
Support for Combo and
Any PON

Goal
The goal of this document is to describe the
requirements and design details for Combo and
Any PON OLT support in VOLTHA and DMI.

1. Requirements
These are the high level requirements assumed
for supporting Combo and Any PON OLT
functionality in VOLTHA. The VOLTHA, in
conjunction with DMI and the olt-agent running in
the OLT, should work to adhere to these requi er
naamrements.
1.The OLTs should come up with PON tech
configuration as described in a configuration
file, if one is available, else a default PON
tech configuration for the given OLT
vendor/model.



2.If the OLT supports dynamic configuration of
PON tech, VOLTHA/DMI APIs should provide
a mechanism for such dynamic configuration.

3.4hIf the PON tech is dynamically reconfigured,
OLT should record such configurations to be
applied again on OLT reboots.

4.If the PON tech configuration cannot be
applied on the OLT device, the agent/olt
should clearly log/communicate the
error/reason for such failure (eg: hw-failure,
unsupported-config etc.) and the agent on the
OLT should re-configure the PON to it
previous working configuration.

5.It should be possible to query the PON tech,
and logical-to-physical port mapping for
Combo PON (if applicable) from VOLTHA/DMI
NB APIs.

6.If the OLT offers APIs to understand the type
of transceiver plugged into the PON port,
those should be used and the type
dynamically configured.



High Level Implementation Details
As per the aforementioned requirements for the
Combo and Any PON feature, they translate to
the following high level work items.
1.Static configuration of PON tech. The static
configuration involves reading a PON tech
configuration file on OLT startup by the agent
running on the OLT, and then configuring the
PON ports accordingly.

2.Dynamic configuration of PON tech. The
dynamic configuration involves dynamically
changing the PON port tech after the OLT is
active.

3.NB API changes (voltha/dmi) to report PON
tech, logical-to-physical port mapping for
Combo PON (if applicable).



Supporting Static Configuration of PON
Tech

PON Port configuration schematics
Below is the proposed port configuration
schematics with an example. It defines two PON
ports each having a different tech.
---
num_pon_ports: 2
ranges:

-
pon_id_range:

start: 0
end: 0

tech: "XGS-PON"
onu_id_range:

start: 1
end: 255

alloc_id_range:
start: 1024
end: 8096

gemport_id_range:
start: 1024



end: 8096
-

pon_id_range:
start: 1
end: 1

tech: "GPON"
onu_id_range:

start: 1
end: 255

alloc_id_range:
start: 256
end: 1024

gemport_id_range:
start: 256
end: 1024

The `pon_id_range` can also be used to
specify the same PON characteristics for a
range of consecutive PON ports.

Changes to openolt-agent



The openolt-agent will be impacted with the
following changes.
1.Reading the PON tech configuration file. The
path of the configuration should default to
some value and also be user configurable via
command line arguments. For openolt-agent
integrated with Broadcom BAL - use
/broadcom path as default for PON port tech
configuration file.

2.Validating the configuration file to see if the
given OLT supports such a PON tech
configuration schematics. If the configuration
is invalid, it is treated as a FATAL error and
the OLT shall not be active/operational and
may require user intervention.

3.If the PON tech configuration file is valid, the
agent shall invoke the OLT device APIs to
configure the MAC and PON ports for the
appropriate tech.

4.The agent should report the resource ranges
(onu-id, alloc-id, gemport-id) per PON port
when the openolt-adapter invokes the
GetDeviceInfo API.



Given that openolt.proto interface message
DeviceInfo already reports the resource ranges on
a per PON port basis, no changes are needed in
this aspect and hence no changes to any NB
components in voltha in this aspect.

Changing PON tech for Combo PON OLTs
that do not support dynamic config
If the PON tech is to be changed on the OLT, and
the OLT does not support dynamic configuration,
the following procedure describes the way to
change the PON tech
1.The user load's the new PON tech
configuration schematics file described in the
aforementioned section at the path where the
openolt binary looks for it. The file is loaded to
the OLT out-of-band - meaning VOLTHA is not
involved in this process.

2.Reboot the OLT
Once the OLT reboots the new PON tech scheme
comes into effect. On OLT reboot - flows, queues,
schedulers, pon resources are cleaned up.



