
CERTIFICATE

This is to certify that the project titled Patient Information is an

authentic work of Kendriya Vidyalaya Ambarnath School (CBSE).

This work has been carried out under my supervision and guidance.

Mast…………………………………….from class: XII CBSE Roll NO:

……………………… was able to prepare the project in a systematic

manner.

Ms. Aparna Dhirde​ ​ External Examiner​

 Dept. of computer Principal

​ ​ ​ ​ ​ ​ KV Ambarnath

ACKNOWLEGEMENT

With profound sense of graduate and regard, I express my sincere thanks

to my guide mentor Ms. Aparna Dhirde for her valuable guidance and

the confidence she instilled in us, which helped me in successful

completion of this project report. Without her help, this project would

have been a distant affair. Her through understanding of the subject and

the professional guidance is needed of immense help to me.

I am also thankful to the faculty members of my school who cooperated
with us and gave me their valuable time.

Name:- Mast. ………………………..

Date:-

SYSTEM COVERS FOLLOWING THINGS

Python:-
Python is a general-purpose, high-level, interpreted, interactive and
object-oriented scripting language. Python is designed to be highly
readable. It has fewer syntactical constructions than other languages.

Characteristics of Python

Following are important characteristics of Python Programming −
●​ It supports functional and structured programming methods as

well as OOP.
●​ It can be used as a scripting language or can be compiled to

byte-code for building large applications.
●​ It provides very high-level dynamic data types and supports

dynamic type checking.
●​ It supports automatic garbage collection.
●​ It can be easily integrated with C, C++, COM, ActiveX, CORBA,

and Java.

Applications of Python

As mentioned before, Python is one of the most widely used language
over the web. I'm going to list few of them here:

●​ Easy-to-learn − Python has few keywords, simple structure, and a
clearly defined syntax. This allows the student to pick up the
language quickly.

●​ Easy-to-read − Python code is more clearly defined and visible to
the eyes.

●​ Easy-to-maintain − Python's source code is fairly
easy-to-maintain.

●​ A broad standard library − Python's bulk of the library is very
portable and cross-platform compatible on UNIX, Windows, and
Macintosh.

●​ Interactive Mode − Python has support for an interactive mode
which allows interactive testing and debugging of snippets of
code.

●​ Portable − Python can run on a wide variety of hardware
platforms and has the same interface on all platforms.

●​ Extendable − You can add low-level modules to the Python
interpreter. These modules enable programmers to add to or
customize their tools to be more efficient.

●​ Databases − Python provides interfaces to all major commercial
databases.

●​ GUI Programming − Python supports GUI applications that can
be created and ported to many system calls, libraries and windows
systems, such as Windows MFC, Macintosh, and the X Window
system of Unix.

●​ Scalable − Python provides a better structure and support for large
programs than shell scripting.

It contains so many modules as well as libraries like

1.​ Python Satndard Library which contains modules like Math,
Cmath, Random, URLlib ,

2.​ Numpy,
3.​ SciPyplot,
4.​ Tkinter

5.​ Matplotlib.

As well as various data structures like list, queue, stack.

Mysql:
Databse is defined as collection of interrelated data stored together to
serve multiple applications. And MySQL is the most popular Open
Source Relational SQL Database Management System. MySQL is one
of the best RDBMS being used for developing various web-based
software applications.

We use SQL in mysql in order to access data, manipulate data.
SQL stands for Structured Query Language SQL is a database
computer language designed for the retrieval and management of data in
a relational database. And has clearly established itself as a standard
relational database language.

SQL is divided into Data Definition Language (DDL), Data
Manipulation Language(DML), Transaction Control Language(TCL).

SOURCE CODE –PAITENT DATABASE

import tkinter

import tkinter.ttk

import tkinter.messagebox

import sqlite3

import mysql.connector

class Database:

def __init__(self):

self.dbConnection = sqlite3.connect("dbFile.db")

self.dbCursor = self.dbConnection.cursor()

self.dbCursor.execute("CREATE TABLE IF NOT EXISTS patient_info
(id PRIMARYKEY text, fName text, lName text, dob text, mob text,
yob text, gender text, address text, phone text, email text, bloodGroup
text, history text, doctor text)")

def __del__(self):

self.dbCursor.close()

self.dbConnection.close()

def Insert(self, id, fName, lName, dob, mob, yob, gender, address,
phone, email, bloodGroup, history, doctor):

