

MIT App Inventor

Google Summer of Code

3D Components in App Inventor

An approach to enhance the functionality of MIT App Inventor

by adding support of 3D components using OpenGL

 Preet Vadaliya

mailto:preetvadaliya.ict18@gmail.com

Table of Contents

Introduction​ 4

Interest in MIT App Inventor​ 4

Interest In Introductory Programming​ 4

Experience with teams, online developer communities, and large codebases​ 5

Experience with Development Tools​ 5

Abstract​ 6

Use Cases​ 6

Impact on App Inventor's Educational Mission​ 6

Origin of Idea​ 6

Deliverables​ 7

Basic of OpenGL ES​ 8

Changes to AndroidManifest.xml​ 8

GLSurfaceView​ 8

GLSurfaceView.Renderer​ 8

Implementation in App Inventor​ 9

Space​ 9

Execution Flow​ 9

AIGLSurfaceView.java​ 9

AIGLRenderer.java​ 10

3D Objects​ 11

Cube Example​ 11

Design Challenge​ 14

Problem​ 14

Solution​ 14

UseFront Property​ 14

Taking photos automatically​ 15

Add SurfaceView Component​ 15

Application Challenge​ 15

Long Answers

Introduction
MIT App Inventor is a web application that allows everyone to build fully functional

apps for smartphones and tablets by using a visual programming interface. It was

and still is a game-changer in the world of android app development. It allows users

to create android apps without having to write a single line of code. You can make a

fully functional app by just dragging and dropping some blocks.

Interest in MIT App Inventor
Initially, I didn't know that MIT App Inventor is used to create fully-functional

Android apps without coding, I was using it to create an app for home automation

with Firebase and NodeMCU, then once I was looking at the component of the

components pallet, I realized that I could use it to create an Android app and my

great journey began with the MIT App Inventor.

Then day by day my interest grew. First I started with extension development,

open-source contributions, and a lot of other stuff related to App Inventor.

I am now a community leader in the MIT App Inventor open source community and

an external collaborator with the App Inventor project on GitHub.

Interest In Introductory Programming
I have been programming for the last few years and I have good knowledge of Java,

Python, and JavaScript. I also have intermediate-level knowledge of Dart, C++, and

C. I have some experience teaching MIT App Inventor. Currently, I am teaching App

Inventor to my junior students.

Experience with teams, online developer
communities, and large codebases
I have been working with the App Inventor team for the last year, and recently I was

promoted as a community leader in the open-source MIT App Inventor global

community. Also, I was the most successful external collaborator of the year 2021,

with a total of 10 pull requests merged and 15 opened pull requests in the year

2021, I was also part of the Google Summer of Code 2021 and I am very well familiar

with the development process of the MIT App Inventor.

Experience with Development Tools
 never used

it

some

experience

extensive

experience

Java ✅

JavaScript ✅

Android development with the Java SDK ✅

Git/Github ✅

Automated testing (JUnit, phantomJS) ✅

JavaDoc ✅

Google Web Toolkit ✅

Google App Engine ✅

Blockly ✅

Google Closure library and compiler ✅

Project Proposal

Abstract
As we all know that we have a very good system for rendering and manipulating 2D

shapes in the App using the canvas component, but currently, there is no rendering

and manipulating system for 3D shapes, this project will add a new rendering and

manipulating system for 3D shapes using OpenGL ES.

Use Cases
There are lots of use cases for 3D visualization, some of them are mentioned

below…

1.​ 3D modeling & shape drawing

2.​ 3D Game development

3.​ It will open a new door of development in Augmented Reality (Using AR Core)

Impact on App Inventor's Educational Mission
Well, this feature can be of great help to the MIT App Inventor Education Mission...

1.​ As we all know we have a large number of student users, it can help them to

create their school project, for example, the Solar System model can also help

teachers in teaching.

2.​ We currently have some cool 2D games and drawing projects using the canvas

component. This project can help us extend the functionality of the projects

we already have.

Origin of Idea
The proposal idea is taken from one of the feature requests originally listed on

GitHub; the original feature request was created by Evan W. Patton. Here is the link

to the feature request: check it out.

https://github.com/mit-cml/appinventor-sources/issues/2585

Deliverables
The project is a bit long, we will not only add the new 3D surface (in which the

object will be rendered), but we will also add some basic 3D shapes that will help

beginners.

Similar to 2D drawing (Drawing and Animation), it will add a new component

category for 3D visualization.

​New component category 3D Drawings and Animation.

​3D shapes holder Space component.

​AR SurfaceView

​Realtime plane detection

​Basic 3D shapes.

​Cube

​Pyramid

​Sprites

​Other custom 3D shapes using coordinates.

 Note

1.​ Adding a new Components Category for 3D elements is just an idea, I will

finalize it after discussing with my mentors.