Everything is re-setup once the OLT is
reconnected per the new PON configuration.

Note: This process impacts services for the
subscribers on all the PON ports of the OLT.

Dynamic Configuration of PON Tech

Dynamic configuration of PON tech allows
changing PON tech for one or more PON ports on
the OLT without impacting services on the
remaining PON ports.
Device Management Interface (DMI) seems the
right entry point for manipulating the PON tech to
keep VOLTHA NB APIs agnostic to PON tech
management.

The dynamic configuration of PON tech involves
the following steps from the DMI.
1.Disable the PON port for which the PON tech
is to be modified.



2.Enable the PON port with the new PON tech
setting.

Note: This is a service impacting procedure to all
the ONUs on that PON port.

Below sequence diagram describes the dynamic
configuration of PON tech.





Below describes the more details of the sequence
diagram

Step 1:

Plug out the trx. This generates an Event (check
rpc StreamEvent in
hw_events_mgmt_service.proto) with
EventIds as EVENT_TRANSCEIVER_PLUG_OUT.
The Trx container and all its port objects are
cleared from the model.
The DMI server then triggers a PON port disable
for the PON ports mapped to the transceiver that
was plugged out.

Step 2:
When the PON port is down, the olt-agent
indicates the olt adapter about PON Interface
down via IntfOperIndication message.



Check openolt.proto for details.This is followed
by OnuIndication (down) message for ONUs
on that PON port. Once the ONU is down, the uni
port is marked as Down (or disabled) and this
removes all flows, queues and schedulers.

Step 3:
Plug in the new trx. This generates an Event
(check rpc StreamEvent in
hw_events_mgmt_service.proto) with
EventIds as EVENT_TRANSCEIVER_PLUG_IN.
The Trx container and all its port objects are
created in the model.

Step 4:
The DMI client triggers the
SetHWComponentInfo API for enabling the
transceiver with the new tech. This is not needed
if the technology can be automatically detected
from the transceiver and configured to the
transceiver object. If the technology is

https://github.com/opencord/voltha-protos/blob/master/protos/voltha_protos/openolt.proto


automatically detected, then this step can be
skipped.

// The attributes of a component which are
modifiable from the client side
message ModifiableComponent {

// The name has to be unique for each
component within hardware and
implementations need to

// ascertain this when modifying the
name

string name = 1;
ComponentType class = 2;
Component parent = 3;
int32 parent_rel_pos = 4;
string alias = 5;
string asset_id = 6;
Uri uri = 7;
ComponentAdminState admin_state = 8;

// The attribute 'specific' can be
populated for specific class of components

oneof specific {
PortComponentChangeAttributes

port_attr = 50;

TransceiverComponentChangeAttributes
trx_attr = 51;



}
}

enum TransceiverType {
TYPE_UNDEFINED = 0;
ETHERNET = 1;
GPON = 2;
XGPON = 3;
XGSPON = 4;
CPON = 5;
NG_PON2 = 6;
EPON = 7;
// Add more here

TYPE_NOT_DETECTED = 255;
}

message
TransceiverComponentChangeAttributes {

TransceiverType trans_type = 1;
}



Note: Only important/relevant attributes are
documented.
HWComponentInfoSetRequest.ModifiableCompone
nt.ComponentType =
COMPONENT_TYPE_TRANSCEIVER
HWComponentInfoSetRequest.ModifiableCompone
nt.TransceiverComponentChangeAttributes.Tra

nsceiverType = <new-pon-tech>

Step 5:
The status of the Trx Tech configuration is
indicated in the HWComponentInfoSetResponse

response message of the SetHWComponentInfo
API.

If the result is a failure, the DMI server has to
handle the error code. If the error code cannot be
gracefully handled this may need manual
intervention.

If the result is a success, The component PON
ports of the trx are configured with the new



technologies. The PON IntfOperIndication
(Up) is indicated to olt-adapter with the new PON
tech and resource ranges. The highlighted
attributes are to be newly added to support this
functionality.

message IntfOperIndication {
string type = 1; // nni, pon
fixed32 intf_id = 2;
string oper_state = 3; // up, down
fixed32 speed = 4; // measured in

Mbps

bool pon_tech_updated = 5; // Relevant
when oper_status is "up" and port "type" is
"pon".

