

(Established under Karnataka Act No. 16 of 2013)
100-ft Ring Road, Bengaluru – 560 085, Karnataka,
India

Project Phase II Report

Robotic Process Automation for Industrial
Warehouses using Swarm Behavior

Submitted by

SUMANTH V UDUPA(PES1201700525)
 PRAMOD KESHAV (PES1201700582)

 AJAY VICTOR (PES1201701170)
 PRASHANTH B (PES1201701729)

JAN-MAY 2021

Under the Guidance of

Dr. M.J Venkatarangan
Associate Professor

Department of Electrical and Electronics PES

University

Bengaluru

FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

B.TECH IN EEE

FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

BACHELOR OF TECHNOLOGY

CERTIFICATE

This is to certify that the Dissertation entitled

“Robotic Process Automation for Industrial Warehouses using Swarm
Behavior”

Is a Bonafide work carried out by

Sumanth V
Udupa(PES1201700525) Pramod
Keshav(PES1201700582) Ajay
Victor(PES1201701170) Prashanth
B(PES1201701729)

In partial fulfillment for the completion of the course work in the Program of Study B.Tech in

Electrical and Electronics Engineering under rules and regulations of PES University,

Bengaluru during the period January 2021 – May 2021. It is certified that all

corrections/suggestions indicated for internal assessment have been incorporated in the report.

(Signaturewithdate&Seal)
InternalGuide

xxxxxxxx
Associate Professor

ElectricalandElectronicsEngineering

(Signaturewithdate&Seal)

xxxxxxxxxxxx
Chairperson

ElectricalandElectronicsEngineering

(Signaturewithdate&Seal)

xxxxxxxxxxxx
DeanofFaculty
PESUniversity

NameofExaminer:Signature with date
1.

2.

3.

DECLARATION

We Sumanth V Udupa,Pramod Keshav, Ajay Victor and Prashanth B, hereby

declare that the project entitled, “Robotic Process Automation for Industrial

Warehouses Using Swarm Behaviour”, is an original work done by us under

the guidance of Dr. M.J Venkatarangan, Associate Professor, Dept. of EEE,

and is being submitted in fulfillment of the requirements for completion of

the course work in the Program of Study B.Tech in Electrical and

Electronics Engineering.

PLACE: BENGALURU
DATE: 12/05/2021

​ ​ ​ ​
 Sumanth Udupa

(PES1201700525)
Electrical and Electronics Engineering

 Ajay Victor
(PES1201701170)

Electrical and Electronics Engineering

Pramod Keshav
(PES1201700582)

Electrical and Electronics Engineering

 Prashanth B

(PES1201701729)
Electrical and Electronics Engineering

 3

ACKNOWLEDGMENT

We extend our deep sense of gratitude and sincere thanks to our chairman Dr.

M.R.Doreswamy(Founder, Chancellor –PES University), Prof. Jawahar

Doreswamy, Pro-Chancellor of PES University and Dr. J Surya Prasad, the

Vice Chancellor of PES University for giving us an opportunity to be a student

of this reputed institution.

We extend our respect to our registrar Dr. K.S. Sridhar for his valuable support

to conduct this Project under PES institution.

It is our Privilege to thank Chairperson of the Department and Dean of Faculty

Dr. Keshavan.B.K Department of Electrical and Electronics Engineering for

his support and guidance for doing our Project.

We express our sincere gratitude to our guide Dr. M.J Venkatarangan for his

valuable guidance and suggestion technically and logically for doing our Project

work.

We also express our gratitude to all our faculty members, parents and fellow

mates who have helped us to carry out this work. Last but not the least, we thank

almighty God for his blessings showered on us during this Project period.

 4

ABSTRACT
Swarm robotics is a new approach to the coordination of multi-robot systems
which consist of large numbers of relatively simple robots that take their
inspiration from social insects such as ants or bees. The most remarkable
characteristic of swarm robots is the ability to work cooperatively to achieve a
common goal.
Robotic Process Automation abbreviated as RPA is extensively being used
nowadays in most of the industries for various processes and applications.

This concept is utilized here for mobile robots which are to be employed in

industrial warehouses for efficient task handling. Tasks may comprise of
picking up and dropping of goods and packages from the pick-up point to
the drop-off point and also sorting of packages/goods.

For our project, we intend to establish a hardware implementation and the

working demonstration of a swarm of simple robots that map an unknown
environment and also establish autonomous navigation for the robots to move
about the warehouse environment and complete the tasks in the warehouse.

In addition, the hardware demo would include a robotic gripper in front of the
robots to perform pick-and-place of the packages and goods.

The project had been divided into 2 phases:
Simulation

Simulate the working of a coordinated swarm of robots in a Warehouse
environment to showcase the working of:

●​ Path planning and navigation in a warehouse environment to ensure
optimum performance in the warehouse.

●​ 3D mapping and object localization in any warehouse environment.
Hardware

●​ Design and development of the multi-robot system.
●​ Design and development of robotic manipulators.
●​ Importing the software modules from the simulation section to the

hardware and debugging of the same.

 5

In particular, for Phase 2, the hardware implementation of the project has been
carried out and will be illustrated in the upcoming sections.

 6

Contents

ABSTRACT... 5

1 INTRODUCTION... 8

1.1​ BACKGROUND.. 8

1.2​ MOTIVATION / PROBLEM STATEMENT.. 8

1.3​ RELATED WORK..8

1.4​ OBJECTIVE... 10

1.5​ ASSUMPTIONS...10

2.​ EVALUATION OF METHODS.. 11

2.1​ Mapping methods:...11

2.2​ Localization methods:... 11

2.3​ Navigation and Path planning:..12

2.4​ Computer Vision:.. 13

2.5​ Control Approach:.. 13

3.​ METHODOLODY ADOPTED...14

3.1​ Hardware Design and Assembly..14

3.2​ Mapping Approach... 21

3.3​ Localization approach...23

3.4​ Computer Vision Implementation...23

3.5​ Navigation and Path planning approach... 27

3.5.1​ Prerequisites for ROS Navigation Stack:.. 27

3.5.2​ Steps to set up ROS Navigation Stack on our Custom Robot:.. 28

3.5.3​ Navigation Stack Implementation... 29

3.6​ Control Law Implementation..45

3.6.1​ Use Case Representation... 45

3.6.2​ Control Algorithm... 45

4.​ RESULTS.. 52

4.1​ Hardware Assembly and working...52

4.2 Mapping.. 53

4.3​ Localization...53

4.4​ Computer Vision... 54

4.5​ Navigation and Path-planning...55

4.5 CONCLUSIONS AND FUTURE SCOPE...61

5​ REFERENCES and LINKS...62

​

LIST OF FIGURES

Figure 3. 1: Robot Hardware Architecture​ 14
Figure 3. 2: Mecanum wheel​ 15
Figure 3. 3: Rotary Encoded DC motor​ 15
Figure 3. 4: Motor connections​ 15
Figure 3. 5: ZEDmini Camera​ 16
Figure 3. 6: L298N Motor Driver​ 17
Figure 3. 7: Li-ion Cells​ 18
Figure 3. 8: Li-ion cells in battery holder​ 18
Figure 3. 9: Omni-directional robot: Possible movements​ 19
Figure 3. 10: Arduino Mega​ 19
Figure 3. 11: Raspberry Pi 4​ 19
Figure 3. 12: NVIDIA Jetson Nano​ 20
Figure 3. 13:Rosserial comm. between Jetson Nano and Arduino Mega​ 20
Figure 3. 14: Navigation Stack Setup - Flowchart​ 28
Figure 3. 15: TF tree for the robot generated through ROS​ 31
Figure 3. 16: Robot footprint in Rviz​ 42
Figure 3. 17: Overall Swarm System Flowchart​ 46
Figure 3. 18: Priority Scheduling algorithm​ 50

Figure 4. 1: Main robot Hardware (Front view and Top view)​ 52
Figure 4. 2: Robot connections​ 52
Figure 4. 3: Map (Occupancy grid) of a different room​ 53
Figure 4. 4: Map (Occupancy grid) of the environment used​ 53
Figure 4. 5: Object detection by applying bounding box​ 54
Figure 4. 6: Object distance shown in terminal​ 54
Figure 4. 7: Local Costmap visualization in Rviz​ 55

LIST OF TABLES

Table 1. 1: List of Assumptions​ 10

Table 3. 1 : Motor Specifications​ 16
Table 3. 2: Specifications of L298 Motor Driver​ 17
Table 3. 3: Mapping approaches​ 23
Table 3. 4: Temporary Obstacle Status​ 51

Table 4. 1: Odometry State Estimation Table​ 54
Table 4. 2: Accuracy table without averaging​ 55
Table 4. 3: Accuracy table with averaging​ 55

LIST OF ABBREVIATIONS

Cases
AMCL: Adaptive Monte Carlo Localization​ 23
GPS: Global Positioning System​ 11
HSV: Hue, Saturation and Value​ 24
KLD-sampling:Kullback-Leibler Divergence​ 23
RGB-D: Red Green Blue Depth​ 21
ROS: Robot Operating System​ 20
RPA: Robotic Process Automation​ 8
RRT*: Rapidly-exploring Random Tree Star​ 12

RRT: Rapidly-exploring Random Tree​ 12
RTAB: Real-Time Appearance Based mapping​ 21
SLAM: Simultaneous Localization and Mapping​ 21
tf: transform trees​ 27

1 INTRODUCTION

1.1​BACKGROUND

Swarm robots are a collection of similar or dissimilar robots working in close
coordination with each other to achieve a common goal. Swarm behavior was first
observed in social insects and this attribute has been successfully replicated in a
system of robots to improve the performance and efficiency of certain repetitive
tasks that would formerly be inefficient using a single robot system.

