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ABSTRACT 
Swarm robotics is a new approach to the coordination of multi-robot systems 
which consist of large numbers of relatively simple robots that take their 
inspiration from social insects such as ants or bees. The most remarkable 
characteristic of swarm robots is the ability to work cooperatively to achieve a 
common goal. 
Robotic Process Automation abbreviated as RPA is extensively being used 
nowadays in most of the industries for various processes and applications. 
 
This concept is utilized here for mobile robots which are to be employed in 

industrial warehouses for efficient task handling. Tasks may comprise of 
picking up and dropping of goods and packages from the pick-up point to 
the drop-off point and also sorting of packages/goods. 
 
For our project, we intend to establish a hardware implementation and the 

working demonstration of a swarm of simple robots that map an unknown 
environment and also establish autonomous navigation for the robots to move 
about the warehouse environment and complete the tasks in the warehouse. 
 
In addition, the hardware demo would include a robotic gripper in front of the 
robots to perform pick-and-place of the packages and goods. 

 
The project had been divided into 2 phases: 
Simulation 

Simulate the working of a coordinated swarm of robots in a Warehouse 
environment to showcase the working of: 

●​ Path planning and navigation in a warehouse environment to ensure 
optimum performance in the warehouse. 

●​ 3D mapping and object localization in any warehouse environment. 
Hardware 

●​ Design and development of the multi-robot system. 
●​ Design and development of robotic manipulators. 
●​ Importing the software modules from the simulation section to the 

hardware and debugging of the same. 
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In particular, for Phase 2, the hardware implementation of the project has been 
carried out and will be illustrated in the upcoming sections. 
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1 INTRODUCTION 
 

1.1​BACKGROUND 

Swarm robots are a collection of similar or dissimilar robots working in close 
coordination with each other to achieve a common goal. Swarm behavior was first 
observed in social insects and this attribute has been successfully replicated in a 
system of robots to improve the performance and efficiency of certain repetitive 
tasks that would formerly be inefficient using a single robot system. 
 
Although the concept of swarm robots is more widely explored today, it has yet to 
find any feasible real-world applications. To demonstrate the scalability and the 
possible applications of this concept in a real-world scenario we have come up with 
an application titled: Robotic Process Automation in a Warehouse environment 
using Swarm Behavior. 

 
1.2​MOTIVATION / PROBLEM STATEMENT 

In the field of robotics, the application of robots to various kinds of applications is 
becoming more prominent. Robotics is being employed in almost all the sectors of 
the industry from supply chain logistics to complex surgeries. 
 
Many industries are solving the problem of warehouse logistics using 
manipulator/fixed robots as well as autonomous mobile robots. This process of 
warehouse management is called RPA. 
Swarm robotics is a field of robotics which establishes the concept of multiple 
robots cooperating together to perform single/multiple tasks and make the 
processes more efficient. 
 
Most of the existing solutions make use of semi-autonomous mobile robots or other 
such concepts to establish a working model which is relatively less efficient and 
results in sub-optimal performance. 
 
This project aims to develop a working scalable platform which is able to 
incorporate a decentralized approach to the swarm behavior that is scalable and 
portable to other kinds of applications. 

 
1.3​RELATED WORK 

 
The most popular warehouse robotic units are by Tesla, Amazon, 6 River System, 
Walmart. 
 

�​ The Amazon warehouse system has robots which only carry and drop the packages. 
For placing the packages on the robots, a robotic arm is used which has a 
suction-based end effector. The robot when reaches the destination drops the 
package with some conveyer type arrangement on it. This system is not intelligent 

 



 

and is limited to rectangular flat surfaced packages. The complexity in deciding the 
appropriate approach for coordination among the robots is high because of the huge 
numbers.  
 

�​ Tesla uses robots to move heavy parts from one part of the factory to another. These 
robots use a static map for their path planning and halt when obstacles are 
encountered. The system is non-intelligent as the robots use line-following 
techniques along with the map. They have a dedicated battery management system 
and have an extra feature of charging themselves. Interaction between such robots is 
minimal in this system. 
 

�​ 6 River Systems’ robot goes by the name Chuck. Chuck is a cobot (collaborative 
robot), working along with humans to do pick-and-place activities in warehouse 
fulfillment operations. Chuck directs the pickers to the right items, using platforms 
with different configurations, shapes and sizes. Chuck approaches the workers in the 
warehouse with the packages, thus saving time. Shopify acquired 6 River Systems 
in 2019 to increase its warehouse work, including picking and packing, sorting and 
inventory replenishment.  
 
These systems are robust but it has not been possible to extract the maximum 
capacity of the system, due to inefficient distribution algorithms and hardware 
limitations which are still under development. The main issues faced in the 
warehouse management are:  
 
1.Managing Warehouse Space/Layout 
2.Communication 
3.Time management 
4.Inventory Accuracy 
5.Customer Expectation 
6.Redundant activities 
7.Product diversification 
8.Inaccurate purchase orders 
9.Handling product damage 
 
Out of these the main concerns in any average scale, the main aspects in warehouse 
management that result in loss of time and hence income is Inaccurate Inventory and 
Incorrect time management. 

 
We propose a robotic automation system that handles these two situations primarily. 
With the use of robot for the movement of packages and having a proper addressing 
system the margin of error in inaccurate inventory is greatly reduced. With an 
algorithmic approach governed by simple laws towards the planning and decision 
making, the coordination between the robots is improved and the system can 
perform at a higher capacity. 

 
In support to our current implementation, a thorough study was made on the 
available techniques/algorithms related to each domain in our project, which has 
been modified for our use case and efficiency. These approaches along with their 

 



 

implementation, drawbacks and system limitations are described in the following 
sections. 

 



 

 

1.4​OBJECTIVE 

The main objectives of our project are: 
●​ Building a multi-robot system consisting of two robots. 
●​ Development of an autonomous navigation and path planning system for the 

multi-robot system. 
●​ Design and development of a control algorithm to achieve a coordinated 

performance and task achievement. 
●​ Integration of a robot gripper for the purpose of pick-and-place of 

goods/packages by the robots. 
 

1.5​ASSUMPTIONS 
 

For the purpose of demonstration of the deliverables and depicting the robots 
as a prototype, certain assumptions were made for the complete system 
implementation. 

​ ​ ​ ​  
Assumptions Need of said assumption 
The map obtained is of a static 
environment. 

The packages are not present in the 
initial map of the environment and are 
only detected during tasks. 

Packages in the environment are 
assumed to be uniformly 
distributed. 

This is to make sure that packages are 
not placed randomly in the environment 
with concentration in only a specific 
region. 

Warehouse is assumed to be a 
rectangular room. 

There will be an even distribution of 
the workspace environment between 
the members of the swarm. 

We have a set number of pickup 
and drop off buffers at any point of 
time in the environment. 

This ensures that every package in the 
environment is accounted for and is not 
lost or misplaced. 

Table 1. 1: List of Assumptions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
2.​ EVALUATION OF METHODS  
 
This section gives a general description of the various technical domains that are 
implemented in the hardware.  

 
2.1​ Mapping methods: 

 
Map building by exploration of an unknown environment is a crucial step for the 
implementation of autonomous navigation of a mobile robot. This is one of the 
initial steps that has to be performed by a robot for navigating through an 
environment and also for efficient path planning to perform various tasks and 
operations. 
 
Prerequisites and Conditions for a map: 

�​ The precision of the map must match the precision with which the robot needs 
to achieve its goals. 

�​ The type of features represented must match the precision of the features 
obtained by the sensors onboard the robot. 

�​ The complexity of the map representation has a direct relationship with the 
computational complexity of localization, navigation and path planning. 

There are two types of maps: discrete and continuous. The maps generated by 
navigation generally provide a continuous geometric description. This usually needs 
to be converted to appropriate discrete type maps for the implementation of path 
planning algorithms.  

 
2.2​ Localization methods: 

 
When the robot is moving for long distances, the robot must determine its position 
relative to an external reference which is often called a landmark. This process is 
termed as localization. These landmarks are obtained from the static map obtained 
by the robot during the mapping process. So, when the landmark is in view, the 
robots localize frequently and accurately, using action and perception (from sensors) 
update to track their position. Thus, the robot is effectively navigating from one 
landmark zone to the next, with the utilization of localization. 
Basically, there are two methods of localization present to localize any 
autonomous mobile system. One is global/absolute positioning and the other is 
local/relative localization. Our objective was to use relative positioning to 
determine the robot’s position using the sensors present onboard the robot and rely 
less on the information from its surroundings. 