// Set to
true if PON tech is updated.

string technology = 6;

message PONResourceRanges {

message Pool {

enum PoolType {
ONU_ID = 0;
ALLOC_ID = 1;



GEMPORT_ID = 2;
FLOW_ID = 3;

}

PoolType type = 1;
fixed32 start = 3; // lower bound

on IDs allocated from this pool
fixed32 end = 4; // upper bound on

IDs allocated from this pool
}

repeated Pool pools = 3;
}

PONResourceRanges ranges = 7;

}

The olt-agent should also write the new PON tech
config to non-volatile-memory so that this new
tech config is applied to PON ports on OLT
reboots instead of the factory setting PON tech
config.
The adapter should initialize the resource pools
with the new ranges.



Exposing Combo PON information via
DMI NB APIs
The PON information can be fetched from the
HWComponentInfoGetRequest API on the
PON Transceiver object.

message Component {

// The name of a component uniquely
identifies a component within the hardware

string name = 1;
ComponentType class = 2;
string description = 3;
// The name of the parent of this

component, empty string("") in case of the
root component

string parent = 4;
int32 parent_rel_pos = 5;
repeated Component children = 6;
string hardware_rev = 7;
string firmware_rev = 8;
string software_rev = 9;
string serial_num = 10;
string mfg_name = 11;
// Apart from the definition of this

attribute as defined in RFC 8348,
implementations could choose to carry



// the manufacturer's part number in
this attribute.

string model_name = 12;
string alias = 13;
string asset_id = 14;
bool is_fru = 15;
google.protobuf.Timestamp mfg_date =

16;
Uri uri = 17;
// The uuid of the component uniquely

identifies the component across the entire
system

Uuid uuid= 18;
ComponentState state = 19;
repeated ComponentSensorData

sensor_data = 20;
// The attribute 'specific' can be

populated for components where more details
are required by the users of the DMI
interface

oneof specific {
PortComponentAttributes port_attr =

50;
ContainerComponentAttributes

container_attr = 51;
PsuComponentAttributes psu_attr =

52;
TransceiverComponentsAttributes

transceiver_attr = 53;
}



}

Note1: There could be more than one
Component of ComponentType
COMPONENT_TYPE_PORT being a child of
Component of ComponentType
COMPONENT_TYPE_TRANSCEIVER in which case,
the Port Component is part of Combo PON set.

Note2: It is important to note that the
mapping_label attribute in
PortComponentAttributes message gives
the mapping of the DMI port object to Voltha Port
object.

Phased approach for feature
development
The Combo PON development using real
hardware is generally going to take more time
given that it needs timely support from OLT device



vendors (both on the hardware and software
aspects) and also procuring the Combo PON
transceivers. So doing the initial development and
writing voltha-system-tests with BBSIM as a stub
for a real OLT could help develop and test other
components in the VOLTHA/DMI system much
faster.

Additional Notes

High Level Details on how Broadcom
Aspen 65650 MAC provides Combo
PON functionality

The way Combo PON tech is realized in
Broadcom Aspen 68656/68658 MAC is two
different PON technologies, say GPON and XGS
PON, is configured on two different PON port from
the BAL API on the MAC device and then the data
from these two PON ports are channeled on a
single external facing PON port of the OLT. For



example, PON0 is configured with XGS PON and
PON1 is configured with GPON and then these
two PON ports are paired internally (on the OLT
MAC) and traffic is routed through PON0 that
faces outside on the OLT. The external facing
PON0 should be equipped with a Combo PON
transceiver. Now this PON0 will host both XGS
PON and GPON ONUs. Internally, the traffic is
divided and processed as two different PON ports
on the MAC, but externally it will be visible as a
single Optical Distribution Network (ODN) through
a single PON. Note that the paired PON ports
need to be on the same MAC device in the OLT.