self.dbCursor.execute("INSERT INTO patient_info VALUES (?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?)", (id, fName, lName, dob, mob, yob, gender,
address, phone, email, bloodGroup, history, doctor))

self.dbConnection.commit()

def Update(self, fName, lName, dob, mob, yob, gender, address, phone,
email, bloodGroup, history, doctor, id):

self.dbCursor.execute("UPDATE patient_info SET fName = ?, lName =
?, dob = ?, mob = ?, yob = ?, gender = ?, address = ?, phone = ?, email =
?, bloodGroup = ?, history = ?, doctor = ? WHERE id = ?", (fName,
lName, dob, mob, yob, gender, address, phone, email, bloodGroup,
history, doctor, id))

self.dbConnection.commit()

def Search(self, id):

self.dbCursor.execute("SELECT * FROM patient_info WHERE id = ?",
(id,))

searchResults = self.dbCursor.fetchall()

return searchResults

def Delete(self, id):

self.dbCursor.execute("DELETE FROM patient_info WHERE id = ?",
(id,))

self.dbConnection.commit()

def Display(self):

self.dbCursor.execute("SELECT * FROM patient_info")

records = self.dbCursor.fetchall()

return records

class Values:

def Validate(self, id, fName, lName, phone, email, history, doctor):

if not (id.isdigit() and (len(id) == 3)):

return "id"

elif not (fName.isalpha()):

return "fName"

elif not (lName.isalpha()):

return "lName"

elif not (phone.isdigit() and (len(phone) == 10)):

return "phone"

elif not (email.count("@") == 1 and email.count(".") > 0):

return "email"

elif not (history.isalpha()):

return "history"

elif not (doctor.isalpha()):

return "doctor"

else:

return "SUCCESS"

class InsertWindow:

def __init__(self):

self.window = tkinter.Tk()

self.window.wm_title("Insert data")

Initializing all the variables

self.id = tkinter.StringVar()

self.fName = tkinter.StringVar()

self.lName = tkinter.StringVar()

self.address = tkinter.StringVar()

self.phone = tkinter.StringVar()

self.email = tkinter.StringVar()

self.history = tkinter.StringVar()

self.doctor = tkinter.StringVar()

self.genderList = ["Male", "Female", "Transgender", "Other"]

self.dateList = list(range(1, 32))

self.monthList = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December"]

self.yearList = list(range(1900, 2020))

self.bloodGroupList = ["A+", "A-", "B+", "B-", "O+", "O-", "AB+",
"AB-"]

Labels

tkinter.Label(self.window, text = "Patient ID", width = 25).grid(pady =
5, column = 1, row = 1)

tkinter.Label(self.window, text = "First Name", width = 25).grid(pady =
5, column = 1, row = 2)

tkinter.Label(self.window, text = "Last Name", width = 25).grid(pady =
5, column = 1, row = 3)

tkinter.Label(self.window, text = "D.O.B", width = 25).grid(pady = 5,
column = 1, row = 4)

tkinter.Label(self.window, text = "M.O.B", width = 25).grid(pady = 5,
column = 1, row = 5)

tkinter.Label(self.window, text = "Y.O.B", width = 25).grid(pady = 5,
column = 1, row = 6)

tkinter.Label(self.window, text = "Gender", width = 25).grid(pady = 5,
column = 1, row = 7)

tkinter.Label(self.window, text = "Home Address", width =
25).grid(pady = 5, column = 1, row = 8)

tkinter.Label(self.window, text = "Phone Number", width =
25).grid(pady = 5, column = 1, row = 9)

tkinter.Label(self.window, text = "Email ID", width = 25).grid(pady = 5,
column = 1, row = 10)

tkinter.Label(self.window, text = "Blood Group", width = 25).grid(pady
= 5, column = 1, row = 11)

tkinter.Label(self.window, text = "Patient History", width =
25).grid(pady = 5, column = 1, row = 12)

tkinter.Label(self.window, text = "Doctor", width = 25).grid(pady = 5,
column = 1, row = 13)