 
�​ Global positioning: 

It helps to determine the position of the robot w.r.t   coordinates that already   have 
a reference i.e., a global coordinate. GPS is most commonly used for this and is 
accurate. 
But for indoor activities, it is not suitable for our project and can be used 

 



 

only outdoors because GPS receivers need an unobstructed view of the sky. We 
are subjecting our robots to work only in indoor environments presently. The 
robot hardware can be modified for different environments and surfaces. 

 
�​Local positioning: 

It determines the position of the robot w.r.t its movement from its initial 
position. It does not take into account any data from its environment. It 
evaluates the position using various on-board sensors like encoders, 
gyroscopes, accelerometers, etc. In our case we will be using wheel encoders 
present on the robot hardware to obtain the position and orientation 
respectively. 

 
2.3​ Navigation and Path planning: 

 
Navigation is an essential step that is directly linked to the robust mobility of the 
robot. When only partial knowledge of the environment is provided along with a 
goal position or series of positions, navigation approaches/algorithms provide the 
ability of the robot to act based on its knowledge of the surroundings and the sensor 
values to efficiently reach the goal position.  

​  
Robot path planning involves the problem of moving from one place to another, 
simultaneously performing tasks prescribed the user. The algorithm developed for 
this should be capable of computing a collision-free path between a start point and a 
goal point. Collision-free indicates the prevention of collision between other 
dynamic obstacles (robots, people, cars, etc...) and also static obstacles which are 
fixed in the workplace or the environment in which the robot is present. 

​  
Path planning can be either global or local.  
 
Local path planning is the process of planning a path when the robot is moving 
while taking data from the sensors onboard the robot. During local path planning, 
the robot can account for sudden changes in the environment, which may occur due 
to other robots or people moving around which is captured from the robot’s sensors. 
Global path planning is performed only when the environment is static and it is 
known to the robot i.e., the robot previously has the map of the environment in its 
memory. For this type of path planning, the algorithm produces a complete path 
from the start point to the goal/target position. This is done through a set of 
waypoints provided to the robot, even before the robot is in motion. 

 
There are various path planning algorithms and this is currently a research area with 
more efficient algorithms being introduced.  
But the most prominent and used path-planning algorithms are: 

●​ Dijkstra algorithm 
●​ A* path planning algorithm 
●​ RRT and RRT* algorithms 

For the implementation of a path planning algorithm onto a mobile robot, the 

 



 

combination of both local and global path planning is necessary and each of those 
approaches uses a combination of the above algorithms. 

 
2.4​ Computer Vision:  

 
This domain is mainly responsible for the vision aspect of any autonomous system 
and to provide perception of the robot’s environment.  
For an autonomous mobile robot, the vision sensors i.e., the camera is mainly 
responsible for providing a constant feed to the robot about its environment and aid 
it in navigating and completing tasks around the environment. 
 
Computer vision allows a computer to process the image provided to it and gain a 
certain level of understanding and relevant information for it. With the large number 
of open-source libraries and resources computer vision has found great use in a wide 
range of applications and fields as per the user’s requirement. 

 
�​ OpenCV: 
OpenCV is an open-source library available to develop computer vision-based 
applications as per a user’s requirements. OpenCV allows real-time implementations 
of image processing, computer vision and machine learning concepts to identify 
various features of an image and use the information obtained to provide the system 
a certain level of understanding and information as deemed relevant to perform its 
final task.  
A large number of applications such as face detection and recognition, security and 
surveillance, object recognition etc. make use of OpenCV. 

 
�​ Object detection and localization: 
Object detection and object localization are two major aspects in computer vision 
that allows us to identity objects and its boundaries and locate an object in an image 
respectively. 
Object detection is the process of finding an object of interest in real time in a 
real-world scenario. There are multiple methods of implementing object detection 
out of which the simplest and most commonly used methods are detection based on 
shape and color. These methods help us keep a track of every instance of an object 
of interest in a given image frame. 
Object localization is the process of locating a specific instance of an object in an 
image. Unlike object detection which keeps a track of all the instances of an object’s 
occurrence, object localization aims to locate the main and most prominent 
occurrence in the current image frame of reference. 

 
2.5​ Control Approach: 

 
Design of a multi-robot system is usually based on the following two structures: 

�​ Centralized structure: 

This is a system has a robotic agent (a master/leader) that is in charge of 
organizing the work of the other robots, which are referred to as 
slaves/followers. The master is involved in the decisional process for the 

 



 

whole team, while the other members act according to the direction of the 
leader. 

�​ Decentralized structure: 

This is also known as Distributed Control. 
This is a system composed of robotic agents which are completely 
autonomous in the decisional process with respect to each other, in this class 
of systems a leader/follower relationship does not exist. 
A centralized control structure is not feasible, because there are a large 
number of individual robots with limited sensing capabilities. Distributed 
control is required for flexibility and reliability. This is a way of 
distributing control to certain regions of swarm so that any effective control 
that should be taken is limited to the affected region/neighborhood. 
 

However, both distributed and centralized control approaches have contributed 
individually to the study of swarm robotics and have generated interesting 
experimental results. 
Combination of both the different control structures will yield good results in 
implementation. 

 
3.​  METHODOLODY ADOPTED  

 
This section describes the various approaches we have considered for our 
implementation and the methods we have finally implemented for the working of 
the multi-robot coordinated system. 

 
3.1​ Hardware Design and Assembly 

 
The hardware is comprised of two four-wheeled robots. The hardware 
architecture for the connections onboard the robot is depicted through the 
figure given below:  

 



 

 
Figure 3. 1: Robot Hardware Architecture 

 
The details of the robot hardware developed are provided below. 
 
�​ Mecanum Wheels 

Model name: 60mm Aluminum Mecanum wheel set 

 
Figure 3. 2: Mecanum wheel 

 
These are also known as Swedish wheels and are omnidirectional i.e., the 
wheel can move in any direction. The wheel consists of many rollers which 
typically have a 450 axis of rotation with respect to the plane of the wheel. 
These wheels were used because the robot would be stable and be capable of 
moving in a combination of 8 different directions. 

 
�​ Sensors used 
i.​ Quadrature encoded motors: 

​ ​ Model name: RMCS-2295 Quad encoder motor. 

 



 

 
Figure 3. 3: Rotary Encoded DC motor 

​ ​  

 
Figure 3. 4: Motor connections 

For the purpose of obtaining odometry information which is required for 
localization(dead-reckoning), quadrature-encoded motors were used.  
So, for two robots, a total of 8 encoded motors were required. This provided a 
speed of 150 rpm and required a voltage of 12V for operation. 
The quadrature encoders helped in obtaining the direction of the motor and 
also the distance travelled by each motor. The encoders provided a total of 
280 pulses per channel. There are six connections present on each motor.  
They are:  

•​ Motor+ 
•​ Motor-  
•​ Vcc(supply) and Ground 
•​ Channel A  
•​ Channel B 

The channels provide two pulses each, where there is a phase shift of 900 
between Channel A and B. Based on the leading pulse, the direction of 
rotation of the motor can be determined. Depending on which channel gets 
the encoder pulses, it generates an interrupt in the Arduino Mega 
microcontroller and we can detect the direction of rotation based on which, 
other computations are performed. 

 
Motor specifications are as follows: 

 
Operating Voltage 12V 
Load current(max) 1A 
No-load current 140mA 
Stall torque 8 kg-cm 
Rated torque 3.2 kg-cm 

 



 

Base motor speed 7000 rpm 
No-load speed 150 rpm 
Encoder pulses per channel 280 

Table 3. 1 : Motor Specifications 

 
ii.​ ZED Mini camera: 

 
Figure 3. 5: ZEDmini Camera 

 
The ZED mini is a stereo camera that provides conventional images as well as 
an accurate depth measure of its immediate surrounds. This camera was 
designed for applications such as real time environment mapping, security 
and surveillance, Ariel’s drone autonomous navigation and mapping …etc. 
The ZED mini is a very versatile and portable camera with a very 
high-resolution video output and also includes motion sensors such as 
Gyroscope and Accelerometer along with Depth sensing which allows for 
both Static environment mapping and visual-inertial localization due to which 
it finds great applications in SLAM based robotics projects. 
The ZED also has software support in terms of the ZED SDK which contains 
all the drivers as well as libraries required to use the ZED along with the ZED 
API that allows manipulation of the camera parameters such as frame rate, 
resolution …etc. as per the user’s requirements. 
In our application the ZED has been used to effectively map the robots’ 
surroundings as well as for object detection and localization where the main 
advantage of the ZED camera is its ability to accurately determine and return 
the distance of an object from its current position. 

 
iii.​   Motor driver: 

 
Figure 3. 6: L298N Motor Driver 

 
The microcontrollers used could not provide the necessary current to drive the 
motors. So, for this purpose, motor drivers were used. In specific, the L298 
Dual H-Bridge motor drivers which are bi-directional were used for this 

 



 

purpose. It allows easy and independent control of two motors of up to 2A 
each in both directions. It comes equipped with power LED indicators, 
on-board +5V regulators and also pins for PWM control. With the enable 
pins, the speed of the motors could be varied by changing the duty cycle of 
the input signal to the driver. 

