SF_2			
	A. Zero	B. One	C. Two	D. Three		
	When the species loonds, the correct o	_	in order of increasing	length of the nitrogen-		
	A. N ₂ <h<sub>2NNH₂<i C. H₂NNH₂<n<sub>2<i< td=""><td></td><td colspan="3">B. FNNF<h<sub>2NNH₂<n<sub>2 D. N₂<fnnf<h<sub>2NNH₂</fnnf<h<sub></n<sub></h<sub></td></i<></n<sub></i </h<sub>		B. FNNF <h<sub>2NNH₂<n<sub>2 D. N₂<fnnf<h<sub>2NNH₂</fnnf<h<sub></n<sub></h<sub>			
Questions	s 14 and 15 refer to	the following subs	tances:			
	A. MgCl ₂	B. BCl ₃	C. CCl ₄	D. SCl ₂		
A 94-14.	Which substance of	ontains one or mor	re atoms that do not cor	nform to the octet rule?		
A 94-15.	Which substance contains polar covalent molecules?					
A 95-16.	What shape is expected for phosphine, PH ₃ ?					
	A. LinearC. Pyramidal	B. PlanarD. Tetrahedral				
A 94-19.	19. The shortest carbon-oxygen bond is found in					
	A. H ₃ COH C. CO ₂	B. H ₂ CO D. CO				
A 93-14. When the carbon-carbon bonds in the following compounds are arranged in order of increasing length, the correct order is						
	A. C ₂ H ₆ , C ₂ H ₄ , C ₂ C. C ₂ H ₄ , C ₂ H ₆ , C ₂		C_2H_4, C_2H_2, C_2H_6 C_2H_2, C_2H_4, C_2H_6			

	All of the following are is an octet of electrical area.	_	-	-	ctron-dot structures in	
	A. CO ₂	B. NO ₂	C. F ₂		D. N ₂	
A 91-15. electrons	In how many of the following species do the underlined atoms not have an octet of					
Ciccui ons.	•	H <u>S</u> -	$\underline{C}H_2Cl_2\underline{B}F_3$	$\underline{N}H_4^+$		
	A. 0	B. 1	C. 2	D. 3		
	Lewis structures of with the species	all of the follo	wing species sh	ow that the oct	et rule is only	
	A. PF ₅	B. SiF ₆ ²⁻	C. SiF ₄	4	D. ClF ₄	
G 92-16.	Identify the shape	of the following	g ION: ICl ₄ -			
	A. OctahedralC. Square planar		rahedral ramidal			
H 96-12.	A molecule of ethy	rne, C_2H_2 , conta	ains			
	A. 2σ bonds and 1π bond B. 2σ bonds and 3π bonds C. 3σ bonds and 2π bonds D. 5σ bonds					
H 95-10. Some of the more common oxides of nitrogen which contribute to the problems of smog and air pollution around the world are NO ₂ , N ₂ O and N ₂ O ₄ . Which of these molecules violate(s) the 'octet rule'?						
	A. NO ₂ only B.	N ₂ O only C.	NO ₂ and N ₂ O ₄ o	only D. NO ₂ ,	N_2O and N_2O_4	
H 94-49. A covalent compound is found to contain only silicon and hydrogen. The most probable formula for the compound is						
	A. SiH	B. SiH ₂	C. SiH ₃	3	D. SiH ₄	
H 93-8.	For which of the f	ollowing specie	es would one us	ually draw reso	nance structures?	
	A. O ₂ ² - B. H ₂ CO	C. CH ₃ COC	OH D. CH ₃ CC)O-		
H **92-20. Which best represents the Lewis electron-dot structure of the nitrate(III) ion (nitrite ion), NO_2^{-} ?						
	(See hard copy)					