2.​ The name Space is just to indicate that it may change in actual

implementation.

3.​ As discussed with He suggested that I create separate Evan Patton

components for each 3D shape.

mailto:ewpatton@gmail.com

Implementation

Basic of OpenGL ES
Android supports OpenGL both through its framework API and the Native

Development Kit(NDK); this proposal focuses on the Android framework API

interfaces. There are two fundamental classes in the Android framework that let

you help in rendering and manipulating graphics with the OpenGL ES API:

 OpenGL requirements:

●​ Since we are using OpenGL we need to make some changes to the

AndroidManifest.xml file.

1.​ Tell the system this app requires OpenGL ES.

2.​ Select the OpenGL Version.

Changes to AndroidManifest.xml

<!-- Tell the system this app requires OpenGL ES 2.0. -->
<uses-feature android:glEsVersion="0x00020000" android:required="true" />

ActivityManager activityManager = (ActivityManager)
getSystemService(Context.ACTIVITY_SERVICE);

ConfigurationInfo configurationInfo =
activityManager.getDeviceConfigurationInfo();

configurationInfo.getGlEsVersion();
configurationInfo.reqGlEsVersion >= 0x30000;

configurationInfo.reqGlEsVersion;

GLSurfaceView

This class is a View where we can draw and manipulate objects using OpenGL API

calls, we can use this class by creating an instance of GLSurfaceView and adding

your Renderer to it, However, if we want to capture touch screen events, we should

extend the GLSurfaceView class to implement the touch listeners.

GLSurfaceView.Renderer
This interface defines the methods required for drawing graphics in a

GLSurfaceView, we must provide an implementation of this interface as a separate

class and attach it to our GLSurfaceView.

Implementation in App Inventor
To implement OpenGL ES in App Inventor, we need to do two things …

1.​ Implementation of GLSurfaceView.

2.​ Create our own renderer using GLSurfaceView.Renderer.

Space

Space will be a simple visible component that will capture all 3D shapes and 2D

surfaces at runtime just like canvas in a 2D drawing.

Execution Flow
1.​ Space also extends to the AndroidViewComponent as another visible

component.

2.​ When a new instance of Space is created, it will internally create an instance

of AIGLSurfaceView and wrap it around a LinearLayout.

3.​ It will then set up some configurations like the OpenGL ES version, Renderer.

 How about User Input?

●​ If we want an interactive application (like a game), we will typically subclass

GLSurfaceView, because that's an easy way of obtaining input events.

AIGLSurfaceView.java

package com.google.appinventor.components.runtime;

import android.content.Context;
import android.opengl.GLSurfaceView;

public class AIGLSurfaceView extends GLSurfaceView {

 public AIGLSurfaceView(Context context) {
 super(context);
 }

}

AIGLRenderer.java
AIGLRenderer will be the main renderer for all 3D objects and AR surfaces, it will

contain rendering properties like background color, line width, and background

image (if we want to render an object on a real plane)

package com.google.appinventor.components.runtime;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.content.Context;
import android.opengl.GLSurfaceView;

import android.opengl.GLU;

public class MyGLRenderer implements GLSurfaceView.Renderer {

 Context context;

 public MyGLRenderer(Context context) {

 this.context = context;
 }

 @Override

 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 }

 @Override

 public void onSurfaceChanged(GL10 gl, int width, int height) {

 }

 @Override

 public void onDrawFrame(GL10 gl) {

 }

}

3D Objects
Similar to sprites in 2D canvas we will follow the same approach for 3D objects,

every 3D object should extend the same class which has some common methods

like rendering etc.

Cube Example
package com.google.appinventor.components.runtime;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import javax.microedition.khronos.opengles.GL10;

public class Cube {

 private FloatBuffer vertexBuffer; // Buffer for vertex-array
 private int numFaces = 6;

 private float[][] colors = { // Colors of the 6 faces
 {1.0f, 0.5f, 0.0f, 1.0f}, // 0. orange

 {1.0f, 0.0f, 1.0f, 1.0f}, // 1. violet
 {0.0f, 1.0f, 0.0f, 1.0f}, // 2. green

 {0.0f, 0.0f, 1.0f, 1.0f}, // 3. blue

 {1.0f, 0.0f, 0.0f, 1.0f}, // 4. red
 {1.0f, 1.0f, 0.0f, 1.0f} // 5. yellow

 };

 private float[] vertices = { // Vertices of the 6 faces

 // FRONT
 -1.0f, -1.0f, 1.0f, // 0. left-bottom-front

 1.0f, -1.0f, 1.0f, // 1. right-bottom-front
 -1.0f, 1.0f, 1.0f, // 2. left-top-front