 
So, a total of four (2+2) motor drivers were used to drive the robot motors. 
The supply for the drivers was provided by the Li-ion cells. 

 
​ ​ Specifications: 

Input voltage 3.2V ~ 40V dc 
Peak current 2A 
Operating current range 0 ~ 36 mA 
Control signal input voltage 
range 

Low: -0.3V ≤ Vin ≤ 1.5V 
High: 2.3V ≤ Vin ≤ Vss 

Enable signal input voltage 
range 

Low: -0.3V ≤ Vin ≤ 1.5V (invalid control signal) 
High: 2.3V ≤ Vin ≤ Vss (control signal active) 

Table 3. 2: Specifications of L298 Motor Driver 

 
iv.​ Battery: 

 

​ ​ ​ ​  
  Figure 3. 7: Li-ion Cells 

Power supply for the entire robot was provided using two methods. The 
microcontrollers onboard were powered from power banks(4800mAh). 
A combination of 3 Li-ion cells (18650) were connected in series by a 
battery-holder and they provide a total of 12V to run the motors for the robot. 
Each Li-ion cell is 18mm around 65mm long and has a capacity of 3.7V and 
2000mAh and are rechargeable.  

 



 

​ ​ ​ ​  
Figure 3. 8: Li-ion cells in battery holder 

v.​ Chassis:  
To realize the omnidirectional motion of the robot, a 4-wheeled chassis was 
used. The chassis was metallic and 29cms long and 17.5cms wide. Four 
metallic clamps were used to hold the motors which were fixed to the bottom 
of the robot. Arduino Mega and the batteries were also attached to the bottom 
of the robot using screws and Velcro straps respectively.  
The cameras for the two robots that were used for mapping/sensing/object 
detection were placed on the top of the chassis. To obtain more accurate 
readings from the camera, a frame was embedded on the robot using small 
metallic stands an acrylic frame for placing the camera. 
To switch the Li-ion cells ON/OFF, a switch(5A/220V) was used. 

 
This figure depicts the possible directions of movement of the robots. 

 
Figure 3. 9: Omni-directional robot: Possible movements 

 
�​ Microcontrollers 
i.​ Arduino Mega: 

 



 

 
Figure 3. 10: Arduino Mega 

 
The odometry data is required for robot navigation, which is obtained using 
the motors with hall sensors. For this interface we need a microcontroller 
which is capable of handling such data from 4 different motors. Arduino Uno 
has only 2 external interrupt pins, but in our case, we needed 4. So, we are 
using the Arduino Mega which has 6 interrupts available. 

 
ii.​ Raspberry Pi 4: 

 
Figure 3. 11: Raspberry Pi 4 

The Pi4 has a powerful processor and it meets our criteria for managing 
computation of data from the localization, path planning and object detection 
modules. It receives the encoder data from the Arduino and acts as a master 
controlling the Arduino thereby controlling the motors. 

 
iii.​ NVIDIA Jetson Nano: 

 
Figure 3. 12: NVIDIA Jetson Nano 

 
The Pi4 has enough processing capacity for the tasks mentioned above but it 

 



 

lacks the necessary GPU which is required for area mapping and object 
detection and localization. NVIDIA Jetson Nano fulfils this requirement and an 
additional advantage with this Microcontroller was the CUDA libraries that 
were readily available for the ZED mini camera. This is used as the master and 
takes in encoder data from Arduino mega and handles other tasks such as 
localization, path planning etc... This microprocessor was interfaced with the 
primary robot which was used for mapping out the environment. 

 
�​ Communication using ROS: 

Communication between the Raspberry Pi 4 and Arduino Mega is done via 
Serial BUS as a physical medium with the use of rosserial_arduino library. 
Rosserial is a protocol for wrapping standard ROS serialized messages and 
multiplexing multiple topics and services over a character device such as a 
serial port or network socket.  
So, in overview we have successfully set up ROS in Raspberry Pi 4 as well as 
in the Jetson Nano, and established the rosserial library for the communication 
between the Pi 4 and Mega and also between Jetson Nano and Mega.  

 ​  
Figure 3. 13:Rosserial comm. between Jetson Nano and Arduino Mega 

 
Throughout the report, the Jetson Nano and the Raspberry Pi 4 will be 
collectively called as the main processor because the same software and code 
is portable to both the robots. 
 

3.2​ Mapping Approach  
 
Since ROS was present on both the robots, it provided many approaches that 
could be used for mapping which were compatible with ROS. 
Some of the approaches that have packages in ROS are: SLAM using 2-D and 
3-D mapping, Real-Time appearance-based mapping (RTAB map) and also 
Octomap. Since we possessed a ZED Mini camera which is a depth camera, 
we decided to pursue the concept of 3-D mapping through which we could 
obtain a real-time appearance-based map that could be better utilized by the 
robot for localization.  
Some of the approaches are described below: 
 

�​ SLAM: Simultaneous Localization and Mapping is a famous approach that is 

 



 

under constant research and development in the robotic society. 
It deals with the problem of leaving the robot in an unknown environment and 
for the robot to build a map incrementally by moving around the environment 
and determining its location or position within this map. 
 The SLAM approaches with 3–D mapping that we pursued were 
ORB-SLAM2, RTABmap and Octomap. 
 

�​ ORB-SLAM2: It is a real-time SLAM library for Monocular, Stereo and 
RGB-D cameras that compute the camera trajectory and a sparse 3D 
reconstruction of the environment. It is highly efficient and is able to detect 
loops and re-localize the camera in real time. It also had options to run the 
package in only Mapping mode; Localization mode or in SLAM mode. We 
were able to obtain the 3D map but the main disadvantage for us was that it 
required high computation power due to which there was high latency in 
obtaining the map and we could not obtain the map in real-time. Hence, this 
method was dropped. 

 
�​ RTAB map: The next approach we considered was RTABmap which could 

obtain a real-time appearance-based map of the environment similar to a live 
camera feed. This approach is based on an incremental appearance-based loop 
closure detection. The loop closure detection helps in detecting repetitive 
images obtained from the camera when the robot is moving and omits such 
repetitive feed during the rendering of the 3D map. This was the main 
premise behind choosing this approach for mapping. But we could not render 
a map with this approach, since it required a minimum of 4gb RAM and i7(or 
equivalent) processor for the mapping approach to run seamlessly. 

Thus, this approach was also discarded. 
 
 
Since both these approaches required a lot of computation power, we decided 
that we would implement mapping and localization separately and establish a 
connection between the two by providing the map for the localization 
algorithm. 
 
The next most viable approach was Octomap which is an efficient Probabilistic 
3D mapping framework based on Octrees. It obtains a Full 3D model of an 
arbitrary environment without pre-assumptions and also covers occupied areas 
as well as free space. 
We were able to obtain a good real-time appearance-based map of the 
environment at a standalone perspective, but when we integrated the mapping 
approach with the remaining modules, the results obtained were not very 
satisfactory and could not be expected to provide meaningful outputs in the 
long run. 
So, we had to discard this approach for mapping and search for an approach 
which used reasonable computation and provide good results. 
Thus, after our literature survey we decided to implement Google 
Cartographer. 

 



 

 
Cartographer is a system that provides real time SLAM in 2D and 3D for 
different sensors and is supported by ROS systems. It uses the information 
about the robot’s surroundings from the sensors onboard and builds a map of 
the environment and helps the robot to localize itself in the map.  
But we are using the Cartographer approach solely to generate the map of any 
environment where the robot is subjected to and using a different localization 
approach described in Section 3.3 
During the implementation of the Navigation Stack, we learnt that the Stack 
requires a 2-D occupancy grid or cost map as an input for the path planning 
algorithms to provide an optimal path. 
Because of this, we decided to use a package called 
depthimage_to_laserscan present in ROS that converts a depth image to a 
set of laser scans in real-time so that the Navigation Stack can use the map 
directly. 
 
The table below provides a summary of the different approaches considered 
and their merits and demerits: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mapping 
approach 

ORB-SLAM2 RTAB map Octomap Cartographer 

Type of map Key point 
feature-based map 

Appearance based 
map 

Based on 3D 
occupancy 
grid using 
octrees 

2D map: 
Occupancy 
grid 

Requirements i7(or above). 
Depth camera 
C++ compiler 
Pangolin library 
OpenCV library 

i7(or above) 
Depth camera 

C++ compiler 
 

ROS Kinetic 
and above. 
2GB RAM 
and above for 
good results. 