H 92-5. The electronic configuration for element 34 may be represented as: {Ne} 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁴ . One could use this information and/or the Periodic Table to predict that						
 A. element 34 would form ions in water solution with a charge of -4. B. Element 34 is less "metallic" than element 8. C. One atom of element 34 would combine chemically with 3 atoms of element 12. D. Element 34 forms compounds in which its "oxidation number: varies from -2 to +6. 						
H 92-7. From its position in the periodic table, which one of the following statements about element 15 would one expect to be true ?						
A. Its oxide is a better base (proton acceptor) than the oxide of element 11.B. Its maximum positive oxidation number is less than that of element 11.C. Its compounds generally have lower melting points than the compounds of element 11.D. Its compounds generally have bonds with a high degree of ionic character.						
H 91-9. Which one of the following diatomic species would you expect to have the longest bond length?						
A. NO^{-} B. N_{2} C. O_{2}^{2-} D. O_{2}						
H 91-10. Atoms of an element X have the electronic configuration $1s^22s^22p^63s^23p^4$. Which one of the following compounds is most likely to be formed with aluminum?						
A. Al X B. Al X_2 C. Al $_2X_3$ D. Al $_3X_2$						
H 90-6. Which of the following statements indicate that the bonding in hydrogen bromide is covalent?						
I. Hydrogen bromide is a gas.II. Aqueous HBr reacts with active metals to produce hydrogen.III. HBr is not acidic in the absence of water.IV. Dry HBr is non-conducting.						
A. I and II only C. III and IV only D. I, III, and IV only						
H 90-13. What value would n be expected to have in SbCl ₆ ⁿ -?						

 ${f H}$ 96-10. Three oxides of nitrogen are NO, NO₂, and N₂O. Which of these molecules contain(s)

D. +1

B. -2 C. -1

A. -4

	A. NO onlyC. NO and NO₂		B. N ₂ O only O, NO ₂ , and N ₂ O)			
H 96-13. According to the electron pair repulsion theory, which species is expected to exhibit the smallest bond angles, F—E—F, between the fluorine atoms? (E is the other element)							
	A. BF ₃	B. NF ₃	C. CF ₄	D. C ₂ F ₄			
	H 96-14. What hybrid orbitals are present in the compound Buta-1,3-diene, H ₂ C=CH—CH=CH ₂ ?						
	A. sp hybrids or C. sp and sp ² on	lly B. sp ly D. sp	² hybrids only , sp ² and sp ³				
H 95-11. 1	How many p bon	ds are present in	CO ₂ ?				
	A. One B. Two	o C. Three	D. Four				
H 95-12.	The F-B-F bond a	angle in the BF ₃	molecule is mos	t similar to the bond angle	e in		
	A. BF ₄ B. C ₂ F	C ₄ C. CF ₄ D	C_2F_6				
H**95-13. In which of the following structures do all the carbon atoms lie in one plane?							
	(See hard copy)						
	A. I only B. II	only C. I and	II only D. II a	and III only			
H**94-14 . Which compound(s) can be correctly described as containing both sp ² and sp ³ hybridized carbon atoms?							
	(See hard copy)						
	A. I only B. I	only C. I an	d II only D. I	and III only			
H 94-15. Which one of the following species has the same 3-dimensional structure as SO_3^{2-} ?							
	A. SO ₃ B.	BF ₃	C. NH ₃	D. CO ₃ ²⁻			
H 94-16. moment?	Which one of the	e following mole	ecules would be	predicted to have a non-ze	ero dipole		
	A. BF ₃ B. NI	F ₃ C. CF ₄	D. SF ₆				

an odd number of electrons?