Although the concept of swarm robots is more widely explored today, it has yet to
find any feasible real-world applications. To demonstrate the scalability and the
possible applications of this concept in a real-world scenario we have come up with
an application titled: Robotic Process Automation in a Warehouse environment
using Swarm Behavior.

1.2​MOTIVATION / PROBLEM STATEMENT

In the field of robotics, the application of robots to various kinds of applications is
becoming more prominent. Robotics is being employed in almost all the sectors of
the industry from supply chain logistics to complex surgeries.

Many industries are solving the problem of warehouse logistics using
manipulator/fixed robots as well as autonomous mobile robots. This process of
warehouse management is called RPA.
Swarm robotics is a field of robotics which establishes the concept of multiple
robots cooperating together to perform single/multiple tasks and make the
processes more efficient.

Most of the existing solutions make use of semi-autonomous mobile robots or other
such concepts to establish a working model which is relatively less efficient and
results in sub-optimal performance.

This project aims to develop a working scalable platform which is able to
incorporate a decentralized approach to the swarm behavior that is scalable and
portable to other kinds of applications.

1.3​RELATED WORK

The most popular warehouse robotic units are by Tesla, Amazon, 6 River System,
Walmart.

�​ The Amazon warehouse system has robots which only carry and drop the packages.
For placing the packages on the robots, a robotic arm is used which has a
suction-based end effector. The robot when reaches the destination drops the
package with some conveyer type arrangement on it. This system is not intelligent

and is limited to rectangular flat surfaced packages. The complexity in deciding the
appropriate approach for coordination among the robots is high because of the huge
numbers.

�​ Tesla uses robots to move heavy parts from one part of the factory to another. These
robots use a static map for their path planning and halt when obstacles are
encountered. The system is non-intelligent as the robots use line-following
techniques along with the map. They have a dedicated battery management system
and have an extra feature of charging themselves. Interaction between such robots is
minimal in this system.

�​ 6 River Systems’ robot goes by the name Chuck. Chuck is a cobot (collaborative
robot), working along with humans to do pick-and-place activities in warehouse
fulfillment operations. Chuck directs the pickers to the right items, using platforms
with different configurations, shapes and sizes. Chuck approaches the workers in the
warehouse with the packages, thus saving time. Shopify acquired 6 River Systems
in 2019 to increase its warehouse work, including picking and packing, sorting and
inventory replenishment.

These systems are robust but it has not been possible to extract the maximum
capacity of the system, due to inefficient distribution algorithms and hardware
limitations which are still under development. The main issues faced in the
warehouse management are:

1.Managing Warehouse Space/Layout
2.Communication
3.Time management
4.Inventory Accuracy
5.Customer Expectation
6.Redundant activities
7.Product diversification
8.Inaccurate purchase orders
9.Handling product damage

Out of these the main concerns in any average scale, the main aspects in warehouse
management that result in loss of time and hence income is Inaccurate Inventory and
Incorrect time management.

We propose a robotic automation system that handles these two situations primarily.
With the use of robot for the movement of packages and having a proper addressing
system the margin of error in inaccurate inventory is greatly reduced. With an
algorithmic approach governed by simple laws towards the planning and decision
making, the coordination between the robots is improved and the system can
perform at a higher capacity.

In support to our current implementation, a thorough study was made on the
available techniques/algorithms related to each domain in our project, which has
been modified for our use case and efficiency. These approaches along with their

implementation, drawbacks and system limitations are described in the following
sections.

1.4​OBJECTIVE

The main objectives of our project are:
●​ Building a multi-robot system consisting of two robots.
●​ Development of an autonomous navigation and path planning system for the

multi-robot system.
●​ Design and development of a control algorithm to achieve a coordinated

performance and task achievement.
●​ Integration of a robot gripper for the purpose of pick-and-place of

goods/packages by the robots.

1.5​ASSUMPTIONS

For the purpose of demonstration of the deliverables and depicting the robots
as a prototype, certain assumptions were made for the complete system
implementation.

​ ​ ​ ​
Assumptions Need of said assumption
The map obtained is of a static
environment.

The packages are not present in the
initial map of the environment and are
only detected during tasks.

Packages in the environment are
assumed to be uniformly
distributed.

This is to make sure that packages are
not placed randomly in the environment
with concentration in only a specific
region.

Warehouse is assumed to be a
rectangular room.

There will be an even distribution of
the workspace environment between
the members of the swarm.

We have a set number of pickup
and drop off buffers at any point of
time in the environment.

This ensures that every package in the
environment is accounted for and is not
lost or misplaced.

Table 1. 1: List of Assumptions

2.​ EVALUATION OF METHODS

This section gives a general description of the various technical domains that are
implemented in the hardware.

2.1​ Mapping methods:

Map building by exploration of an unknown environment is a crucial step for the
implementation of autonomous navigation of a mobile robot. This is one of the
initial steps that has to be performed by a robot for navigating through an
environment and also for efficient path planning to perform various tasks and
operations.

Prerequisites and Conditions for a map:

�​ The precision of the map must match the precision with which the robot needs
to achieve its goals.

�​ The type of features represented must match the precision of the features
obtained by the sensors onboard the robot.

�​ The complexity of the map representation has a direct relationship with the
computational complexity of localization, navigation and path planning.

There are two types of maps: discrete and continuous. The maps generated by
navigation generally provide a continuous geometric description. This usually needs
to be converted to appropriate discrete type maps for the implementation of path
planning algorithms.

2.2​ Localization methods:

When the robot is moving for long distances, the robot must determine its position
relative to an external reference which is often called a landmark. This process is
termed as localization. These landmarks are obtained from the static map obtained
by the robot during the mapping process. So, when the landmark is in view, the
robots localize frequently and accurately, using action and perception (from sensors)
update to track their position. Thus, the robot is effectively navigating from one
landmark zone to the next, with the utilization of localization.
Basically, there are two methods of localization present to localize any
autonomous mobile system. One is global/absolute positioning and the other is
local/relative localization. Our objective was to use relative positioning to
determine the robot’s position using the sensors present onboard the robot and rely
less on the information from its surroundings.

�​ Global positioning:

It helps to determine the position of the robot w.r.t coordinates that already have
a reference i.e., a global coordinate. GPS is most commonly used for this and is
accurate.
But for indoor activities, it is not suitable for our project and can be used

only outdoors because GPS receivers need an unobstructed view of the sky. We
are subjecting our robots to work only in indoor environments presently. The
robot hardware can be modified for different environments and surfaces.

�​Local positioning:

It determines the position of the robot w.r.t its movement from its initial
position. It does not take into account any data from its environment. It
evaluates the position using various on-board sensors like encoders,
gyroscopes, accelerometers, etc. In our case we will be using wheel encoders
present on the robot hardware to obtain the position and orientation
respectively.

2.3​ Navigation and Path planning:

Navigation is an essential step that is directly linked to the robust mobility of the
robot. When only partial knowledge of the environment is provided along with a
goal position or series of positions, navigation approaches/algorithms provide the
ability of the robot to act based on its knowledge of the surroundings and the sensor
values to efficiently reach the goal position.

​
Robot path planning involves the problem of moving from one place to another,
simultaneously performing tasks prescribed the user. The algorithm developed for
this should be capable of computing a collision-free path between a start point and a
goal point. Collision-free indicates the prevention of collision between other
dynamic obstacles (robots, people, cars, etc...) and also static obstacles which are
fixed in the workplace or the environment in which the robot is present.

​
Path planning can be either global or local.

Local path planning is the process of planning a path when the robot is moving
while taking data from the sensors onboard the robot. During local path planning,
the robot can account for sudden changes in the environment, which may occur due
to other robots or people moving around which is captured from the robot’s sensors.
Global path planning is performed only when the environment is static and it is
known to the robot i.e., the robot previously has the map of the environment in its
memory. For this type of path planning, the algorithm produces a complete path
from the start point to the goal/target position. This is done through a set of
waypoints provided to the robot, even before the robot is in motion.

There are various path planning algorithms and this is currently a research area with
more efficient algorithms being introduced.
But the most prominent and used path-planning algorithms are:

●​ Dijkstra algorithm
●​ A* path planning algorithm
●​ RRT and RRT* algorithms

For the implementation of a path planning algorithm onto a mobile robot, the

combination of both local and global path planning is necessary and each of those
approaches uses a combination of the above algorithms.

2.4​ Computer Vision:

This domain is mainly responsible for the vision aspect of any autonomous system
and to provide perception of the robot’s environment.
For an autonomous mobile robot, the vision sensors i.e., the camera is mainly
responsible for providing a constant feed to the robot about its environment and aid
it in navigating and completing tasks around the environment.

Computer vision allows a computer to process the image provided to it and gain a
certain level of understanding and relevant information for it. With the large number
of open-source libraries and resources computer vision has found great use in a wide
range of applications and fields as per the user’s requirement.

�​ OpenCV:
OpenCV is an open-source library available to develop computer vision-based
applications as per a user’s requirements. OpenCV allows real-time implementations
of image processing, computer vision and machine learning concepts to identify
various features of an image and use the information obtained to provide the system
a certain level of understanding and information as deemed relevant to perform its
final task.
A large number of applications such as face detection and recognition, security and
surveillance, object recognition etc. make use of OpenCV.