 



 

ROS 
Suitability Computationally 

intensive for our 
use case. High 
latency in 
real-time 

Computationally 
intensive and low 
frame rate when 
used in Jetson 
Nano or 
Raspberry Pi 4 

Puts load on 
computation 
and not easily 
integrable 

Works well on 
our current 
system with 
minimal 
latency. Most 
compatible 
than all other 
approaches 
considered 

Table 3. 3: Mapping approaches 

 
3.3​ Localization approach 

 
Since mapping was done separately, localization was implemented using a 
typical approach which was compatible with ROS. 
AMCL known as Adaptive Monte Carlo Localization is a well-known 
established approach used for localization of robotic platforms. 
It is a 2-D probabilistic approach used for moving a robot. It uses a particle 
filter, in particular, the adaptive KLD-sampling approach for tracking the 
position of the robot with respect to the static map provided by the robot. 
 
�​ Monocular Odometry 
Monocular odometry is an approach used to calculate the position of a robot 
over time in reference to its initial position based on visual data provided via a 
monocular camera. This system is typically used in autonomous robots and 
estimates the change in position based on a scale factor that estimates the 
change in size of objects in current image frame with reference to the previous 
frame or based off of the data from other sensors such as an IMU or wheel 
encoders. 
 
We had initially considered implementing monocular odometry to improve the 
odometry reading obtained from the wheel encoders so as to account for the 
inaccuracies encountered due to drift in terms of the wheel encoders. But since 
monocular odometry would require estimated x, y coordinates from the wheel 
encoders in real time with reference to each image frame, this implementation 
would be redundant and the errors would persist and be carried over. 
Estimation of odometry using only a scale factor estimated based of object size 
in image frames would also lead to a large amount of drift in estimated values 
based on change in camera orientation with respect to the reference object and 
give rise to errors.  
 
Due to the above-mentioned limitations and redundancies faced we decided to 
not implement visual odometry and instead use the wheel encoder based 
odometry approach. 

 
 

 



 

3.4​ Computer Vision Implementation 

The main application of Computer Vision in our project is for Object 
detection and localization in the robot’s immediate surroundings.  

Here we make use of the computer vision library OpenCV along with the 
NumPy library which is used to work with arrays on python. Here OpenCV 
with NumPy is used for object detection based on color and shape as well as 
object localization in the image frame to obtain the x, y coordinates of the 
object in question with respect to the image frame.  

The distance of the object from the camera is obtained with the help of the 
point cloud generated by the ZED mini which represents a set of x, y, z data 
points in space and can be used to estimate the approximate distance between 
the camera and the object. 

�​ Color and Shape detection 

OpenCV has built-in libraries to help in both shape and color-based object 
detection. 

Here, for our implementation of color detection we have specified the range 
of HSV values in 2 NumPy arrays to create a mask of a color of our choice, 
this mask is then applied to our image frame using a bitwise AND operation 
to obtain our image of interest as per the specified color. 

 

 



 

The above code shows the use of cv2.bitwise_and on the image frame 
obtained by the ZEDmini camera to obtain the resultant frame res which 
only displays objects of a specific color as determined by the NumPy array 
specified by the variables lower and upper that determines the HSV 
thresholds of the color. 

Since color detection alone may not give accurate detection of objects in the 
environment as there may be various objects in the same color, we have 
implemented shape detection to ensure a more accurate detection of the 
objects of interest. We have assumed our objects to be rectangular in shape 
and have used Canny edge detection to determine the contours of the objects 
within a specified range of edge intensity gradient.  

 

The code snippet above is used to create 2 track bars to vary the thresholds of 
edge intensity gradient as per our object to be detected. 

 

Once Canny edge detection has been implemented on a grayscale image of 
our frame, we apply a 5x5 image kernel to perform dilation to increase object 
area and also accentuate the edges detected by Canny and the image after 
dilation and a copy of the original image are passed as inputs to the 
getContours function. 

 



 

 

The getContours function uses the function cv2.findContours dilated image to 
obtain all the contours of all the objects as present in the image, we may also specify 
the area under consideration using the cv2.contourArea function.  

The approxPolyDP function is then used to obtain the approximation of all the 
points in the image that may make up a polygon and these points are then passed on 
to the cv2.rectangle function to draw a rectangle boundary on the objects of 
interest. 

 We now approximate the points that make up a polygon by using the 
cv2.approxPolyDP and once estimated these points may be used to draw a 
bounding rectangle on the original image as shown above using the cv2.rectangle 
function. 

The estimation of object distance from the camera has been made possible due to 
the use of the Point Cloud data provided by the ZED mini camera. 

 

 



 

 

The x, y coordinated in the image frame can be estimated with reference to the 
bounding rectangle drawn on the image after shape detection and these x, y 
coordinates are passed as inputs to the point_cloud.get_value() function that 
allows estimation of the x, y, z points in that point in space. The function 
cv2.boundingRect(points) returns the starting coordinate (x, y) of the rectangle 
and its respective width and height (w, h). For better accuracy the distance z is 
calculated by averaging a total of 9 values from various neighbors around the center 
of the rectangle. The z value is computed for the center point of the rectangle and 
also for 8 distinct neighbors. The distance between the center point and the 
neighbors can be varied as suitable for the test case. Empirically a value of 70 or 
above is recommended. The value selected is used to divide the dimension into that 
many parts and take the average distance of these values. This way we can avoid the 
error which can occur due to change in horizontal alignment w.r.t the camera view.  

 

 

3.5​ Navigation and Path planning approach  
 
Initially, our approach was to develop an independent module for path 
planning in Python programming language which was developed during the 
simulation phase and was based on A* path-planning algorithm. 
The input for the code would be a map of the environment in pgm format and 
the output would be a set of waypoints written to a csv file that the robots 
should follow to reach the goal position. 
But this approach could not be used here, since we had to take into account a 

 



 

lot of factors such as slip of the wheels, payload on the robot, etc... that were 
not considered during the simulation phase. 
 
So, an alternative was to use the ROS Navigation Stack which is described in 
detail below: 
The Navigation Stack takes in odometry and sensor streams as inputs and 
provides the velocity commands as output that are fed to the motors present 
onboard the mobile robots through Arduino Mega acting as a low-level 
controller.  
 

3.5.1​ Prerequisites for ROS Navigation Stack: 
�​ The robot must be running ROS. 
�​ The robot should have a transform tree(tf) setup. 
�​ Sensor data should be published using the correct ROS Message types. 
�​ It needs to be configured for the shape of the robot. 

 
The below figure taken from the ROS wiki page illustrates the configuration 
of the Navigation Stack: 
 

 
Figure 3. 14: Navigation Stack Setup - Flowchart 

 
3.5.2​ Steps to set up ROS Navigation Stack on our Custom Robot: 

The below five steps are the mandatory pre-requisites for the ROS Navigation 
Stack Setup. Each step was developed independently and tested and 
integrated finally to launch the entire ROS Navigation Stack. 

1.​ Set up transform trees(tf) on the robot  
o​ tf will take care of conversion of frames i.e., conversion of 

coordinates from the camera_frame to the base_link of the robot and 
also to obtain coordinates of the objects in the world_frame and pass 
it to the base_link of the robot. 

2.​ Publishing sensor streams over ROS  
o​Using this concept, can directly publish the 3-D point clouds 

obtained from the ZED Mini to the Navigation stack through ROS. 

 



 

o​ Similarly, can publish data from sensors (monocular camera) 
onboard the 2nd robot. 

3.​ Publishing odometry information over ROS  
o​ Similar to publishing sensor streams, programmed through ROS to 

send odometry information from the wheel encoders to the 
navigation stack. 

o​Using this .cpp file, the navigation stack can directly send velocity 
commands to the "cmd_vel" topic. A node will be subscribed to this 
topic which in turn takes the values (vx, vy, vtheta) <==> 
(cmd_vel.linear.x, cmd_vel.linear.y, cmd_vel.angular.z) velocities 
and converts them into motor commands to send to the Arduino 
Mega which will control the motor speeds through PWM for 
moving the robot. 

o​This part of the Navigation Stack is platform dependent. So, our 
approach here was, we developed our own code in the odometry file 
so that the we could send the velocity commands to the robot wheels 
through the same file. 

4.​ Mapping the environment  
o​Built a map using Google cartographer to map the environment and 

used depthimage_to_laserscan package to obtain the 2D costmap 
required for path planning. Later, loaded this generated map as an 
input to the Navigation Stack. 