Fields

Entry widgets

self.idEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.id)

self.fNameEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.fName)

self.lNameEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.lName)

self.addressEntry = tkinter.Entry(self.window, width = 25, textvariable
= self.address)

self.phoneEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.phone)

self.emailEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.email)

self.historyEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.history)

self.doctorEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.doctor)

self.idEntry.grid(pady = 5, column = 3, row = 1)

self.fNameEntry.grid(pady = 5, column = 3, row = 2)

self.lNameEntry.grid(pady = 5, column = 3, row = 3)

self.addressEntry.grid(pady = 5, column = 3, row = 8)

self.phoneEntry.grid(pady = 5, column = 3, row = 9)

self.emailEntry.grid(pady = 5, column = 3, row = 10)

self.historyEntry.grid(pady = 5, column = 3, row = 12)

self.doctorEntry.grid(pady = 5, column = 3, row = 13)

Combobox widgets

self.dobBox = tkinter.ttk.Combobox(self.window, values = self.dateList,
width = 20)

self.mobBox = tkinter.ttk.Combobox(self.window, values =
self.monthList, width = 20)

self.yobBox = tkinter.ttk.Combobox(self.window, values = self.yearList,
width = 20)

self.genderBox = tkinter.ttk.Combobox(self.window, values =
self.genderList, width = 20)

self.bloodGroupBox = tkinter.ttk.Combobox(self.window, values =
self.bloodGroupList, width = 20)

self.dobBox.grid(pady = 5, column = 3, row = 4)

self.mobBox.grid(pady = 5, column = 3, row = 5)

self.yobBox.grid(pady = 5, column = 3, row = 6)

self.genderBox.grid(pady = 5, column = 3, row = 7)

self.bloodGroupBox.grid(pady = 5, column = 3, row = 11)

Button widgets

tkinter.Button(self.window, width = 20, text = "Insert", command =
self.Insert).grid(pady = 15, padx = 5, column = 1, row = 14)

tkinter.Button(self.window, width = 20, text = "Reset", command =
self.Reset).grid(pady = 15, padx = 5, column = 2, row = 14)

tkinter.Button(self.window, width = 20, text = "Close", command =
self.window.destroy).grid(pady = 15, padx = 5, column = 3, row = 14)

self.window.mainloop()

def Insert(self):

self.values = Values()

self.database = Database()

self.test = self.values.Validate(self.idEntry.get(), self.fNameEntry.get(),
self.lNameEntry.get(), self.phoneEntry.get(), self.emailEntry.get(),
self.historyEntry.get(), self.doctorEntry.get())

if (self.test == "SUCCESS"):

self.database.Insert(self.idEntry.get(), self.fNameEntry.get(),
self.lNameEntry.get(), self.dobBox.get(), self.mobBox.get(),
self.yobBox.get(), self.genderBox.get(), self.addressEntry.get(),
self.phoneEntry.get(), self.emailEntry.get(), self.bloodGroupBox.get(),
self.historyEntry.get(), self.doctorEntry.get())

tkinter.messagebox.showinfo("Inserted data", "Successfully inserted the
above data in the database")

else:

self.valueErrorMessage = "Invalid input in field " + self.test

tkinter.messagebox.showerror("Value Error", self.valueErrorMessage)

def Reset(self):

self.idEntry.delete(0, tkinter.END)

self.fNameEntry.delete(0, tkinter.END)

self.lNameEntry.delete(0, tkinter.END)

self.dobBox.set("")

self.mobBox.set("")

self.yobBox.set("")

self.genderBox.set("")

self.addressEntry.delete(0, tkinter.END)

self.phoneEntry.delete(0, tkinter.END)

self.emailEntry.delete(0, tkinter.END)

self.bloodGroupBox.set("")

self.historyEntry.delete(0, tkinter.END)

self.doctorEntry.delete(0, tkinter.END)

class UpdateWindow:

def __init__(self, id):

self.window = tkinter.Tk()

self.window.wm_title("Update data")

Initializing all the variables

self.id = id

self.fName = tkinter.StringVar()

self.lName = tkinter.StringVar()

self.address = tkinter.StringVar()

self.phone = tkinter.StringVar()

self.email = tkinter.StringVar()

self.history = tkinter.StringVar()

self.doctor = tkinter.StringVar()

self.genderList = ["Male", "Female", "Transgender", "Other"]

self.dateList = list(range(1, 32))

self.monthList = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December"]

self.yearList = list(range(1900, 2020))

self.bloodGroupList = ["A+", "A-", "B+", "B-", "O+", "O-", "AB+",
"AB-"]