�​ Object detection and localization:
Object detection and object localization are two major aspects in computer vision
that allows us to identity objects and its boundaries and locate an object in an image
respectively.
Object detection is the process of finding an object of interest in real time in a
real-world scenario. There are multiple methods of implementing object detection
out of which the simplest and most commonly used methods are detection based on
shape and color. These methods help us keep a track of every instance of an object
of interest in a given image frame.
Object localization is the process of locating a specific instance of an object in an
image. Unlike object detection which keeps a track of all the instances of an object’s
occurrence, object localization aims to locate the main and most prominent
occurrence in the current image frame of reference.

2.5​ Control Approach:

Design of a multi-robot system is usually based on the following two structures:

�​ Centralized structure:

This is a system has a robotic agent (a master/leader) that is in charge of
organizing the work of the other robots, which are referred to as
slaves/followers. The master is involved in the decisional process for the

whole team, while the other members act according to the direction of the
leader.

�​ Decentralized structure:

This is also known as Distributed Control.
This is a system composed of robotic agents which are completely
autonomous in the decisional process with respect to each other, in this class
of systems a leader/follower relationship does not exist.
A centralized control structure is not feasible, because there are a large
number of individual robots with limited sensing capabilities. Distributed
control is required for flexibility and reliability. This is a way of
distributing control to certain regions of swarm so that any effective control
that should be taken is limited to the affected region/neighborhood.

However, both distributed and centralized control approaches have contributed
individually to the study of swarm robotics and have generated interesting
experimental results.
Combination of both the different control structures will yield good results in
implementation.

3.​ METHODOLODY ADOPTED

This section describes the various approaches we have considered for our
implementation and the methods we have finally implemented for the working of
the multi-robot coordinated system.

3.1​ Hardware Design and Assembly

The hardware is comprised of two four-wheeled robots. The hardware
architecture for the connections onboard the robot is depicted through the
figure given below:

Figure 3. 1: Robot Hardware Architecture

The details of the robot hardware developed are provided below.

�​ Mecanum Wheels

Model name: 60mm Aluminum Mecanum wheel set

Figure 3. 2: Mecanum wheel

These are also known as Swedish wheels and are omnidirectional i.e., the
wheel can move in any direction. The wheel consists of many rollers which
typically have a 450 axis of rotation with respect to the plane of the wheel.
These wheels were used because the robot would be stable and be capable of
moving in a combination of 8 different directions.

�​ Sensors used
i.​ Quadrature encoded motors:

​ ​ Model name: RMCS-2295 Quad encoder motor.

Figure 3. 3: Rotary Encoded DC motor

​ ​

Figure 3. 4: Motor connections

For the purpose of obtaining odometry information which is required for
localization(dead-reckoning), quadrature-encoded motors were used.
So, for two robots, a total of 8 encoded motors were required. This provided a
speed of 150 rpm and required a voltage of 12V for operation.
The quadrature encoders helped in obtaining the direction of the motor and
also the distance travelled by each motor. The encoders provided a total of
280 pulses per channel. There are six connections present on each motor.
They are:

•​ Motor+
•​ Motor-
•​ Vcc(supply) and Ground
•​ Channel A
•​ Channel B

The channels provide two pulses each, where there is a phase shift of 900
between Channel A and B. Based on the leading pulse, the direction of
rotation of the motor can be determined. Depending on which channel gets
the encoder pulses, it generates an interrupt in the Arduino Mega
microcontroller and we can detect the direction of rotation based on which,
other computations are performed.

Motor specifications are as follows:

Operating Voltage 12V
Load current(max) 1A
No-load current 140mA
Stall torque 8 kg-cm
Rated torque 3.2 kg-cm

Base motor speed 7000 rpm
No-load speed 150 rpm
Encoder pulses per channel 280

Table 3. 1 : Motor Specifications

ii.​ ZED Mini camera:

Figure 3. 5: ZEDmini Camera

The ZED mini is a stereo camera that provides conventional images as well as
an accurate depth measure of its immediate surrounds. This camera was
designed for applications such as real time environment mapping, security
and surveillance, Ariel’s drone autonomous navigation and mapping …etc.
The ZED mini is a very versatile and portable camera with a very
high-resolution video output and also includes motion sensors such as
Gyroscope and Accelerometer along with Depth sensing which allows for
both Static environment mapping and visual-inertial localization due to which
it finds great applications in SLAM based robotics projects.
The ZED also has software support in terms of the ZED SDK which contains
all the drivers as well as libraries required to use the ZED along with the ZED
API that allows manipulation of the camera parameters such as frame rate,
resolution …etc. as per the user’s requirements.
In our application the ZED has been used to effectively map the robots’
surroundings as well as for object detection and localization where the main
advantage of the ZED camera is its ability to accurately determine and return
the distance of an object from its current position.

iii.​ Motor driver:

Figure 3. 6: L298N Motor Driver

The microcontrollers used could not provide the necessary current to drive the
motors. So, for this purpose, motor drivers were used. In specific, the L298
Dual H-Bridge motor drivers which are bi-directional were used for this

purpose. It allows easy and independent control of two motors of up to 2A
each in both directions. It comes equipped with power LED indicators,
on-board +5V regulators and also pins for PWM control. With the enable
pins, the speed of the motors could be varied by changing the duty cycle of
the input signal to the driver.

So, a total of four (2+2) motor drivers were used to drive the robot motors.
The supply for the drivers was provided by the Li-ion cells.

​ ​ Specifications:

Input voltage 3.2V ~ 40V dc
Peak current 2A
Operating current range 0 ~ 36 mA
Control signal input voltage
range

Low: -0.3V ≤ Vin ≤ 1.5V
High: 2.3V ≤ Vin ≤ Vss

Enable signal input voltage
range

Low: -0.3V ≤ Vin ≤ 1.5V (invalid control signal)
High: 2.3V ≤ Vin ≤ Vss (control signal active)

Table 3. 2: Specifications of L298 Motor Driver

iv.​ Battery:

​ ​ ​ ​
 Figure 3. 7: Li-ion Cells

Power supply for the entire robot was provided using two methods. The
microcontrollers onboard were powered from power banks(4800mAh).
A combination of 3 Li-ion cells (18650) were connected in series by a
battery-holder and they provide a total of 12V to run the motors for the robot.
Each Li-ion cell is 18mm around 65mm long and has a capacity of 3.7V and
2000mAh and are rechargeable.

​ ​ ​ ​
Figure 3. 8: Li-ion cells in battery holder

v.​ Chassis:
To realize the omnidirectional motion of the robot, a 4-wheeled chassis was
used. The chassis was metallic and 29cms long and 17.5cms wide. Four
metallic clamps were used to hold the motors which were fixed to the bottom
of the robot. Arduino Mega and the batteries were also attached to the bottom
of the robot using screws and Velcro straps respectively.
The cameras for the two robots that were used for mapping/sensing/object
detection were placed on the top of the chassis. To obtain more accurate
readings from the camera, a frame was embedded on the robot using small
metallic stands an acrylic frame for placing the camera.
To switch the Li-ion cells ON/OFF, a switch(5A/220V) was used.

This figure depicts the possible directions of movement of the robots.

Figure 3. 9: Omni-directional robot: Possible movements

�​ Microcontrollers
i.​ Arduino Mega:

Figure 3. 10: Arduino Mega

The odometry data is required for robot navigation, which is obtained using
the motors with hall sensors. For this interface we need a microcontroller
which is capable of handling such data from 4 different motors. Arduino Uno
has only 2 external interrupt pins, but in our case, we needed 4. So, we are
using the Arduino Mega which has 6 interrupts available.

ii.​ Raspberry Pi 4:

Figure 3. 11: Raspberry Pi 4

The Pi4 has a powerful processor and it meets our criteria for managing
computation of data from the localization, path planning and object detection
modules. It receives the encoder data from the Arduino and acts as a master
controlling the Arduino thereby controlling the motors.

iii.​ NVIDIA Jetson Nano:

Figure 3. 12: NVIDIA Jetson Nano

The Pi4 has enough processing capacity for the tasks mentioned above but it

lacks the necessary GPU which is required for area mapping and object
detection and localization. NVIDIA Jetson Nano fulfils this requirement and an
additional advantage with this Microcontroller was the CUDA libraries that
were readily available for the ZED mini camera. This is used as the master and
takes in encoder data from Arduino mega and handles other tasks such as
localization, path planning etc... This microprocessor was interfaced with the
primary robot which was used for mapping out the environment.

�​ Communication using ROS:

Communication between the Raspberry Pi 4 and Arduino Mega is done via
Serial BUS as a physical medium with the use of rosserial_arduino library.
Rosserial is a protocol for wrapping standard ROS serialized messages and
multiplexing multiple topics and services over a character device such as a
serial port or network socket.
So, in overview we have successfully set up ROS in Raspberry Pi 4 as well as
in the Jetson Nano, and established the rosserial library for the communication
between the Pi 4 and Mega and also between Jetson Nano and Mega.

 ​
Figure 3. 13:Rosserial comm. between Jetson Nano and Arduino Mega

Throughout the report, the Jetson Nano and the Raspberry Pi 4 will be
collectively called as the main processor because the same software and code
is portable to both the robots.

3.2​ Mapping Approach

Since ROS was present on both the robots, it provided many approaches that
could be used for mapping which were compatible with ROS.
Some of the approaches that have packages in ROS are: SLAM using 2-D and
3-D mapping, Real-Time appearance-based mapping (RTAB map) and also
Octomap. Since we possessed a ZED Mini camera which is a depth camera,
we decided to pursue the concept of 3-D mapping through which we could
obtain a real-time appearance-based map that could be better utilized by the
robot for localization.
Some of the approaches are described below:

�​ SLAM: Simultaneous Localization and Mapping is a famous approach that is

under constant research and development in the robotic society.
It deals with the problem of leaving the robot in an unknown environment and
for the robot to build a map incrementally by moving around the environment
and determining its location or position within this map.
 The SLAM approaches with 3–D mapping that we pursued were
ORB-SLAM2, RTABmap and Octomap.