5.​ Navigation Stack setup 
o​ Sending multiple goal points to the Navigation Stack through 

waypoints. 
o​ Using this, can complete path planning which is taken care of 

internally by the navigation stack which has inbuilt costmaps* 
(global, local) and also local_planners (DWA) and 
global_planners(A*). 

*Costmap: It represents a 2D map for navigation in terms of an 
occupancy grid to calculate the obstacle areas, free space and unknown 
space.​
It is expressed as a value between 0 ~ 255, where: 
0: Free space allowed for the robot to navigate 
1~127: Areas of low collision 
128~252: Areas of high collision 
253~255: Occupied areas where the robot cannot move 
o​ Navigation Stack Tuning: This is the last step of the process which 

can be performed to tune the parameters of the nav stack to get 
better results in path planning and mapping. 

Using these steps, we could setup the Navigation Stack on our custom robot. 
 

3.5.3​ Navigation Stack Implementation 
 

There are two microcontrollers/processors for each robot. The main robot has 
a Jetson Nano that is running ROS Melodic and an Arduino Mega which acts 
as the controller for the Mecanum wheels. 

 



 

 Programming on ROS Melodic was done mainly in C++ and Python, whereas 
Embedded C++ was used for Arduino Mega. 
The upcoming sections describe the implementation codes developed for 
autonomous navigation of the robot. 
 

1.​ Setting up transformation tree(tf) for the robot: 
 
Usually, for a robot, there will be many coordinate frames corresponding to 
the various frames onboard the mobile platform. ROS uses the concept of 
broadcaster and listener to transmit data between the different frames of the 
robot. 
The notations used for the coordinate frames for our robot were: 

▪​ map: This is the world frame. The environment where the robot is 
functioning is depicted as the world frame and all other transformations 
will be with respect to this frame. 

▪​ odom: This frame indicates the pose of the robot in relation to the map 
frame i.e., as the robot moves, it is linked to the odom frame which in 
turn is a child frame of the map frame. 

▪​ base_link: This is the coordinate frame which is rigidly attached to the 
base of the robot. We have chosen the midpoint of the robot chassis as 
the base frame and all the frames atop the robot are specified with 
respect to this frame. 

 

 
This code snippet shows the transformation between the parent frame 
“base_link” of the robot to the child frame “base_camera” atop the robot. 
The tf::Transform object that is present in the tf package has 5 arguments. 
The tf::Quaternion specifies the rotation between the parent frame and the 
child frame. For our case, since there is no rotation, the Roll, Pitch and Yaw 
are made 0 for the Quaternion. The tf::Vector3 is used to specify the offset 
between the two frames. The units are in meters, so the x-offset is provided as 
0.035m(3.5cm) from the base frame and the z-offset i.e., the upward distance 
of the camera from the robot is given as 0.052m(5.2cm). ros::Time::now() 
updates the time stamp dynamically between the two frames when the 
Navigation Stack is running. 
The tf tree for our robot is shown below: 
 

 



 

 
Figure 3. 15: TF tree for the robot generated through ROS 

 
2.​ Publishing Sensor streams over ROS: 

Navigation Stack requires sensor information for navigating around an 
environment and also for localizing itself in the environment. We are using a 
ZED mini camera as the sensor and the detailed implementation procedure is 
provided in Section 3.4 
The Navigation Stack by default takes inputs of the type: 
sensor_msgs/LaserScan and sensor_msgs/PointCloud. Since the 
ZEDmini was not publishing this topic, we used a package 
“depthimage_to_laserscan” to convert it to the LaserScan topic. 
The depthimage_to_laserscan package takes a depth image provided by the 
ZEDmini camera and generates a 2D laser scan based on the provided 
parameters. It subscribes to the rostopics sensor_msgs/Image and 
sensor_msgs/CameraInfo and publishes the scan topic: 
sensor_msgs/LaserScan.  

 
 

3.​ Publishing odometry information over ROS:​
The Navigation Stack requires odometry information to relate the velocity of 
the mobile robot. So, the odometry source publishes the information about the 
velocity as well as uses tf (transform trees) to transform the wheels of the 
robot to the base_link. We have used ROS to publish odometry information 
through the nav_msgs/Odometry and also established a transform using tf 
to account for the changes in the coordinate frames. 
The velocity control or the low-level control for the robot was done using 
Arduino Mega and this information was provided to the Jetson Nano which 
performed the computations and output the velocity commands back to the 

 



 

Arduino Mega. 
 

�​ Arduino software design: 
 

                 
This shows the pin initializations done in the Mega. Enable pins were used 
from the L298 motor driver and connected to PWM pins for speed control. 

BL 🡪 Back left motor 

BR 🡪 Back right motor 

FL 🡪 Front left motor 

FR 🡪 Front right motor 
Encoder pins from the motors were utilized to obtain the pulses and the ticks 
per meter. For our use case, we needed both the channels (Channel A and 
Channel B) of the Encoder DC motors. So, we have used two channels from 
the back left and the back right encoded motors which is initialized as: 
ENCODER_BLA, ENCODER_BLB and ENCODER_BRA, 
ENCODER_BRB respectively.  
Some other initializations for the hardware are as shown: 

 



 

 
The wheel radius was found to be 3cm(0.030m) and the separation between 
the wheels i.e., the width of the robot was 17.5cm. The w_fr, w_fl, w_bl, 
w_br indicate the velocities of the respective wheels. 
The distance covered by each wheel would be the circumference of the wheel 
given by: 2*π*r, where r is the wheel radius(wheel_rad). l_dist and r_dist 
are the respective distances covered by the left and the right motors. 
Since we need to send the distance values to the processor for computation of 
velocities, we have used the concept of ROS publisher and messages which is 
shown in the next snippet: 

 
​ ​  

 



 

​ ​  
cmd_vel_callback function was used to calculate the velocities of the 
wheels as shown in the snippet. We subscribed to geometry_msgs/Twist and 
obtained linear velocity x which is fed to speed_lin and the angular velocity 
was fed to speed_ang. The motion of the robot can be analyzed from the 
formula used. Consider the case of forward motion, where x and z values are 
1 and 0 respectively, received from the subscribed message. Since 
speed_angular is 0, the second term in all the equations becomes zero and 
w_fr, w_fl, w_br, w_bl have a positive value. Similarly in case of backward 
movement the speed_ang and speed_lin values are 0 and -1 respectively 
which when evaluated results in w_fr, w_fl, w_br, w_bl equals to a negative 
constant value.  
In case of left turn as explained in previous section, the right-side wheels of 
the robot are in forward motion and the left ones are in reverse. The twist 
message for this left turn is speed_lin=0 and speed_ang=0.5. From the 
equations it is evident that the w_fr and w_br have a positive value and w_fl 
and w_bl have a negative value, leading to a left turn. The vice versa of the 
above computations results in the robot to turn right. 
ros::Subscriber<geometry_msgs::Twist>sub_cmd_vel("cmd_vel",&cmd_vel_callbac
k ); 

This is the callback function to our subscriber; this takes a constant 
reference of a message as its argument. 
 
void pinmode_setup() 
{ 
 pinMode(ENCODER_BRA, INPUT_PULLUP); 
 pinMode(ENCODER_BLA, INPUT_PULLUP); 
 pinMode(ENCODER_BRB, INPUT_PULLUP); 
 pinMode(ENCODER_BLB, INPUT_PULLUP); 
} 

The pinmode_setup() function configures the encoder pins to input pullup 
mode. 
 
void pin_init() 
{ 
 pinMode(EN_FL, OUTPUT); 
 pinMode(EN_FR, OUTPUT); 
 pinMode(EN_BL, OUTPUT); 
 pinMode(EN_BR, OUTPUT); 
 pinMode(IN1_FL, OUTPUT); 
 pinMode(IN2_FL, OUTPUT); 
 pinMode(IN1_FR, OUTPUT); 

 



 

 pinMode(IN2_FR, OUTPUT); 
 pinMode(IN1_BL, OUTPUT); 
 pinMode(IN2_BL, OUTPUT); 
 pinMode(IN1_BR, OUTPUT); 
 pinMode(IN2_BR, OUTPUT); 
 digitalWrite(EN_FL, LOW); 
 digitalWrite(EN_FR, LOW); 
 digitalWrite(EN_BL, LOW); 
 digitalWrite(EN_BR, LOW); 
 digitalWrite(IN1_FL, LOW); 
 digitalWrite(IN2_FL, LOW); 
 digitalWrite(IN1_FR, LOW); 
 digitalWrite(IN2_FR, LOW); 
 digitalWrite(IN1_BL, LOW); 
 digitalWrite(IN2_BL, LOW); 
 digitalWrite(IN1_BR, LOW); 
 digitalWrite(IN2_BR, LOW); 
} 

The pin_init() function configures the encoder pins and motor connections 
to OUTPUT mode and initially sets to LOW. 
The setup()  function in turn calls the pinmode_setup(), EncoderInit() 
and pin_Init(). 
    n.initNode(); 
    n.advertise(l_dist); 
    n.advertise(r_dist); 
    n.subscribe(sub_cmd_vel); 

The node handle is initiated and l_dist and r_dist are advertised creating a 
ROS publisher which is used to publish on a topic. Also the subscriber 
function is called. 
 
 void EncoderInit() 
{ 
  attachInterrupt(digitalPinToInterrupt(ENCODER_BLA), isr_left, CHANGE); 
  attachInterrupt(digitalPinToInterrupt(ENCODER_BRA), isr_right, CHANGE); 
} 

This function configures the back wheel encoder pins to Interrupt mode and 
attach the appropriate routine to it which is the isr_left and isr_right 
routines. 
The interrupt routines update and the encoder counts. 
 