Labels

tkinter.Label(self.window, text = "Patient ID", width = 25).grid(pady =
5, column = 1, row = 1)

tkinter.Label(self.window, text = id, width = 25).grid(pady = 5, column
= 3, row = 1)

tkinter.Label(self.window, text = "First Name", width = 25).grid(pady =
5, column = 1, row = 2)

tkinter.Label(self.window, text = "Last Name", width = 25).grid(pady =
5, column = 1, row = 3)

tkinter.Label(self.window, text = "D.O.B", width = 25).grid(pady = 5,
column = 1, row = 4)

tkinter.Label(self.window, text = "M.O.B", width = 25).grid(pady = 5,
column = 1, row = 5)

tkinter.Label(self.window, text = "Y.O.B", width = 25).grid(pady = 5,
column = 1, row = 6)

tkinter.Label(self.window, text = "Gender", width = 25).grid(pady = 5,
column = 1, row = 7)

tkinter.Label(self.window, text = "Home Address", width =
25).grid(pady = 5, column = 1, row = 8)

tkinter.Label(self.window, text = "Phone Number", width =
25).grid(pady = 5, column = 1, row = 9)

tkinter.Label(self.window, text = "Email ID", width = 25).grid(pady = 5,
column = 1, row = 10)

tkinter.Label(self.window, text = "Blood Group", width = 25).grid(pady
= 5, column = 1, row = 11)

tkinter.Label(self.window, text = "Patient History", width =
25).grid(pady = 5, column = 1, row = 12)

tkinter.Label(self.window, text = "Doctor", width = 25).grid(pady = 5,
column = 1, row = 13)

Set previous values

self.database = Database()

self.searchResults = self.database.Search(id)

tkinter.Label(self.window, text = self.searchResults[0][1], width =
25).grid(pady = 5, column = 2, row = 2)

tkinter.Label(self.window, text = self.searchResults[0][2], width =
25).grid(pady = 5, column = 2, row = 3)

tkinter.Label(self.window, text = self.searchResults[0][3], width =
25).grid(pady = 5, column = 2, row = 4)

tkinter.Label(self.window, text = self.searchResults[0][4], width =
25).grid(pady = 5, column = 2, row = 5)

tkinter.Label(self.window, text = self.searchResults[0][5], width =
25).grid(pady = 5, column = 2, row = 6)

tkinter.Label(self.window, text = self.searchResults[0][6], width =
25).grid(pady = 5, column = 2, row = 7)

tkinter.Label(self.window, text = self.searchResults[0][7], width =
25).grid(pady = 5, column = 2, row = 8)

tkinter.Label(self.window, text = self.searchResults[0][8], width =
25).grid(pady = 5, column = 2, row = 9)

tkinter.Label(self.window, text = self.searchResults[0][9], width =
25).grid(pady = 5, column = 2, row = 10)

tkinter.Label(self.window, text = self.searchResults[0][10], width =
25).grid(pady = 5, column = 2, row = 11)

tkinter.Label(self.window, text = self.searchResults[0][11], width =
25).grid(pady = 5, column = 2, row = 12)

tkinter.Label(self.window, text = self.searchResults[0][12], width =
25).grid(pady = 5, column = 2, row = 13)

Fields

Entry widgets

self.fNameEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.fName)

self.lNameEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.lName)

self.addressEntry = tkinter.Entry(self.window, width = 25, textvariable
= self.address)

self.phoneEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.phone)

self.emailEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.email)

self.historyEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.history)

self.doctorEntry = tkinter.Entry(self.window, width = 25, textvariable =
self.doctor)

self.fNameEntry.grid(pady = 5, column = 3, row = 2)

self.lNameEntry.grid(pady = 5, column = 3, row = 3)

self.addressEntry.grid(pady = 5, column = 3, row = 8)

self.phoneEntry.grid(pady = 5, column = 3, row = 9)

self.emailEntry.grid(pady = 5, column = 3, row = 10)

self.historyEntry.grid(pady = 5, column = 3, row = 12)

self.doctorEntry.grid(pady = 5, column = 3, row = 13)