�​ ORB-SLAM2: It is a real-time SLAM library for Monocular, Stereo and
RGB-D cameras that compute the camera trajectory and a sparse 3D
reconstruction of the environment. It is highly efficient and is able to detect
loops and re-localize the camera in real time. It also had options to run the
package in only Mapping mode; Localization mode or in SLAM mode. We
were able to obtain the 3D map but the main disadvantage for us was that it
required high computation power due to which there was high latency in
obtaining the map and we could not obtain the map in real-time. Hence, this
method was dropped.

�​ RTAB map: The next approach we considered was RTABmap which could

obtain a real-time appearance-based map of the environment similar to a live
camera feed. This approach is based on an incremental appearance-based loop
closure detection. The loop closure detection helps in detecting repetitive
images obtained from the camera when the robot is moving and omits such
repetitive feed during the rendering of the 3D map. This was the main
premise behind choosing this approach for mapping. But we could not render
a map with this approach, since it required a minimum of 4gb RAM and i7(or
equivalent) processor for the mapping approach to run seamlessly.

Thus, this approach was also discarded.

Since both these approaches required a lot of computation power, we decided
that we would implement mapping and localization separately and establish a
connection between the two by providing the map for the localization
algorithm.

The next most viable approach was Octomap which is an efficient Probabilistic
3D mapping framework based on Octrees. It obtains a Full 3D model of an
arbitrary environment without pre-assumptions and also covers occupied areas
as well as free space.
We were able to obtain a good real-time appearance-based map of the
environment at a standalone perspective, but when we integrated the mapping
approach with the remaining modules, the results obtained were not very
satisfactory and could not be expected to provide meaningful outputs in the
long run.
So, we had to discard this approach for mapping and search for an approach
which used reasonable computation and provide good results.
Thus, after our literature survey we decided to implement Google
Cartographer.

Cartographer is a system that provides real time SLAM in 2D and 3D for
different sensors and is supported by ROS systems. It uses the information
about the robot’s surroundings from the sensors onboard and builds a map of
the environment and helps the robot to localize itself in the map.
But we are using the Cartographer approach solely to generate the map of any
environment where the robot is subjected to and using a different localization
approach described in Section 3.3
During the implementation of the Navigation Stack, we learnt that the Stack
requires a 2-D occupancy grid or cost map as an input for the path planning
algorithms to provide an optimal path.
Because of this, we decided to use a package called
depthimage_to_laserscan present in ROS that converts a depth image to a
set of laser scans in real-time so that the Navigation Stack can use the map
directly.

The table below provides a summary of the different approaches considered
and their merits and demerits:

Mapping
approach

ORB-SLAM2 RTAB map Octomap Cartographer

Type of map Key point
feature-based map

Appearance based
map

Based on 3D
occupancy
grid using
octrees

2D map:
Occupancy
grid

Requirements i7(or above).
Depth camera
C++ compiler
Pangolin library
OpenCV library

i7(or above)
Depth camera

C++ compiler

ROS Kinetic
and above.
2GB RAM
and above for
good results.

ROS
Suitability Computationally

intensive for our
use case. High
latency in
real-time

Computationally
intensive and low
frame rate when
used in Jetson
Nano or
Raspberry Pi 4

Puts load on
computation
and not easily
integrable

Works well on
our current
system with
minimal
latency. Most
compatible
than all other
approaches
considered

Table 3. 3: Mapping approaches

3.3​ Localization approach

Since mapping was done separately, localization was implemented using a
typical approach which was compatible with ROS.
AMCL known as Adaptive Monte Carlo Localization is a well-known
established approach used for localization of robotic platforms.
It is a 2-D probabilistic approach used for moving a robot. It uses a particle
filter, in particular, the adaptive KLD-sampling approach for tracking the
position of the robot with respect to the static map provided by the robot.

�​ Monocular Odometry
Monocular odometry is an approach used to calculate the position of a robot
over time in reference to its initial position based on visual data provided via a
monocular camera. This system is typically used in autonomous robots and
estimates the change in position based on a scale factor that estimates the
change in size of objects in current image frame with reference to the previous
frame or based off of the data from other sensors such as an IMU or wheel
encoders.

We had initially considered implementing monocular odometry to improve the
odometry reading obtained from the wheel encoders so as to account for the
inaccuracies encountered due to drift in terms of the wheel encoders. But since
monocular odometry would require estimated x, y coordinates from the wheel
encoders in real time with reference to each image frame, this implementation
would be redundant and the errors would persist and be carried over.
Estimation of odometry using only a scale factor estimated based of object size
in image frames would also lead to a large amount of drift in estimated values
based on change in camera orientation with respect to the reference object and
give rise to errors.

Due to the above-mentioned limitations and redundancies faced we decided to
not implement visual odometry and instead use the wheel encoder based
odometry approach.

3.4​ Computer Vision Implementation

The main application of Computer Vision in our project is for Object
detection and localization in the robot’s immediate surroundings.

Here we make use of the computer vision library OpenCV along with the
NumPy library which is used to work with arrays on python. Here OpenCV
with NumPy is used for object detection based on color and shape as well as
object localization in the image frame to obtain the x, y coordinates of the
object in question with respect to the image frame.

The distance of the object from the camera is obtained with the help of the
point cloud generated by the ZED mini which represents a set of x, y, z data
points in space and can be used to estimate the approximate distance between
the camera and the object.

�​ Color and Shape detection

OpenCV has built-in libraries to help in both shape and color-based object
detection.

Here, for our implementation of color detection we have specified the range
of HSV values in 2 NumPy arrays to create a mask of a color of our choice,
this mask is then applied to our image frame using a bitwise AND operation
to obtain our image of interest as per the specified color.

The above code shows the use of cv2.bitwise_and on the image frame
obtained by the ZEDmini camera to obtain the resultant frame res which
only displays objects of a specific color as determined by the NumPy array
specified by the variables lower and upper that determines the HSV
thresholds of the color.

Since color detection alone may not give accurate detection of objects in the
environment as there may be various objects in the same color, we have
implemented shape detection to ensure a more accurate detection of the
objects of interest. We have assumed our objects to be rectangular in shape
and have used Canny edge detection to determine the contours of the objects
within a specified range of edge intensity gradient.

The code snippet above is used to create 2 track bars to vary the thresholds of
edge intensity gradient as per our object to be detected.

Once Canny edge detection has been implemented on a grayscale image of
our frame, we apply a 5x5 image kernel to perform dilation to increase object
area and also accentuate the edges detected by Canny and the image after
dilation and a copy of the original image are passed as inputs to the
getContours function.

The getContours function uses the function cv2.findContours dilated image to
obtain all the contours of all the objects as present in the image, we may also specify
the area under consideration using the cv2.contourArea function.

The approxPolyDP function is then used to obtain the approximation of all the
points in the image that may make up a polygon and these points are then passed on
to the cv2.rectangle function to draw a rectangle boundary on the objects of
interest.

 We now approximate the points that make up a polygon by using the
cv2.approxPolyDP and once estimated these points may be used to draw a
bounding rectangle on the original image as shown above using the cv2.rectangle
function.

The estimation of object distance from the camera has been made possible due to
the use of the Point Cloud data provided by the ZED mini camera.

The x, y coordinated in the image frame can be estimated with reference to the
bounding rectangle drawn on the image after shape detection and these x, y
coordinates are passed as inputs to the point_cloud.get_value() function that
allows estimation of the x, y, z points in that point in space. The function
cv2.boundingRect(points) returns the starting coordinate (x, y) of the rectangle
and its respective width and height (w, h). For better accuracy the distance z is
calculated by averaging a total of 9 values from various neighbors around the center
of the rectangle. The z value is computed for the center point of the rectangle and
also for 8 distinct neighbors. The distance between the center point and the
neighbors can be varied as suitable for the test case. Empirically a value of 70 or
above is recommended. The value selected is used to divide the dimension into that
many parts and take the average distance of these values. This way we can avoid the
error which can occur due to change in horizontal alignment w.r.t the camera view.

3.5​ Navigation and Path planning approach

Initially, our approach was to develop an independent module for path
planning in Python programming language which was developed during the
simulation phase and was based on A* path-planning algorithm.
The input for the code would be a map of the environment in pgm format and
the output would be a set of waypoints written to a csv file that the robots
should follow to reach the goal position.
But this approach could not be used here, since we had to take into account a

lot of factors such as slip of the wheels, payload on the robot, etc... that were
not considered during the simulation phase.

So, an alternative was to use the ROS Navigation Stack which is described in
detail below:
The Navigation Stack takes in odometry and sensor streams as inputs and
provides the velocity commands as output that are fed to the motors present
onboard the mobile robots through Arduino Mega acting as a low-level
controller.

3.5.1​ Prerequisites for ROS Navigation Stack:
�​ The robot must be running ROS.
�​ The robot should have a transform tree(tf) setup.
�​ Sensor data should be published using the correct ROS Message types.
�​ It needs to be configured for the shape of the robot.