The update_left and update_right functions returns the distance covered 
by each wheels which are required for wheel odometry and the values 
returned are then published by the to_odom_function().  

 
void MotorFL(int pwm); 
void MotorBL(int pwm); 
void MotorFR(int pwm); 
void MotorBR(int pwm); 

The above functions control the state of the motor input pins and the analog 
output based on the pwm value passed hence controlling the motor speed. 
 

 
�​ Processor-side (Jetson Nano/Raspberry Pi 4) ROS design: 

 

 



 

This part of the odometry computation was written in C++ using the attributes 
of roscpp which is provided as a dependency. Relevant header files were 
added to the software programs and codes. 

 
 
 
 
​

Encoder_Values was a class we defined to specify the members of that 
class. 
left_enc_cb and right_enc_cb were function declarations that were used to 
obtain the encoder data from the Arduino. 

 
 

 
Initializations of the parameters are done in this section. We have provided the
​x, y and theta(th) as 0.0 since the robot starts at the origin of the “odom” 
coordinate frame initially. The d_theta parameter is a differential amount 
which is used to find out the deviation in the robot’s position. 
The respective x, y and yaw velocities are also initialized to zero, so that the 
base_link will not move w.r.t the odom frame as soon as the robot is powered 

 



 

up. 

 
This handles the initializations on the ROS platform. 
geometry_msgs::Quaternion odom_quat is used to get the orientation of 
the odometry using Quaternions and publish this information via the tf. 
geometry_msgs::TransformStamped odom_trans is a transform 
message that is used to publish the transform from the “odom” frame to the 
“base_link” frame at current_time. 

​     

 
These code lines above represent the subscriber and the publisher part that is 
important for transmitting the odometry information. This part shows the 
communication of data between the Arduino Mega and the main processor. 
The processor subscribes to l_dist and r_dist published from the Arduino and 
at the same time publishes a new message of the type nav_msgs::Odometry 
named as “odom”. 1000 represents the queue_size for the number of 
messages or data that can be published and it was chosen so as to not cause 
overload for the buffer on the Arduino Mega. We are also setting a rate of 
30Hz which maintains the loop at this rate. 

​  
​  

 



 

 
 

​ This loop is used to calculate the velocities in the x and y directions and also the 
rotational velocities. The distance travelled is usually calculated using the formula:  

 
             
 
 
 

 This formula was used, by giving the appropriate left encoder and right encoder 
values in the code. 

​ Similarly, the deviation in the distance travelled by the robot was based on the 
following equation:  

 
 
​

The distance travelled over time was incremented periodically by using basic 
trigonometric functions. The rotation angle value was also incremented by adding 
the deviation angle to the angle value. 

​ Finally, the velocity was calculated using the well-known relationship between 
speed, distance and time: 

 
​ ​ ​ 
 
​  
 

Similarly, the change in the yaw angle or the rotational velocity was calculated by 
dividing the deviation angle by the time lapsed.

 



 

 
 
This part of the code is entirely oriented on ROS. We have published the transform 
from the base_link to the base_camera using “odom_trans” which is a 
TransformStamped message that publishes the tf. The parent or the header frame 
is the odom and the child frame is the base_link. The respective x and y 
transforms are provided and the rotational transform is published to the 
odom_quat parameter. 
All these transformations are broadcasted through the sendTransform command. 
 
The next part is used to fill in the transform message that is to be broadcasted by 
the odom_trans parameter. Similar to the transform structure, the parent and the 
child frame ids are provided and we are publishing the velocity information 
through the nav_msgs/Odometry message and the x, y and orientation of the 
pose is given. Through twist messages, the linear and the angular velocities are 
provided. We have considered the linear velocities in only the x and y directions 
and the angular velocities in the z direction. All these data are published through 
the odom parameter. 
 

4.​ Mapping the environment and saving the map: 
As mentioned in Section 3.2 we are using Google Cartographer package to 
map the environment and used teleop_twist_keyboard package to move the 
robot manually in the room to cover all the areas. The teleop package directly 
gives velocity commands through the /cmd_vel topic to the Arduino which 
controls the motors of the robot. In addition, the laser scans were used to 

 



 

detect the areas and visualize in Rviz. Through this function, we were able to 
map out any environment with a good accuracy and precision. 
For saving the generated map, we used map_server package in ROS which 
provides the map data as a ROS service. rosrun map_server map_saver -f 
map_name: Using this command allows a dynamically generated map to be 
saved in .pgm format. It also generates a .yaml file which gives the 
description of the map. 

 

 
This is the map.yaml file which is generated by the program. It describes the 
resolution of the map (0.5) which means that each pixel can be converted to 
5cm. Origin is the origin of the map which is the starting point from which the 
robot started obtaining the map. If the occupancy probability exceeds the 
occupied_thresh parameter, then it is represented as an occupied area and 
free_thresh parameter indicates the value of the free space in the bit map. 
 

5.​ Launching the Navigation Stack: 
At this stage, all the prerequisites/dependencies for launching the entire 
Navigation Stack were provided successfully. The main function of the launch 
file was to access all the dependencies necessary for Navigation Stack and 
bring up all the hardware dependencies and the transform links that are 
required for the robot.  
 
There are two main parts to the launch file:  

�​ Robot configuration file which launches the hardware dependencies such as 
the odometry source, sensor source (ZEDmini camera laser scans) and the 
transform configuration. 
This part of the launch file is shown in the below screenshot. The first 
package that is invoked is the odometry package: “wheel_odometry”. 
Similarly, the tf_broadcaster is launched which brings the transform 
configuration for the robot. We have converted the output obtained from the 
ZED camera to laser scans in the next section. We are remapping from the 
topic: “zed_node/depth/depth_registered” where ZED publishes the 
depth info to the topic “sensor_msgs/LaserScan” and we are launching the 
“zed_no_tf.launch” to power up the ZED camera for visualization. 
In the next section, we are providing the map generated from map_server to 
the AMCL package for the purpose of localization. Since we are using an 
omni-directional robot, we have provided the parameter as “omni” for the 
model type. Some configuration parameters were provided for AMCL such as 
the minimum and the maximum particles to use for localization and the 
update rates respectively. The important part in configuring the AMCL 
package was to provide the transform frames provided for the odom and the 

 



 

base frame of the robot as well as the global frame as “odom”, “base_link” 
and the “map” respectively. 
 

 
 

�​ The second part of the launch file is used for launching the configuration files 
required for the operation of the move_base package. These are config files 
in yaml format that are used for setting parameters for the costmaps and 
planner algorithms. 

 
 
The Navigation Stack uses two costmaps namely the global costmap and the 
local costmap for storing obstacle information. The global costmap is used for 
global path planning that is used for finding the path to the goal point and the 
local costmap is used for the local path planning which is used for immediate 
avoidance of obstacles and other disturbances in the environment. To use 
these costmaps and their corresponding planners, we had to set the optimal 
parameters for our custom robot. The following section specifies the 
description of each of these parameter files. All the units used in ROS are in 
SI units. 

▪​ costmap_common_params.yaml: 
This file is used to set some general parameters that are used by both the 
global and local costmaps for navigation. 
 