Н 93-7.	The hybrid	dization of t	he carbon at	om in the ca	rbonate ion, C	O_3^{2-} , is best of	lescribed as
	A. sp	$B. sp^2$	$C. sp^3$	D. sp^3d^2			
	In the Lew		for the mole	ecule ClF ₃ , th	he number of l	one pairs aro	und the
	A. 0	B. 1	C. 2	D	1. 3		
H 93-10. fashion?	. In which o	of the follow	ving sets of r	nolecules are	e all the atoms	arranged in a	a linear
	A. CO ₂ , H	CN, N ₂ E	B. HCCH, Xe	eF_2 , O_3 C.	H_2S , CO , CO_2	D. H ₂ O, (Cl ₂ , NO ₂
	In the Lew al atom is	vis structure	for the ion (ClF_2^+ , the nu	mber of lone p	airs of electr	ons around
	A. 0 B.	1 C. 2	D. 3				
Н 92-16.	Which of t	he molecule	es given belo	w has/have	a non-zero mo	lecular electr	ic dipole?
	HCl I		H ₃ BF ₃ II IV				
A. 2. 95/10. pollution A. 3. 94/10. expected A. 4. 94/11. A. 5. 94/12. III. Ba(CI A. 6. 93/5. V A. C. 7. 93/6. V attracts el	Which pair of Li and F E Some of the around the w NO ₂ only If the formu for the oxide at Pr ₃ O ₄ Which one of the N) ₂ IV. Ray I and II only Which composite Copper(II) Dichlorome Which one of	f elements is B. P and O more commorphisms of the NO ₂ B. N ₂ O only la for a complet of praseody B. Pr ₂ O ₃ of the following states b ₂ CO ₃ by B. Dund contains chloride, Cuethane, CH ₂ C the following	most likely to C. Ca and O on oxides of ray, N ₂ O and N ₂ C. NO ₂ and ound of prase mium is C. PrO ong compound C. AlCl ₃ Expecies display III and IV on the short ionic and Cl ₂ B. Maccl ₂ D. Litting terms described.	D. Zn and D. Which of d N ₂ O ₄ only codymium is a swould be expected by only covaled by the covalent by the co	h contribute to to the these molecules D. NO ₂ , N ₂ O a found to be Pr ₃ (In PrO ₃) expected to have the theorem of the theo	mpound? he problems of sicolate(s) the sicolate(s) the sicolate(s) the sicolate(s) the sicolate form the greatest in SiCl ₄ D. I and I	e 'octet rule'? mula onic character? II. PCl ₅ V only
C	Electron af	finity	D. Bond o	dissociation e	nergy y draw resonand	ce structures?	

atom is

A. 0 B. 1 C. 2 D. 3

25. 91/8. The molecular shape of the CCl₃ ion is

A. linear B. trigonal planar C. pyramidal D. square planar

26. <u>90/7</u>. What shape would you predict for the tetrafluoroborate ion?

A. Trigonal pyramidal B. Square pyramidal C. Square Planar D. Tetrahedral

27. 90/9. All of the following species are linear EXCEPT

A. HCCH B. HCN C. NNO D. ONO

31. <u>94/17</u>. The compound which is expected to have the **lowest** boiling point at one atmosphere pressure is

A. CH₃CH₂CH₂F B. CH₃CH₂CH₂OH C. CH₃CH₂COOH D. CH₃CH₂CH₂NH₂

32. 94/28. In a solid such as iodine, $I_2(s)$, the intermolecular bonding forces which cause the substance to remain in the solid state are

A. covalent bonds B. ionic bonds. C. metallic bond D. van der Waals' forces.

33. <u>92/16</u>. Which of the molecules given below has/have a nonzero molecular electric dipole?

HCl H₂O NH₃ BF₃ CH₄

I II III IV V

A. I only B. I and II only C. IV and V only D. I, II, and III only

34. <u>92/18</u>. Which one of the compounds given below is the **best** example of a network solid?

A. NaCl(s), table salt B. $C_{25}H_{52}(s)$, paraffin wax

C. CaO(s), calcium oxide D. $SiO_2(s)$, quartz

35. <u>92/19</u>. Which liquid substance has polar molecules, predominantly covalent bonding between atoms of the molecule, and a significant degree of hydrogen bonding between molecules?

A. Liquid hydrogen chloride, HCl(l)

B. Liquid sodium chloride, NaCl(1)

C. Liquid phosphorous(III) chloride, PCl₃(l)

D. Liquid hydrogen, H₂(1)

53. $\underline{94/28}$. In a solid such as iodine, $I_2(s)$, the intermolecular bonding forces which cause the substance to remain in the solid state are

A. covalent bonds B. ionic bonds C. metallic bond D. van der Waals' forces

54. 93/24. Which one of the following solid substances is best described as a network covalent solid?

A. SiO₂ B. CO₂ C. CsCl D. I₂