The below figure taken from the ROS wiki page illustrates the configuration
of the Navigation Stack:

Figure 3. 14: Navigation Stack Setup - Flowchart

3.5.2​ Steps to set up ROS Navigation Stack on our Custom Robot:

The below five steps are the mandatory pre-requisites for the ROS Navigation
Stack Setup. Each step was developed independently and tested and
integrated finally to launch the entire ROS Navigation Stack.

1.​ Set up transform trees(tf) on the robot
o​ tf will take care of conversion of frames i.e., conversion of

coordinates from the camera_frame to the base_link of the robot and
also to obtain coordinates of the objects in the world_frame and pass
it to the base_link of the robot.

2.​ Publishing sensor streams over ROS
o​Using this concept, can directly publish the 3-D point clouds

obtained from the ZED Mini to the Navigation stack through ROS.

o​ Similarly, can publish data from sensors (monocular camera)
onboard the 2nd robot.

3.​ Publishing odometry information over ROS
o​ Similar to publishing sensor streams, programmed through ROS to

send odometry information from the wheel encoders to the
navigation stack.

o​Using this .cpp file, the navigation stack can directly send velocity
commands to the "cmd_vel" topic. A node will be subscribed to this
topic which in turn takes the values (vx, vy, vtheta) <==>
(cmd_vel.linear.x, cmd_vel.linear.y, cmd_vel.angular.z) velocities
and converts them into motor commands to send to the Arduino
Mega which will control the motor speeds through PWM for
moving the robot.

o​This part of the Navigation Stack is platform dependent. So, our
approach here was, we developed our own code in the odometry file
so that the we could send the velocity commands to the robot wheels
through the same file.

4.​ Mapping the environment
o​Built a map using Google cartographer to map the environment and

used depthimage_to_laserscan package to obtain the 2D costmap
required for path planning. Later, loaded this generated map as an
input to the Navigation Stack.

5.​ Navigation Stack setup
o​ Sending multiple goal points to the Navigation Stack through

waypoints.
o​ Using this, can complete path planning which is taken care of

internally by the navigation stack which has inbuilt costmaps*
(global, local) and also local_planners (DWA) and
global_planners(A*).

*Costmap: It represents a 2D map for navigation in terms of an
occupancy grid to calculate the obstacle areas, free space and unknown
space.​
It is expressed as a value between 0 ~ 255, where:
0: Free space allowed for the robot to navigate
1~127: Areas of low collision
128~252: Areas of high collision
253~255: Occupied areas where the robot cannot move
o​ Navigation Stack Tuning: This is the last step of the process which

can be performed to tune the parameters of the nav stack to get
better results in path planning and mapping.

Using these steps, we could setup the Navigation Stack on our custom robot.

3.5.3​ Navigation Stack Implementation

There are two microcontrollers/processors for each robot. The main robot has
a Jetson Nano that is running ROS Melodic and an Arduino Mega which acts
as the controller for the Mecanum wheels.

 Programming on ROS Melodic was done mainly in C++ and Python, whereas
Embedded C++ was used for Arduino Mega.
The upcoming sections describe the implementation codes developed for
autonomous navigation of the robot.

1.​ Setting up transformation tree(tf) for the robot:

Usually, for a robot, there will be many coordinate frames corresponding to
the various frames onboard the mobile platform. ROS uses the concept of
broadcaster and listener to transmit data between the different frames of the
robot.
The notations used for the coordinate frames for our robot were:

▪​ map: This is the world frame. The environment where the robot is
functioning is depicted as the world frame and all other transformations
will be with respect to this frame.

▪​ odom: This frame indicates the pose of the robot in relation to the map
frame i.e., as the robot moves, it is linked to the odom frame which in
turn is a child frame of the map frame.

▪​ base_link: This is the coordinate frame which is rigidly attached to the
base of the robot. We have chosen the midpoint of the robot chassis as
the base frame and all the frames atop the robot are specified with
respect to this frame.

This code snippet shows the transformation between the parent frame
“base_link” of the robot to the child frame “base_camera” atop the robot.
The tf::Transform object that is present in the tf package has 5 arguments.
The tf::Quaternion specifies the rotation between the parent frame and the
child frame. For our case, since there is no rotation, the Roll, Pitch and Yaw
are made 0 for the Quaternion. The tf::Vector3 is used to specify the offset
between the two frames. The units are in meters, so the x-offset is provided as
0.035m(3.5cm) from the base frame and the z-offset i.e., the upward distance
of the camera from the robot is given as 0.052m(5.2cm). ros::Time::now()
updates the time stamp dynamically between the two frames when the
Navigation Stack is running.
The tf tree for our robot is shown below:

Figure 3. 15: TF tree for the robot generated through ROS

2.​ Publishing Sensor streams over ROS:

Navigation Stack requires sensor information for navigating around an
environment and also for localizing itself in the environment. We are using a
ZED mini camera as the sensor and the detailed implementation procedure is
provided in Section 3.4
The Navigation Stack by default takes inputs of the type:
sensor_msgs/LaserScan and sensor_msgs/PointCloud. Since the
ZEDmini was not publishing this topic, we used a package
“depthimage_to_laserscan” to convert it to the LaserScan topic.
The depthimage_to_laserscan package takes a depth image provided by the
ZEDmini camera and generates a 2D laser scan based on the provided
parameters. It subscribes to the rostopics sensor_msgs/Image and
sensor_msgs/CameraInfo and publishes the scan topic:
sensor_msgs/LaserScan.

3.​ Publishing odometry information over ROS:​
The Navigation Stack requires odometry information to relate the velocity of
the mobile robot. So, the odometry source publishes the information about the
velocity as well as uses tf (transform trees) to transform the wheels of the
robot to the base_link. We have used ROS to publish odometry information
through the nav_msgs/Odometry and also established a transform using tf
to account for the changes in the coordinate frames.
The velocity control or the low-level control for the robot was done using
Arduino Mega and this information was provided to the Jetson Nano which
performed the computations and output the velocity commands back to the

Arduino Mega.

�​ Arduino software design:

This shows the pin initializations done in the Mega. Enable pins were used
from the L298 motor driver and connected to PWM pins for speed control.

BL 🡪 Back left motor

BR 🡪 Back right motor

FL 🡪 Front left motor

FR 🡪 Front right motor
Encoder pins from the motors were utilized to obtain the pulses and the ticks
per meter. For our use case, we needed both the channels (Channel A and
Channel B) of the Encoder DC motors. So, we have used two channels from
the back left and the back right encoded motors which is initialized as:
ENCODER_BLA, ENCODER_BLB and ENCODER_BRA,
ENCODER_BRB respectively.
Some other initializations for the hardware are as shown:

The wheel radius was found to be 3cm(0.030m) and the separation between
the wheels i.e., the width of the robot was 17.5cm. The w_fr, w_fl, w_bl,
w_br indicate the velocities of the respective wheels.
The distance covered by each wheel would be the circumference of the wheel
given by: 2*π*r, where r is the wheel radius(wheel_rad). l_dist and r_dist
are the respective distances covered by the left and the right motors.
Since we need to send the distance values to the processor for computation of
velocities, we have used the concept of ROS publisher and messages which is
shown in the next snippet:

​ ​

​ ​
cmd_vel_callback function was used to calculate the velocities of the
wheels as shown in the snippet. We subscribed to geometry_msgs/Twist and
obtained linear velocity x which is fed to speed_lin and the angular velocity
was fed to speed_ang. The motion of the robot can be analyzed from the
formula used. Consider the case of forward motion, where x and z values are
1 and 0 respectively, received from the subscribed message. Since
speed_angular is 0, the second term in all the equations becomes zero and
w_fr, w_fl, w_br, w_bl have a positive value. Similarly in case of backward
movement the speed_ang and speed_lin values are 0 and -1 respectively
which when evaluated results in w_fr, w_fl, w_br, w_bl equals to a negative
constant value.
In case of left turn as explained in previous section, the right-side wheels of
the robot are in forward motion and the left ones are in reverse. The twist
message for this left turn is speed_lin=0 and speed_ang=0.5. From the
equations it is evident that the w_fr and w_br have a positive value and w_fl
and w_bl have a negative value, leading to a left turn. The vice versa of the
above computations results in the robot to turn right.
ros::Subscriber<geometry_msgs::Twist>sub_cmd_vel("cmd_vel",&cmd_vel_callbac
k);

This is the callback function to our subscriber; this takes a constant
reference of a message as its argument.

void pinmode_setup()
{
 pinMode(ENCODER_BRA, INPUT_PULLUP);
 pinMode(ENCODER_BLA, INPUT_PULLUP);
 pinMode(ENCODER_BRB, INPUT_PULLUP);
 pinMode(ENCODER_BLB, INPUT_PULLUP);
}

The pinmode_setup() function configures the encoder pins to input pullup
mode.

void pin_init()
{
 pinMode(EN_FL, OUTPUT);
 pinMode(EN_FR, OUTPUT);
 pinMode(EN_BL, OUTPUT);
 pinMode(EN_BR, OUTPUT);
 pinMode(IN1_FL, OUTPUT);
 pinMode(IN2_FL, OUTPUT);
 pinMode(IN1_FR, OUTPUT);

 pinMode(IN2_FR, OUTPUT);
 pinMode(IN1_BL, OUTPUT);
 pinMode(IN2_BL, OUTPUT);
 pinMode(IN1_BR, OUTPUT);
 pinMode(IN2_BR, OUTPUT);
 digitalWrite(EN_FL, LOW);
 digitalWrite(EN_FR, LOW);
 digitalWrite(EN_BL, LOW);
 digitalWrite(EN_BR, LOW);
 digitalWrite(IN1_FL, LOW);
 digitalWrite(IN2_FL, LOW);
 digitalWrite(IN1_FR, LOW);
 digitalWrite(IN2_FR, LOW);
 digitalWrite(IN1_BL, LOW);
 digitalWrite(IN2_BL, LOW);
 digitalWrite(IN1_BR, LOW);
 digitalWrite(IN2_BR, LOW);
}

The pin_init() function configures the encoder pins and motor connections
to OUTPUT mode and initially sets to LOW.
The setup() function in turn calls the pinmode_setup(), EncoderInit()
and pin_Init().
 n.initNode();
 n.advertise(l_dist);
 n.advertise(r_dist);
 n.subscribe(sub_cmd_vel);

The node handle is initiated and l_dist and r_dist are advertised creating a
ROS publisher which is used to publish on a topic. Also the subscriber
function is called.

 void EncoderInit()
{
 attachInterrupt(digitalPinToInterrupt(ENCODER_BLA), isr_left, CHANGE);
 attachInterrupt(digitalPinToInterrupt(ENCODER_BRA), isr_right, CHANGE);
}

This function configures the back wheel encoder pins to Interrupt mode and
attach the appropriate routine to it which is the isr_left and isr_right
routines.
The interrupt routines update and the encoder counts.