Combobox widgets

self.dobBox = tkinter.ttk.Combobox(self.window, values = self.dateList,
width = 20)

self.mobBox = tkinter.ttk.Combobox(self.window, values =
self.monthList, width = 20)

self.yobBox = tkinter.ttk.Combobox(self.window, values = self.yearList,
width = 20)

self.genderBox = tkinter.ttk.Combobox(self.window, values =
self.genderList, width = 20)

self.bloodGroupBox = tkinter.ttk.Combobox(self.window, values =
self.bloodGroupList, width = 20)

self.dobBox.grid(pady = 5, column = 3, row = 4)

self.mobBox.grid(pady = 5, column = 3, row = 5)

self.yobBox.grid(pady = 5, column = 3, row = 6)

self.genderBox.grid(pady = 5, column = 3, row = 7)

self.bloodGroupBox.grid(pady = 5, column = 3, row = 11)

Button widgets

tkinter.Button(self.window, width = 20, text = "Update", command =
self.Update).grid(pady = 15, padx = 5, column = 1, row = 14)

tkinter.Button(self.window, width = 20, text = "Reset", command =
self.Reset).grid(pady = 15, padx = 5, column = 2, row = 14)

tkinter.Button(self.window, width = 20, text = "Close", command =
self.window.destroy).grid(pady = 15, padx = 5, column = 3, row = 14)

self.window.mainloop()

def Update(self):

self.database = Database()

self.database.Update(self.fNameEntry.get(), self.lNameEntry.get(),
self.dobBox.get(), self.mobBox.get(), self.yobBox.get(),

self.genderBox.get(), self.addressEntry.get(), self.phoneEntry.get(),
self.emailEntry.get(), self.bloodGroupBox.get(), self.historyEntry.get(),
self.doctorEntry.get(), self.id)

tkinter.messagebox.showinfo("Updated data", "Successfully updated the
above data in the database")

def Reset(self):​

self.fNameEntry.delete(0, tkinter.END)

self.lNameEntry.delete(0, tkinter.END)

self.dobBox.set("")

self.mobBox.set("")

self.yobBox.set("")

self.genderBox.set("")

self.addressEntry.delete(0, tkinter.END)

self.phoneEntry.delete(0, tkinter.END)

self.emailEntry.delete(0, tkinter.END)

self.bloodGroupBox.set("")

self.historyEntry.delete(0, tkinter.END)

self.doctorEntry.delete(0, tkinter.END)

class DatabaseView:

def __init__(self, data):

self.databaseViewWindow = tkinter.Tk()

self.databaseViewWindow.wm_title("Database View")

Label widgets

tkinter.Label(self.databaseViewWindow, text = "Database View
Window", width = 25).grid(pady = 5, column = 1, row = 1)

self.databaseView = tkinter.ttk.Treeview(self.databaseViewWindow)

self.databaseView.grid(pady = 5, column = 1, row = 2)

self.databaseView["show"] = "headings"

self.databaseView["columns"] = ("id", "fName", "lName", "dob",
"mob", "yob", "gender", "address", "phone", "email", "bloodGroup",
"history", "doctor")

Treeview column headings

self.databaseView.heading("id", text = "ID")

self.databaseView.heading("fName", text = "First Name")

self.databaseView.heading("lName", text = "Last Name")

self.databaseView.heading("dob", text = "D.O.B")

self.databaseView.heading("mob", text = "M.O.B")

self.databaseView.heading("yob", text = "Y.O.B")

self.databaseView.heading("gender", text = "Gender")

self.databaseView.heading("address", text = "Home Address")

self.databaseView.heading("phone", text = "Phone Number")

self.databaseView.heading("email", text = "Email ID")

self.databaseView.heading("bloodGroup", text = "Blood Group")

self.databaseView.heading("history", text = "History")

self.databaseView.heading("doctor", text = "Doctor")

Treeview columns

self.databaseView.column("id", width = 40)

self.databaseView.column("fName", width = 100)

self.databaseView.column("lName", width = 100)

self.databaseView.column("dob", width = 60)

self.databaseView.column("mob", width = 60)

self.databaseView.column("yob", width = 60)

self.databaseView.column("gender", width = 60)

self.databaseView.column("address", width = 200)

self.databaseView.column("phone", width = 100)

self.databaseView.column("email", width = 200)

self.databaseView.column("bloodGroup", width = 100)

self.databaseView.column("history", width = 100)

self.databaseView.column("doctor", width = 100)

for record in data:

self.databaseView.insert('', 'end', values=(record))

self.databaseViewWindow.mainloop()

class SearchDeleteWindow:

def __init__(self, task):

window = tkinter.Tk()

window.wm_title(task + " data")