Decoding EEPROM data of the
transceiver

The EEPROM data has details about the SFP+ or
QSFP+ transceiver that could help in detecting
the following important information (among other
things)
1.Vendor name



2.Vendor OUI
3.Vendor Part Number
4.Vendor revision
5.Downstream Wavelength

Some or all of the information above could be
used to automatically detect the technology of the
plugged transceiver.
Generally most of the SFP+ or QSPF+ are
compliant to the following specifications from
SNIA which describes details about decoding the
EEPROM data
1. SFF-8472: Relevant for SFP+
2.SFF-8436: Relevant for QSFP+

On whiteboxes based on ONL, the ONLP utility
can be used to dump the EEPROM data.

Examples

Example 1:

Below is the EEPROM dump of the SFP+ connected
on the RadiSys 3200G OLT. SFF-8472 specification



is used to decode some important details about the
SFP+

eeprom:
0000: 03 04 01 00 0a 00 00 00 00 00

00 03 19 00 14 c8
0010: 00 00 00 00 48 69 73 65 6e 73

65 20 20 20 20 20
0020: 20 20 20 20 00 ac 4a fe 4c 54

45 33 36 38 30 4d
0030: 2d 42 43 2b 20 20 20 20 31 31

20 20 05 d2 00 c6
0040: 00 1c 14 14 55 39 54 41 31 30

30 30 30 33 39 20
0050: 20 20 20 20 32 30 30 31 31 36

20 20 58 e0 01 07
0060: 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00
0070: 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00
0080: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff



0090: ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff
00a0: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff
00b0: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff
00c0: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff
00d0: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff
00e0: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff
00f0: ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff

bytes data key value
(decoded)

20-35 48 69 73 65
6e 73 65 20
20 20 20 20
20 20 20 20

Vendor
name (in
ASCII)

Hisense



37-39 ac 4a fe Vendor OUI Ac:4a:fe is
the OUI of
Hisense

40-55 4c 54 45 33
36 38 30 50
2d 42 43 2b
20 20 20 20

Vendor P/N
(in ASCII)

LTE3680P-
BC+

56-59 31 31 20 20 Vendor Rev
(in ASCII)

11

60-61 05 d2 Wavelength 1490nm
(GPON)

Example 2:
Below is the EEPROM dump of the QSFP+
connected to the Edgecore ASxVOLT16 OLT.
SFF-8436 specification is used to decode some
important details about the QSFP+

eeprom:



0000: 06 20 55 00 f1 00 4e 00 f8 00
8d cc 74 04 87 8c

0010: 7a 44 88 b8 00 00 7e f4 00 fa
7b 3c 13 88 61 e3

0020: 18 97 0f 8d 00 09 0c 5a 00 0b
00 00 00 00 00 00

0030: 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00

0040: 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00

0050: 00 00 00 00 a2 00 00 00 00 c0
00 c0 1c 00 0f 0f

0060: 15 23 83 99 59 dd 37 da 02 0d
00 00 00 00 20 a0

0070: 00 00 00 00 00 00 00 ff ff ff
ff ff ff ff ff 01

0080: 06 b0 01 00 00 00 00 00 00 00
00 90 63 63 14 00

0090: 00 00 00 f6 4c 69 67 65 6e 74
20 50 68 6f 74 6f

00a0: 6e 69 63 73 80 00 00 00 4c 54
48 37 32 32 36 2d



00b0: 50 43 20 20 20 20 20 20 30 31
7b 34 03 e8 4b 50

00c0: 96 ff 8a 00 48 32 37 37 32 5a
30 30 30 32 30 20

00d0: 20 20 20 20 31 37 30 32 31 35
20 20 08 40 00 dd

00e0: 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00

00f0: 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00

bytes data key value
(decoded)

148-163 4c 69 67 65
6e 74 20 50
68 6f 74 6f
6e 69 63 73

Vendor
name (in
ASCII)

Ligent
Photonics

165-167 00 00 00 Vendor OUI 00:00:00 is
the OUI of
Ligent
(seems



some
default and
not filled
properly by
the
manufactur
er)

168-183 4c 54 48 37
32 32 36 2d
50 43 20 20
20 20 20 20

Vendor P/N
(in ASCII)

LTH7226-P
C

184-185 30 31 Vendor Rev
(in ASCII)

01

186-187 7b 34 Wavelength
(in 0.05 nm
resolution)

1577 nm
(XGS-PON)