The update_left and update_right functions returns the distance covered
by each wheels which are required for wheel odometry and the values
returned are then published by the to_odom_function().

void MotorFL(int pwm);
void MotorBL(int pwm);
void MotorFR(int pwm);
void MotorBR(int pwm);

The above functions control the state of the motor input pins and the analog
output based on the pwm value passed hence controlling the motor speed.

�​ Processor-side (Jetson Nano/Raspberry Pi 4) ROS design:

This part of the odometry computation was written in C++ using the attributes
of roscpp which is provided as a dependency. Relevant header files were
added to the software programs and codes.

​

Encoder_Values was a class we defined to specify the members of that
class.
left_enc_cb and right_enc_cb were function declarations that were used to
obtain the encoder data from the Arduino.

Initializations of the parameters are done in this section. We have provided the
​x, y and theta(th) as 0.0 since the robot starts at the origin of the “odom”
coordinate frame initially. The d_theta parameter is a differential amount
which is used to find out the deviation in the robot’s position.
The respective x, y and yaw velocities are also initialized to zero, so that the
base_link will not move w.r.t the odom frame as soon as the robot is powered

up.

This handles the initializations on the ROS platform.
geometry_msgs::Quaternion odom_quat is used to get the orientation of
the odometry using Quaternions and publish this information via the tf.
geometry_msgs::TransformStamped odom_trans is a transform
message that is used to publish the transform from the “odom” frame to the
“base_link” frame at current_time.

​

These code lines above represent the subscriber and the publisher part that is
important for transmitting the odometry information. This part shows the
communication of data between the Arduino Mega and the main processor.
The processor subscribes to l_dist and r_dist published from the Arduino and
at the same time publishes a new message of the type nav_msgs::Odometry
named as “odom”. 1000 represents the queue_size for the number of
messages or data that can be published and it was chosen so as to not cause
overload for the buffer on the Arduino Mega. We are also setting a rate of
30Hz which maintains the loop at this rate.

​
​

​ This loop is used to calculate the velocities in the x and y directions and also the
rotational velocities. The distance travelled is usually calculated using the formula:

 This formula was used, by giving the appropriate left encoder and right encoder
values in the code.

​ Similarly, the deviation in the distance travelled by the robot was based on the
following equation:

​

The distance travelled over time was incremented periodically by using basic
trigonometric functions. The rotation angle value was also incremented by adding
the deviation angle to the angle value.

​ Finally, the velocity was calculated using the well-known relationship between
speed, distance and time:

​ ​ ​

​

Similarly, the change in the yaw angle or the rotational velocity was calculated by
dividing the deviation angle by the time lapsed.

This part of the code is entirely oriented on ROS. We have published the transform
from the base_link to the base_camera using “odom_trans” which is a
TransformStamped message that publishes the tf. The parent or the header frame
is the odom and the child frame is the base_link. The respective x and y
transforms are provided and the rotational transform is published to the
odom_quat parameter.
All these transformations are broadcasted through the sendTransform command.

The next part is used to fill in the transform message that is to be broadcasted by
the odom_trans parameter. Similar to the transform structure, the parent and the
child frame ids are provided and we are publishing the velocity information
through the nav_msgs/Odometry message and the x, y and orientation of the
pose is given. Through twist messages, the linear and the angular velocities are
provided. We have considered the linear velocities in only the x and y directions
and the angular velocities in the z direction. All these data are published through
the odom parameter.

4.​ Mapping the environment and saving the map:
As mentioned in Section 3.2 we are using Google Cartographer package to
map the environment and used teleop_twist_keyboard package to move the
robot manually in the room to cover all the areas. The teleop package directly
gives velocity commands through the /cmd_vel topic to the Arduino which
controls the motors of the robot. In addition, the laser scans were used to

detect the areas and visualize in Rviz. Through this function, we were able to
map out any environment with a good accuracy and precision.
For saving the generated map, we used map_server package in ROS which
provides the map data as a ROS service. rosrun map_server map_saver -f
map_name: Using this command allows a dynamically generated map to be
saved in .pgm format. It also generates a .yaml file which gives the
description of the map.

This is the map.yaml file which is generated by the program. It describes the
resolution of the map (0.5) which means that each pixel can be converted to
5cm. Origin is the origin of the map which is the starting point from which the
robot started obtaining the map. If the occupancy probability exceeds the
occupied_thresh parameter, then it is represented as an occupied area and
free_thresh parameter indicates the value of the free space in the bit map.

5.​ Launching the Navigation Stack:
At this stage, all the prerequisites/dependencies for launching the entire
Navigation Stack were provided successfully. The main function of the launch
file was to access all the dependencies necessary for Navigation Stack and
bring up all the hardware dependencies and the transform links that are
required for the robot.

There are two main parts to the launch file:

�​ Robot configuration file which launches the hardware dependencies such as
the odometry source, sensor source (ZEDmini camera laser scans) and the
transform configuration.
This part of the launch file is shown in the below screenshot. The first
package that is invoked is the odometry package: “wheel_odometry”.
Similarly, the tf_broadcaster is launched which brings the transform
configuration for the robot. We have converted the output obtained from the
ZED camera to laser scans in the next section. We are remapping from the
topic: “zed_node/depth/depth_registered” where ZED publishes the
depth info to the topic “sensor_msgs/LaserScan” and we are launching the
“zed_no_tf.launch” to power up the ZED camera for visualization.
In the next section, we are providing the map generated from map_server to
the AMCL package for the purpose of localization. Since we are using an
omni-directional robot, we have provided the parameter as “omni” for the
model type. Some configuration parameters were provided for AMCL such as
the minimum and the maximum particles to use for localization and the
update rates respectively. The important part in configuring the AMCL
package was to provide the transform frames provided for the odom and the

base frame of the robot as well as the global frame as “odom”, “base_link”
and the “map” respectively.

�​ The second part of the launch file is used for launching the configuration files
required for the operation of the move_base package. These are config files
in yaml format that are used for setting parameters for the costmaps and
planner algorithms.

The Navigation Stack uses two costmaps namely the global costmap and the
local costmap for storing obstacle information. The global costmap is used for
global path planning that is used for finding the path to the goal point and the
local costmap is used for the local path planning which is used for immediate
avoidance of obstacles and other disturbances in the environment. To use
these costmaps and their corresponding planners, we had to set the optimal
parameters for our custom robot. The following section specifies the
description of each of these parameter files. All the units used in ROS are in
SI units.

▪​ costmap_common_params.yaml:
This file is used to set some general parameters that are used by both the
global and local costmaps for navigation.

The robot frame is set to base_link and the maximum obstacle height that can
be detected by the camera was limited to 2m. This parameter file provides
two observation sources: laserscan and point_cloud. Since we are using
laser scans, we have considered the laserscan as our observation_sources
and the next set of parameters are related to the observation source.
The rostopic where the laser scans are published is /scan topic which is of
LaserScan datatype.

marking and clearing are two Boolean parameters which are set to true.
Marking is used for the detection of obstacles and registering the obstacle
information.
Clearing is used for clearing out this obstacle information from the sensor
readings when the obstacle/object is no longer in the vicinity of the robot.
The obstacle information should be updating continuously at a set frequency
which is given by the expected_update_rate parameter for safe navigation
of the robot.
obstacle_range is another important parameter which is set based on the
dimensions of the map. It is used to limit the maximum sensor reading for
registering an obstacle in the costmaps. Since our map of the environment
was relatively small, we have kept the parameter accordingly as 25cm.
The raytrace_range parameter is utilized for clearing out free space in front
of the robot as provided by the parameter. According to the parameter, the

navigation stack attempts to clear out free space so that the robot can try to
navigate without getting stuck.
cost_scaling_factor is a crucial factor used for scaling the cost values of
instances in the occupancy grid map. The formula for that is as follows:

Here, costmap_2d::INSCRIBED_INFLATED_OBSTACLE is 254. Since the
equation is multiplied by a negative sign, and because of the exponent, the
values for obstacles’ cost changes drastically for a very small change in value.

The raw map displayed and used by the robot is not sufficient for the robot to
safely navigate and it requires some adjustments and one such parameter used
for this purpose is the inflation_radius.
This parameter can be set by the user depending on the use case and is very
important for the purpose of navigation. It is the amount by which the map
inflates the cost values of the boundary of the map and the obstacles. This is
usually set so that the robot’s center of mass represented by the coordinates of
“base_link” does not collide with the obstacles or walls.