Initializing all the variables

self.id = tkinter.StringVar()

self.fName = tkinter.StringVar()

self.lName = tkinter.StringVar()

self.heading = "Please enter Patient ID to " + task

Labels

tkinter.Label(window, text = self.heading, width = 50).grid(pady = 20,
row = 1)

tkinter.Label(window, text = "Patient ID", width = 10).grid(pady = 5,
row = 2)

Entry widgets

self.idEntry = tkinter.Entry(window, width = 5, textvariable = self.id)

self.idEntry.grid(pady = 5, row = 3)

Button widgets

if (task == "Search"):

tkinter.Button(window, width = 20, text = task, command =
self.Search).grid(pady = 15, padx = 5, column = 1, row = 14)

elif (task == "Delete"):

tkinter.Button(window, width = 20, text = task, command =
self.Delete).grid(pady = 15, padx = 5, column = 1, row = 14)

def Search(self):

self.database = Database()

self.data = self.database.Search(self.idEntry.get())

self.databaseView = DatabaseView(self.data)

def Delete(self):

self.database = Database()

self.database.Delete(self.idEntry.get())

class HomePage:

def __init__(self):

self.homePageWindow = tkinter.Tk()

self.homePageWindow.wm_title("Patient Information System")

tkinter.Label(self.homePageWindow, text = "Home Page", width =
100).grid(pady = 20, column = 1, row = 1)

tkinter.Button(self.homePageWindow, width = 20, text = "Insert",
command = self.Insert).grid(pady = 15, column = 1, row = 2)

tkinter.Button(self.homePageWindow, width = 20, text = "Update",
command = self.Update).grid(pady = 15, column = 1, row = 3)

tkinter.Button(self.homePageWindow, width = 20, text = "Search",
command = self.Search).grid(pady = 15, column = 1, row = 4)

tkinter.Button(self.homePageWindow, width = 20, text = "Delete",
command = self.Delete).grid(pady = 15, column = 1, row = 5)

tkinter.Button(self.homePageWindow, width = 20, text = "Display",
command = self.Display).grid(pady = 15, column = 1, row = 6)

tkinter.Button(self.homePageWindow, width = 20, text = "Exit",
command = self.homePageWindow.destroy).grid(pady = 15, column = 1,
row = 7)

self.homePageWindow.mainloop()

def Insert(self):

self.insertWindow = InsertWindow()

def Update(self):

self.updateIDWindow = tkinter.Tk()

self.updateIDWindow.wm_title("Update data")

Initializing all the variables

self.id = tkinter.StringVar()

Label

tkinter.Label(self.updateIDWindow, text = "Enter the ID to update",
width = 50).grid(pady = 20, row = 1)

Entry widgets

self.idEntry = tkinter.Entry(self.updateIDWindow, width = 5,
textvariable = self.id)

self.idEntry.grid(pady = 10, row = 2)

Button widgets

tkinter.Button(self.updateIDWindow, width = 20, text = "Update",
command = self.updateID).grid(pady = 10, row = 3)

self.updateIDWindow.mainloop()

def updateID(self):

self.updateWindow = UpdateWindow(self.idEntry.get())

self.updateIDWindow.destroy()

def Search(self):

self.searchWindow = SearchDeleteWindow("Search")

def Delete(self):

self.deleteWindow = SearchDeleteWindow("Delete")

def Display(self):

self.database = Database()

self.data = self.database.Display()

self.displayWindow = DatabaseView(self.data)

homePage = HomePage()

output for the home page

 Output for the inserting info

Output for updating database

Output for search in database

2

Output for delete data

Output for display data

System requirement

Hardware:
CPU: Intel Pentium P6200

Hard Disk: 500GB

RAM: 4GB

VDU: Video Display Adaptar

Software:
Platform: Windows 7 and above

Programming Languages: Python, Mysql

BIBLIOGRAPHY

1.TEXTBOOK

2. REFERENCE BOOK – Think Python​

​ ​ ​ ​ The complete reference - MySQL

​ ​ ​

3. ONLINE TUTORIALS- www.w3schools.com

www.tutorialspoints.com

www.python.org

4.ONLINE VISUAL REFERNCES- www.edureka.com

​ ​ ​ ​ ​ ​ www.Udemy.com

​ ​ ​ ​ ​ ​

http://www.w3schools.com
http://www.tutorialspoints.com
http://www.python.org
http://www.edureka.com
http://www.udemy.com