 



 

 
 
The robot frame is set to base_link and the maximum obstacle height that can 
be detected by the camera was limited to 2m. This parameter file provides 
two observation sources: laserscan and point_cloud. Since we are using 
laser scans, we have considered the laserscan as our observation_sources 
and the next set of parameters are related to the observation source.  
The rostopic where the laser scans are published is /scan topic which is of 
LaserScan datatype. 
 
marking and clearing are two Boolean parameters which are set to true. 
Marking is used for the detection of obstacles and registering the obstacle 
information.  
Clearing is used for clearing out this obstacle information from the sensor 
readings when the obstacle/object is no longer in the vicinity of the robot.  
The obstacle information should be updating continuously at a set frequency 
which is given by the expected_update_rate parameter for safe navigation 
of the robot.  
obstacle_range is another important parameter which is set based on the 
dimensions of the map. It is used to limit the maximum sensor reading for 
registering an obstacle in the costmaps. Since our map of the environment 
was relatively small, we have kept the parameter accordingly as 25cm.  
The raytrace_range parameter is utilized for clearing out free space in front 
of the robot as provided by the parameter. According to the parameter, the 

 



 

navigation stack attempts to clear out free space so that the robot can try to 
navigate without getting stuck.  
cost_scaling_factor is a crucial factor used for scaling the cost values of 
instances in the occupancy grid map. The formula for that is as follows: 

 

 
Here, costmap_2d::INSCRIBED_INFLATED_OBSTACLE is 254. Since the 
equation is multiplied by a negative sign, and because of the exponent, the 
values for obstacles’ cost changes drastically for a very small change in value.  
 
The raw map displayed and used by the robot is not sufficient for the robot to 
safely navigate and it requires some adjustments and one such parameter used 
for this purpose is the inflation_radius.  
This parameter can be set by the user depending on the use case and is very 
important for the purpose of navigation. It is the amount by which the map 
inflates the cost values of the boundary of the map and the obstacles. This is 
usually set so that the robot’s center of mass represented by the coordinates of 
“base_link” does not collide with the obstacles or walls. 
  
Other trivial parameters are present for visualization and debugging in Rviz. 
The footprint and footprint_padding is used to obtain a basic model in 
Rviz as shown by this screenshot:   

 
Figure 3. 16: Robot footprint in Rviz 

​ ​ The green rectangular object is the visualization of the robot in Rviz. 
 

▪​ global_costmap_params.yaml:​
This file is used to set some parameters for only the global costmap in 
particular. 

 



 

 
 
transform_tolerance is measured in terms of seconds and represents the 
amount of duration to wait until all the transform trees between different 
frames are updated and then the global_costmap is updated. Since the 
number of coordinate frames for our use case were less, we have set a low 
tolerance.  update_frequency parameter in Hz determines the frequency at 
which the global_costmap is updated in the loop.  
publish_frequency (in Hz) is the rate at which the costmap publishes the 
visualized information from the sensor. 
Since global_costmap is static (static_map: true) and does not change 
much over time, we have set these parameters to low values. 
The width and height of the map in meters is provided and a corresponding 
resolution factor in meters/cell is provided so that the width and height are 
scaled appropriately. 
The plugins are obtained from the ROS documentation and we have provided 
two such plugins for visualization purpose.  
 

▪​ local_costmap_params.yaml: 
 

 



 

 
 
The parameters hold the same meaning as the global_costmap parameters 
except for a few changes. The static_map parameter is kept to false because 
the local_costmap is dynamic and keeps changing according to the robot’s 
movement. Hence the rolling window is made true so that the 
local_costmap is fixated on the robot at all times. 
 

▪​ base_local_planner.yaml: 
 
After setting the parameters with the costmap, this file is used for the setting 
the planner parameters. Path planning in Navigation Stack uses two path 
planners, namely: local planner and a global planner. The global planner we 
have utilized is called NavfnROS provided by the stack and we have not 
changed the parameters w.r.t the global planner. In case of the local_planner, 
there are two planners, namely: TrajectoryPlannerROS and 
DWAPlannerROS which are subsets of the base_local_planner. This 
planner provides a custom controller to move_base so that the robot 
performs autonomous navigation. 
According to the official documentation from ROS, DWA path planner is 
usually used for large maps and navigating numerous doorways and corners 
and where huge precision and accuracy is required. But this requires more 
computational power. So, since our map is also relatively small, we have used 
TrajectoryPlannerROS which is sufficient for our use case and provided 
good results with reasonable accuracy. 
 

 



 

 
The above snippet shows the parameters used for the TrajectoryPlanner. 
The minimum and the maximum linear velocities are set considering the load 

​​ on the robot and the friction exerted by the floor on the wheels of the robot.  
The minimum rotational velocity is also set and the 
min_in_place_vel_theta  
represents the rotational velocity with which the robot rotates at a particular 
point without any linear motion associated. Similar to the velocity parameters, 
acceleration values were also set based on default values from the 
documentation. 
 
sim_time is the time taken for simulating forward trajectories in the 
subsequent time steps and sim_granularity is the step size (in m) to take in 
between waypoints in the planned trajectory. 
 
controller_frequency is another parameter which was decided by 
trial-and-error and it represents the frequency (time lapse) at which the 
controller corrects the trajectory of the robot. 
 
holonomic_robot is kept true because our wheels are Mecanum wheels 
which allow the robot to have more DOF and moves in directions not possible 
by ordinary robots. 
 
meter_scoring is a Boolean parameter that is used to express the map units in 
meters or cells. So, we have kept this “true”.  
 
All these configuration files were launched from the launch file shown above. 
This completes the setup and launching of the entire Navigation Stack on our 
custom robot. The robot was able to move and navigate around the 
environment with a small amount of deviation and the corresponding results 
are shown in Section 3.3  

 

 



 

3.6​ Control Law Implementation 
 

3.6.1​ Use Case Representation 
 

For our demonstration, we have showcased: 
●​ Task of pick-and-place by the robot in an environment.  
●​ Considering the objects as sponges, the robot detects the sponge and 

obtains the distance of the object from the base of the robot. 
●​ This distance is passed as a goal point to the Navigation Stack and this will 

make the robot move towards the object. 
●​  When the robot reaches the object, a signal from the main processor is 

provided to the Arduino Mega which controls the gripper to grab the 
object. 

●​ Once the object is picked, the final drop-off point is fed as the goal point to 
the Navigation Stack through which the robot finally drops the object at 
the goal point. 

 
3.6.2​ Control Algorithm  

 
This section covers the flowcharts and the algorithms developed for our 
Control approach and the associated pseudo code. 

 
 
 

 



 

 

Figure 3. 17: Overall Swarm System Flowchart 

The flowchart depicted above shows the overall working of the Swarm 
system. 
This flowchart represents the working of the entire multi-robot coordinated 
system, handling all the test cases accounted for. The robots are first initiated 
where all the nodes are up and running and on standby waiting for the 
callback. There are 3 flags Insearch, Handful and Goal_defined.  
Insearch flag is:  

●​ 1 when the robots are in search of a package. 
 



 

●​ 0 when the robots have already found a package i.e., when it's no 
longer searching. 

Handful flag is: 
●​ 1 when the robot is carrying the package  
●​ 0 when the robot is not picking up or delivering a package.  

Goal_defined is: 
●​ 1 when the robot has been assigned a goal (this goal can be location of 

the package or the drop point and not any other intermediate goal). 
●​ 0 when the robot has not received a goal point.  

These three flags are used for the priority inspection depicted in the upcoming 
test cases. 

 
The above-mentioned flags are preassigned with the values shown in the 
beginning. The Handshake() function establishes communication between the 
two robots, conducting a “ping” test to ensure stable communication link. 
Initially the robots do not have knowledge about the distribution of the packages 
in the environment and hence have no goal.  
The goal_point variable is the parameter that is passed to the ROS Navigation 
Stack to travel towards that particular coordinate. It is a 2D vector containing the 
coordinate [x, y]. 
When the robot obtains the goal_point, the PathFinder() function gets 
executed and it provides this goal to the Navigation Stack. In other words, the 
function returns a goal_point value which will be used by other functions for 
navigation.  
 
The next_goal_point is now the current goal_point. This value is now passed 
to the function navigation() which is responsible for robots' movement. The 
system will verify if the robot has reached the goal_point using goal_reached 
and if this Boolean value is false, navigation() function is revoked again till the 
robot navigates to goal_point.  

 
In parallel to this process the Insearch flag is checked for its value and when it 
is 1 the node out_insearch() is started which executes the object detection 
program. 
Once an object is found it breaks out of the loop and evaluates the object 
coordinates, using the get_object_coordinates().  
This new coordinate is then assigned to goal_point and is passed on to the 
PathFinder() so that the robot starts its movement towards this newly obtained 
coordinate. Meanwhile the flag Insearch is lowered by changing its value to 0. 
Once goal_point is reached, the flags are once again used to identify the 
situation.  
▪​ The Insearch flag is checked, if the value is found to be 1 then the robot has 
reached its intermediate goal point and then requests PathFinder() for the next 
goal_point.  
▪​ Otherwise, if the value is 0 then there is a possibility that it may have reached 

 



 

a drop point or an object coordinate.  
▪​ To identify which case it is, the Handful flag is checked and if the vale is 
found to be 0 then the robot has reached an object and is ready for pickup.  
▪​ Conversely if the value is 1 then the robot has reached the drop point and 
drops the package.  
▪​ The Gripper_Grab() and Gripper_release() functions control the 
action of picking and releasing, respectively. 