Other trivial parameters are present for visualization and debugging in Rviz.
The footprint and footprint_padding is used to obtain a basic model in
Rviz as shown by this screenshot:

Figure 3. 16: Robot footprint in Rviz

​ ​ The green rectangular object is the visualization of the robot in Rviz.

▪​ global_costmap_params.yaml:​
This file is used to set some parameters for only the global costmap in
particular.

transform_tolerance is measured in terms of seconds and represents the
amount of duration to wait until all the transform trees between different
frames are updated and then the global_costmap is updated. Since the
number of coordinate frames for our use case were less, we have set a low
tolerance. update_frequency parameter in Hz determines the frequency at
which the global_costmap is updated in the loop.
publish_frequency (in Hz) is the rate at which the costmap publishes the
visualized information from the sensor.
Since global_costmap is static (static_map: true) and does not change
much over time, we have set these parameters to low values.
The width and height of the map in meters is provided and a corresponding
resolution factor in meters/cell is provided so that the width and height are
scaled appropriately.
The plugins are obtained from the ROS documentation and we have provided
two such plugins for visualization purpose.

▪​ local_costmap_params.yaml:

The parameters hold the same meaning as the global_costmap parameters
except for a few changes. The static_map parameter is kept to false because
the local_costmap is dynamic and keeps changing according to the robot’s
movement. Hence the rolling window is made true so that the
local_costmap is fixated on the robot at all times.

▪​ base_local_planner.yaml:

After setting the parameters with the costmap, this file is used for the setting
the planner parameters. Path planning in Navigation Stack uses two path
planners, namely: local planner and a global planner. The global planner we
have utilized is called NavfnROS provided by the stack and we have not
changed the parameters w.r.t the global planner. In case of the local_planner,
there are two planners, namely: TrajectoryPlannerROS and
DWAPlannerROS which are subsets of the base_local_planner. This
planner provides a custom controller to move_base so that the robot
performs autonomous navigation.
According to the official documentation from ROS, DWA path planner is
usually used for large maps and navigating numerous doorways and corners
and where huge precision and accuracy is required. But this requires more
computational power. So, since our map is also relatively small, we have used
TrajectoryPlannerROS which is sufficient for our use case and provided
good results with reasonable accuracy.

The above snippet shows the parameters used for the TrajectoryPlanner.
The minimum and the maximum linear velocities are set considering the load

​​ on the robot and the friction exerted by the floor on the wheels of the robot.
The minimum rotational velocity is also set and the
min_in_place_vel_theta
represents the rotational velocity with which the robot rotates at a particular
point without any linear motion associated. Similar to the velocity parameters,
acceleration values were also set based on default values from the
documentation.

sim_time is the time taken for simulating forward trajectories in the
subsequent time steps and sim_granularity is the step size (in m) to take in
between waypoints in the planned trajectory.

controller_frequency is another parameter which was decided by
trial-and-error and it represents the frequency (time lapse) at which the
controller corrects the trajectory of the robot.

holonomic_robot is kept true because our wheels are Mecanum wheels
which allow the robot to have more DOF and moves in directions not possible
by ordinary robots.

meter_scoring is a Boolean parameter that is used to express the map units in
meters or cells. So, we have kept this “true”.

All these configuration files were launched from the launch file shown above.
This completes the setup and launching of the entire Navigation Stack on our
custom robot. The robot was able to move and navigate around the
environment with a small amount of deviation and the corresponding results
are shown in Section 3.3

3.6​ Control Law Implementation

3.6.1​ Use Case Representation

For our demonstration, we have showcased:
●​ Task of pick-and-place by the robot in an environment.
●​ Considering the objects as sponges, the robot detects the sponge and

obtains the distance of the object from the base of the robot.
●​ This distance is passed as a goal point to the Navigation Stack and this will

make the robot move towards the object.
●​ When the robot reaches the object, a signal from the main processor is

provided to the Arduino Mega which controls the gripper to grab the
object.

●​ Once the object is picked, the final drop-off point is fed as the goal point to
the Navigation Stack through which the robot finally drops the object at
the goal point.

3.6.2​ Control Algorithm

This section covers the flowcharts and the algorithms developed for our
Control approach and the associated pseudo code.

Figure 3. 17: Overall Swarm System Flowchart

The flowchart depicted above shows the overall working of the Swarm
system.
This flowchart represents the working of the entire multi-robot coordinated
system, handling all the test cases accounted for. The robots are first initiated
where all the nodes are up and running and on standby waiting for the
callback. There are 3 flags Insearch, Handful and Goal_defined.
Insearch flag is:

●​ 1 when the robots are in search of a package.

●​ 0 when the robots have already found a package i.e., when it's no
longer searching.

Handful flag is:
●​ 1 when the robot is carrying the package
●​ 0 when the robot is not picking up or delivering a package.

Goal_defined is:
●​ 1 when the robot has been assigned a goal (this goal can be location of

the package or the drop point and not any other intermediate goal).
●​ 0 when the robot has not received a goal point.

These three flags are used for the priority inspection depicted in the upcoming
test cases.

The above-mentioned flags are preassigned with the values shown in the
beginning. The Handshake() function establishes communication between the
two robots, conducting a “ping” test to ensure stable communication link.
Initially the robots do not have knowledge about the distribution of the packages
in the environment and hence have no goal.
The goal_point variable is the parameter that is passed to the ROS Navigation
Stack to travel towards that particular coordinate. It is a 2D vector containing the
coordinate [x, y].
When the robot obtains the goal_point, the PathFinder() function gets
executed and it provides this goal to the Navigation Stack. In other words, the
function returns a goal_point value which will be used by other functions for
navigation.

The next_goal_point is now the current goal_point. This value is now passed
to the function navigation() which is responsible for robots' movement. The
system will verify if the robot has reached the goal_point using goal_reached
and if this Boolean value is false, navigation() function is revoked again till the
robot navigates to goal_point.

In parallel to this process the Insearch flag is checked for its value and when it
is 1 the node out_insearch() is started which executes the object detection
program.
Once an object is found it breaks out of the loop and evaluates the object
coordinates, using the get_object_coordinates().
This new coordinate is then assigned to goal_point and is passed on to the
PathFinder() so that the robot starts its movement towards this newly obtained
coordinate. Meanwhile the flag Insearch is lowered by changing its value to 0.
Once goal_point is reached, the flags are once again used to identify the
situation.
▪​ The Insearch flag is checked, if the value is found to be 1 then the robot has
reached its intermediate goal point and then requests PathFinder() for the next
goal_point.
▪​ Otherwise, if the value is 0 then there is a possibility that it may have reached

a drop point or an object coordinate.
▪​ To identify which case it is, the Handful flag is checked and if the vale is
found to be 0 then the robot has reached an object and is ready for pickup.
▪​ Conversely if the value is 1 then the robot has reached the drop point and
drops the package.
▪​ The Gripper_Grab() and Gripper_release() functions control the
action of picking and releasing, respectively.

The variable Tasks keeps the count of total packages to be replaced in the
warehouse and the count is decremented for every package dropped. Once all
the tasks are over Tasks=0 then the robot halts and that marks the end of the
operation.

Through this process, the flags are utilized in an effective way to complete the
coordinated task of pick-and-place operation by the autonomous robots.

The pseudo code for the entire algorithm is as shown below:

The next flowchart is a subsystem flowchart representing the operation of the
navigation part of the Control algorithm.

​

Figure 3. 18: Priority Scheduling algorithm

The nav_stack_start() handles all the ROS navigation stack nodes, which
handles all the tasks with respect to navigation. The only modification occurs
when it encounters a non-static obstacle, which for our case will be the other
robot.

Once a temporary obstacle is detected, the robot starts communicating with the
other robot, triggered using the function start_com_link(). Once both are
communicating, they gather data from sensor and odometry streams and decide
the priority among themselves. Initially both robots have a priority of 0 and
subsequently, based on the flag values the priority is incremented. The following
conditions are used for assigning the priority between the two robots for
different scenarios and test cases.

�​ Prioritization:
●​ Robot with the package is given higher priority.

●​ When both robots have a package, the robot nearest to the goal point
should be given higher priority.
●​ When both robots have no packages, the robot with pre-assigned priority
will start to detect packages.

Note: As soon as temporary obstacles are detected, either robot starts
communicating with the other about its status.

�​ Collision Avoidance:
The robot with higher priority will perform its operation while the other robot
will be halted until it no longer detects the robot in its FOV or path.
The table below represents the different situations that might occur and the
corresponding actions that are to be taken are illustrated.

Case Status of Robot A Status of Robot B
1.​ No temporary obstacle No temporary obstacle
2.​ No temporary obstacle Temporary Obstacle found
3.​ Temporary Obstacle found No temporary obstacle
4.​ Temporary Obstacle found Temporary Obstacle found

Table 3. 4: Temporary Obstacle Status

▪​ For Case 1 the robots continue on their path without interruption.
▪​ For Cases 2 and 3 the robots maintain their same path and when they are
arriving at the destination, the robot that has detected the temporary obstacle
will halt at some predetermined distance away from its destination for a certain
time and then resumes its operation.
▪​ For Case 4 the robots inspect priority and based on that, the robot with
higher priority takes a detour and continues its operation and the other robot
halts.

Based on these elementary rules and conditions, the Temporary Obstacle
situation is handled and Navigation Stack will maintain the navigation of the
robots until the goal point is reached.

4.​ RESULTS

This section demonstrates the working of the methods described in the
previous section and the corresponding analysis of the results obtained.