 
The variable Tasks keeps the count of total packages to be replaced in the 
warehouse and the count is decremented for every package dropped. Once all 
the tasks are over Tasks=0 then the robot halts and that marks the end of the 
operation. 

 

Through this process, the flags are utilized in an effective way to complete the 
coordinated task of pick-and-place operation by the autonomous robots. 
 
The pseudo code for the entire algorithm is as shown below: 
 
 
 
 
 
 
 

 



 

 
 

The next flowchart is a subsystem flowchart representing the operation of the 
navigation part of the Control algorithm. 

​         
 

 



 

 
Figure 3. 18: Priority Scheduling algorithm 

The nav_stack_start() handles all the ROS navigation stack nodes, which 
handles all the tasks with respect to navigation. The only modification occurs 
when it encounters a non-static obstacle, which for our case will be the other 
robot.  

Once a temporary obstacle is detected, the robot starts communicating with the 
other robot, triggered using the function start_com_link(). Once both are 
communicating, they gather data from sensor and odometry streams and decide 
the priority among themselves. Initially both robots have a priority of 0 and 
subsequently, based on the flag values the priority is incremented. The following 
conditions are used for assigning the priority between the two robots for 
different scenarios and test cases. 

�​ Prioritization: 
●​ Robot with the package is given higher priority. 

 



 

●​ When both robots have a package, the robot nearest to the goal point 
should be given higher priority. 
●​ When both robots have no packages, the robot with pre-assigned priority 
will start to detect packages. 

  
Note: As soon as temporary obstacles are detected, either robot starts 
communicating with the other about its status. 

  
�​ Collision Avoidance:  
The robot with higher priority will perform its operation while the other robot 
will be halted until it no longer detects the robot in its FOV or path. 
The table below represents the different situations that might occur and the 
corresponding actions that are to be taken are illustrated. 

Case  Status of Robot A Status of Robot B 
1.​  No temporary obstacle No temporary obstacle 
2.​  No temporary obstacle Temporary Obstacle found 
3.​  Temporary Obstacle found No temporary obstacle 
4.​  Temporary Obstacle found Temporary Obstacle found 

Table 3. 4: Temporary Obstacle Status 

▪​ For Case 1 the robots continue on their path without interruption. 
▪​ For Cases 2 and 3 the robots maintain their same path and when they are 
arriving at the destination, the robot that has detected the temporary obstacle 
will halt at some predetermined distance away from its destination for a certain 
time and then resumes its operation.  
▪​ For Case 4 the robots inspect priority and based on that, the robot with 
higher priority takes a detour and continues its operation and the other robot 
halts. 

  
Based on these elementary rules and conditions, the Temporary Obstacle 
situation is handled and Navigation Stack will maintain the navigation of the 
robots until the goal point is reached. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 

4.​ RESULTS 
 
This section demonstrates the working of the methods described in the 
previous section and the corresponding analysis of the results obtained. 

 
4.1​ Hardware Assembly and working 

​ ​  

Figure 4. 1: Main robot Hardware (Front view and Top view) 

 

​ ​ ​ ​  
Figure 4. 2: Robot connections 

One of our deliverables for the project was to develop the hardware for 
the two robots. As depicted by the above figure, we have integrated a 
gripper to the robot chassis and all the other components described in 
Section 3.1 are present onboard the robot. 
 
 
 

4.2 Mapping 
Maps generated by the Cartographer are quite accurate and were verified by 

repeating the mapping process for different environments. The screenshots for 
the different maps generated are shown below: 

 



 

 
Figure 4. 3: Map (Occupancy grid) of a different room 

 

 
 

Figure 4. 4: Map (Occupancy grid) of the environment used 

 
4.3​ Localization  

 
This table depicts the state estimation performed by our odometry code.  
We have made our robot to move in different directions and measured the 
Pose values from our odometry. 
The coordinates are in the form of (x, y), where x and y are in meters  
The robot was made to move in a straight line in the positive X direction and 
made to move in reverse in the next iteration. 
Other random movements were tested on the robot to validate the Odometry 
information. 
 

 



 

Direction of 
movement 

Ground truth pose 
value 
(x, y) 

Estimated pose 
(x, y) 

Pose Error = 
Ground truth – 
Estimated Pose 

X-direction (0.8,0) (0.77,0.13) (0.33, -0.13) 

-X -direction (0,0,0) (0.07,0.12) (-0.07, -0.12) 

Strafing and 
reverse 

(-0.2,0) (-0.17,0.15) (-0.03, -0.15) 

In place rotation (0,0) (0.09,0.1) (-0.09, -0.1) 

 
Table 4. 1: Odometry State Estimation Table 

From these results, we concluded that our odometry is associated with slip and there is 
error with state estimation. Hence, we are using AMCL localization based on depth 
camera scans which is used to provide a better navigation for the autonomous robot. 
 

4.4​ Computer Vision 
 
The screenshot below shows the object being detected by the camera and 
applying the bounding box over the sponge. 

 
Figure 4. 5: Object detection by applying bounding box 

The terminal shows the distance of the object from the camera which is shown 
in the below screenshot: 
​        

 
Figure 4. 6: Object distance shown in terminal 

This was the output obtained when the object was placed too close to the 
camera. 
 
The below observations depict the accuracy of the object detection by the ZED 
mini camera. 
We tested the accuracy in a room with a sufficient amount of brightness and 
these were the results obtained for different test cases: 

 



 

▪​ Without computing the average value of the nearest 8 neighbors: 
Object 
angle w.r.t 
camera 

Reading 
#1(in m) 

Reading 
#2(in m) 

Reading 
#3(in m) 

Average 
distance 
(in m) 

Actual 
distance 
(in m) 

Error  
(in m) 

250 1.29 1.28 1.3 1.29 1.1 0.19 
900 1.4 1.36 1.38 1.38 1 0.38 
38.620 1.27 1.26 1.27 1.27 1.28 0.1 

Table 4. 2: Accuracy table without averaging 

 
▪​ With computation of the average value of the nearest 8 neighbors: 

Object 
angle w.r.t 
camera 

Reading 
#1(in m) 

Reading 
#2(in m) 

Reading 
#3(in m) 

Average 
distance 
(in m) 

Actual 
distance 
(in m) 

Error  
(in m) 

250 1.093 1.091 1.093 1.092 1.1 0.008 
900 1  0.985 0.991 0.992 1  0.008 
38.620 1.23 1.22 1.2 1.216 1.28 0.064 

Table 4. 3: Accuracy table with averaging 

 
4.5​Navigation and Path-planning 

 
The local costmap generated can be seen in the below screenshot: 

 
Figure 4. 7: Local Costmap visualization in Rviz 

When an obstacle is present in the field of view of the camera, the local 
costmap gets updated automatically and this can be seen in the above 
screenshot as pink blocks.  

 



 

 
 

4.5 CONCLUSIONS AND FUTURE SCOPE 

At the end of Phase 2 we have successfully developed an autonomous robot 
which navigates around a known environment. 
●​ Development of an application layer for Autonomous Navigation of a 
mobile robot by using ROS  
●​ Completion of different modules for mapping, object detection and 
localization. 
●​ Control algorithm design for task distribution and communication 
between robots. 

 
We could not implement the Navigation Stack on our second robot due to the 
lack of a depth sensor and could not be acquired due to the present uncertain 
circumstances. Since the sensor stream is a mandatory prerequisite for ROS 
Navigation Stack, we could not make the second robot to perform autonomous 
navigation. 

 
There is a lot of scope and scalability involved with a project of this magnitude.  
We have developed a completely scalable and portable Application Layer that 
can be used with any other robot with some minor changes with the parameters 
to suit the robot. With limited resources for computation, we have developed 
quite accurate modules, considering a trade-off between the main 3 parameters: 
cost, performance and power.  
They can be replaced by more sophisticated algorithms with more advanced 
microprocessors to obtain more accurate and precise results for advanced use 
cases.  
 
All the software components that have been developed in terms of our project 
have been documented and compiled on GitHub: 
GitHub project Repository 
 
Some developments that can be made to the existing modules are: 
 
1.​ Use more advanced algorithms for localization (SLAM, RTABmap, etc.) and 

for path planning (RRT and RRT*, etc.). 
2.​ Implement the designed Control Algorithm on the robots and test the 

feasibility, accuracy and overall working. 
3.​  Scale the application layer to multiple robots and deploy the robots to 

perform real time tasks in any environment.  
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