4.1​ Hardware Assembly and working

​ ​

Figure 4. 1: Main robot Hardware (Front view and Top view)

​ ​ ​ ​
Figure 4. 2: Robot connections

One of our deliverables for the project was to develop the hardware for
the two robots. As depicted by the above figure, we have integrated a
gripper to the robot chassis and all the other components described in
Section 3.1 are present onboard the robot.

4.2 Mapping
Maps generated by the Cartographer are quite accurate and were verified by

repeating the mapping process for different environments. The screenshots for
the different maps generated are shown below:

Figure 4. 3: Map (Occupancy grid) of a different room

Figure 4. 4: Map (Occupancy grid) of the environment used

4.3​ Localization

This table depicts the state estimation performed by our odometry code.
We have made our robot to move in different directions and measured the
Pose values from our odometry.
The coordinates are in the form of (x, y), where x and y are in meters
The robot was made to move in a straight line in the positive X direction and
made to move in reverse in the next iteration.
Other random movements were tested on the robot to validate the Odometry
information.

Direction of
movement

Ground truth pose
value
(x, y)

Estimated pose
(x, y)

Pose Error =
Ground truth –
Estimated Pose

X-direction (0.8,0) (0.77,0.13) (0.33, -0.13)

-X -direction (0,0,0) (0.07,0.12) (-0.07, -0.12)

Strafing and
reverse

(-0.2,0) (-0.17,0.15) (-0.03, -0.15)

In place rotation (0,0) (0.09,0.1) (-0.09, -0.1)

Table 4. 1: Odometry State Estimation Table

From these results, we concluded that our odometry is associated with slip and there is
error with state estimation. Hence, we are using AMCL localization based on depth
camera scans which is used to provide a better navigation for the autonomous robot.

4.4​ Computer Vision

The screenshot below shows the object being detected by the camera and
applying the bounding box over the sponge.

Figure 4. 5: Object detection by applying bounding box

The terminal shows the distance of the object from the camera which is shown
in the below screenshot:
​

Figure 4. 6: Object distance shown in terminal

This was the output obtained when the object was placed too close to the
camera.

The below observations depict the accuracy of the object detection by the ZED
mini camera.
We tested the accuracy in a room with a sufficient amount of brightness and
these were the results obtained for different test cases:

▪​ Without computing the average value of the nearest 8 neighbors:
Object
angle w.r.t
camera

Reading
#1(in m)

Reading
#2(in m)

Reading
#3(in m)

Average
distance
(in m)

Actual
distance
(in m)

Error
(in m)

250 1.29 1.28 1.3 1.29 1.1 0.19
900 1.4 1.36 1.38 1.38 1 0.38
38.620 1.27 1.26 1.27 1.27 1.28 0.1

Table 4. 2: Accuracy table without averaging

▪​ With computation of the average value of the nearest 8 neighbors:

Object
angle w.r.t
camera

Reading
#1(in m)

Reading
#2(in m)

Reading
#3(in m)

Average
distance
(in m)

Actual
distance
(in m)

Error
(in m)

250 1.093 1.091 1.093 1.092 1.1 0.008
900 1 0.985 0.991 0.992 1 0.008
38.620 1.23 1.22 1.2 1.216 1.28 0.064

Table 4. 3: Accuracy table with averaging

4.5​Navigation and Path-planning

The local costmap generated can be seen in the below screenshot:

Figure 4. 7: Local Costmap visualization in Rviz

When an obstacle is present in the field of view of the camera, the local
costmap gets updated automatically and this can be seen in the above
screenshot as pink blocks.

4.5 CONCLUSIONS AND FUTURE SCOPE

At the end of Phase 2 we have successfully developed an autonomous robot
which navigates around a known environment.
●​ Development of an application layer for Autonomous Navigation of a
mobile robot by using ROS
●​ Completion of different modules for mapping, object detection and
localization.
●​ Control algorithm design for task distribution and communication
between robots.

We could not implement the Navigation Stack on our second robot due to the
lack of a depth sensor and could not be acquired due to the present uncertain
circumstances. Since the sensor stream is a mandatory prerequisite for ROS
Navigation Stack, we could not make the second robot to perform autonomous
navigation.

There is a lot of scope and scalability involved with a project of this magnitude.
We have developed a completely scalable and portable Application Layer that
can be used with any other robot with some minor changes with the parameters
to suit the robot. With limited resources for computation, we have developed
quite accurate modules, considering a trade-off between the main 3 parameters:
cost, performance and power.
They can be replaced by more sophisticated algorithms with more advanced
microprocessors to obtain more accurate and precise results for advanced use
cases.

All the software components that have been developed in terms of our project
have been documented and compiled on GitHub:
GitHub project Repository

Some developments that can be made to the existing modules are:

1.​ Use more advanced algorithms for localization (SLAM, RTABmap, etc.) and

for path planning (RRT and RRT*, etc.).
2.​ Implement the designed Control Algorithm on the robots and test the

feasibility, accuracy and overall working.
3.​ Scale the application layer to multiple robots and deploy the robots to

perform real time tasks in any environment.

5​ REFERENCES and LINKS

1.​ A Novel Swarm Robot Simulation Platform for Warehousing Logistics by
Yandong Liu, Lujia Wang, and Cheng-Zhong Xu and Ming Liu: 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO)

2.​ Investigating the Democracy Behavior of Swarm Robots in the Case of a
Best-of-n Selection by Yann Pochon, Rolf Dornberger, Vivienne Jia Zhong and
Safak Korkut: 2018 IEEE Symposium Series on Computational Intelligence
(SSCI)

3.​ B. Yamauchi, "A frontier-based approach for autonomous exploration,"
Proceedings 1997 IEEE International Symposium on Computational Intelligence
in Robotics and Automation CIRA'97: Proceedings 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation CIRA'97. '

4.​ Depth Camera Based Indoor Mobile Robot Localization and Navigation by
Joydeep Biswas and Manuela Veloso: 2012 IEEE International Conference on
Robotics and Automation

5.​ Mauro, F.. “Towards the design of an effective and robust multi-robot parcel
sorting system.” (2017): 2017 Thesis Paper TU DELFT

6.​ Ben-Ari, Mordechai & Mondada, Francesco. (2018). Elements of Robotics.
Elements of Robotics. 10.1007/978-3-319-62533-1.

7.​ Springer Handbook of Robotics : Siciliano, Khatib (2008)

8.​ Planning Algorithms Textbook: Steven M.Lavalle

9.​ Sridharan, Anish; Patil, Vinay Venkanagoud; Bhat, Samarth; Venkatarangan, M J
(2020). [IEEE 2020 6th International Conference on Control, Automation and Robotics
(ICCAR) - Singapore, Singapore (2020.4.20-2020.4.23)] 2020 6th International
Conference on Control, Automation and Robotics (ICCAR) - Estimation and Control of
Nodes in an Abstract Space.
10.​ ROS Navigation Stack setup
11.​ ROS Navigation Stack setup
12.​ ROS Navigation
13.​ Setting up transform trees(tf)
14.​ Publishing odometry sources over ROS
15.​ Publishing sensor streams over ROS
16.​ Sending goals to the Navigation Stack
17.​ costmap_2D ROS Documentation
18.​ Navigation Stack Tuning guide
19.​ Navigation Stack Troubleshooting
20.​ map_server package wiki ROS page
21.​ tf Documentation
22.​ AMCL ROS Package

https://ieeexplore.ieee.org/xpl/conhome/8315403/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8315403/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8610062/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8610062/proceeding
https://ieeexplore.ieee.org/document/613851
https://ieeexplore.ieee.org/document/613851
https://ieeexplore.ieee.org/xpl/conhome/6215071/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6215071/proceeding
https://www.semanticscholar.org/paper/Towards-the-design-of-an-effective-and-robust-Mauro/5768030fa2b121b4a11d9060ce973cdf68281f54#citing-papers
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation#Hardware_Requirements
http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom
http://wiki.ros.org/navigation/Tutorials/RobotSetup/Sensors
http://wiki.ros.org/navigation/Tutorials/SendingSimpleGoals#Learning_more_about_map_navigation
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide
http://wiki.ros.org/navigation/Troubleshooting
http://wiki.ros.org/map_server
https://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/amcl

	Robotic Process Automation for Industrial Warehouses using Swarm Behavior
	ABSTRACT
	1 INTRODUCTION
	1.1​BACKGROUND
	1.2​MOTIVATION / PROBLEM STATEMENT
	1.3​RELATED WORK
	1.4​OBJECTIVE
	1.5​ASSUMPTIONS

	2.​EVALUATION OF METHODS
	2.1​Mapping methods:
	2.2​Localization methods:
	2.3​Navigation and Path planning:
	2.4​Computer Vision:
	2.5​Control Approach:

	3.​ METHODOLODY ADOPTED
	3.2​Mapping Approach
	3.3​Localization approach
	3.4​Computer Vision Implementation
	3.5​Navigation and Path planning approach
	3.5.1​Prerequisites for ROS Navigation Stack:
	3.5.2​Steps to set up ROS Navigation Stack on our Custom Robot:
	3.5.3​Navigation Stack Implementation
	3.6​Control Law Implementation
	3.6.1​Use Case Representation
	3.6.2​Control Algorithm

	4.​RESULTS
	4.1​Hardware Assembly and working
	4.2 Mapping
	4.3​Localization
	4.4​Computer Vision
	4.5​Navigation and Path-planning
	4.5 CONCLUSIONS AND FUTURE SCOPE

	5​ REFERENCES and LINKS