 1.0f, 1.0f, 1.0f, // 3. right-top-front

 // BACK
 1.0f, -1.0f, -1.0f, // 6. right-bottom-back

 -1.0f, -1.0f, -1.0f, // 4. left-bottom-back
 1.0f, 1.0f, -1.0f, // 7. right-top-back

 -1.0f, 1.0f, -1.0f, // 5. left-top-back

 // LEFT
 -1.0f, -1.0f, -1.0f, // 4. left-bottom-back

 -1.0f, -1.0f, 1.0f, // 0. left-bottom-front

 -1.0f, 1.0f, -1.0f, // 5. left-top-back

 -1.0f, 1.0f, 1.0f, // 2. left-top-front
 // RIGHT

 1.0f, -1.0f, 1.0f, // 1. right-bottom-front

 1.0f, -1.0f, -1.0f, // 6. right-bottom-back

 1.0f, 1.0f, 1.0f, // 3. right-top-front

 1.0f, 1.0f, -1.0f, // 7. right-top-back
 // TOP

 -1.0f, 1.0f, 1.0f, // 2. left-top-front

 1.0f, 1.0f, 1.0f, // 3. right-top-front

 -1.0f, 1.0f, -1.0f, // 5. left-top-back

 1.0f, 1.0f, -1.0f, // 7. right-top-back
 // BOTTOM

 -1.0f, -1.0f, -1.0f, // 4. left-bottom-back

 1.0f, -1.0f, -1.0f, // 6. right-bottom-back

 -1.0f, -1.0f, 1.0f, // 0. left-bottom-front

 1.0f, -1.0f, 1.0f // 1. right-bottom-front
 };

 // Constructor - Set up the buffers

 public Cube() {

 // Setup vertex-array buffer. Vertices in float. An float has 4 bytes
 ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);

 vbb.order(ByteOrder.nativeOrder()); // Use native byte order

 vertexBuffer = vbb.asFloatBuffer(); // Convert from byte to float

 vertexBuffer.put(vertices); // Copy data into buffer

 vertexBuffer.position(0); // Rewind
 }

 // Draw the shape

 public void draw(GL10 gl) {

 gl.glFrontFace(GL10.GL_CCW); // Front face in counter-clockwise
orientation

 gl.glEnable(GL10.GL_CULL_FACE); // Enable cull face

 gl.glCullFace(GL10.GL_BACK); // Cull the back face (don't display)

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);

 // Render all the faces

 for (int face = 0; face < numFaces; face++) {

 // Set the color for each of the faces

 gl.glColor4f(colors[face][0], colors[face][1], colors[face][2],
colors[face][3]);

 // Draw the primitive from the vertex-array directly

 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, face*4, 4);

 }

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisable(GL10.GL_CULL_FACE);

 }

}

Output(This demo is implemented in App Inventor)1

1 Here I am only mentioning the code for the Cube example but Pyramid is also working fine with App Inventor.

Discussion with Evan Patton
First of all I would like to thank Evan Patton Sir for guiding me to make this

proposal. I discussed it with him almost everyday. Here is the summary of the talk…

1.​ We will use ARCore as much as possible to render 3D objects on a real plane.

2.​ We will try to follow Nichole Clarke's thesis in which she applied it for iOS.

3.​ Each 3D component will be a first order component.

4.​ First we will try to implement an example in Android Studio and then try to

replicate it in App Inventor.

5.​ Work done before GSOC proposal

a.​ Simple shape rendering on GLSurfaceView (Android & App Inventor).

b.​ Custom 3D object on GLSurfaceView (App Inventor).

c.​ Plane detection with ARCore (Android Studio).

Object placing and surface detection on Android Studio.

mailto:ewpatton@gmail.com

Application Prerequisites

Design Challenge

Problem
App Inventor has a Camera component to take pictures with your device’s camera.

The Paint Pot Extended with Camera tutorial is a good example of that. There used

to be a property called ‘useFront’ that unfortunately had stopped working with

newer releases of the Android OS. As explained in the reference doc, the property

would allow an App Inventor developer to use the front camera as a default when

opening up the Camera (note that the user would still be able to switch back to the

back camera manually if wanted).

Solution

UseFront Property
The property useFront() uses android.intent.extras.LENS_FACING_FRONT intent

extras See this, However, Google removed it in the release of Lollipop MR1 (Android

SDK 22, Android 5.1), so it is not working with the new Android OS release.

This intent extra was added when the TakePicture()method was called (as seen in

Camara.java)

Therefore, when trying to implement the camera's intent, the new phones did not

recognize the extras as it was removed.

🅸 RESULT

●​ No front camera is working by default.

https://github.com/mit-cml/appinventor-sources/blob/f430979379612f663d339ef064bb7760dd5f0f21/appinventor/components/src/com/google/appinventor/components/runtime/Camera.java#L173
https://github.com/mit-cml/appinventor-sources/blob/f430979379612f663d339ef064bb7760dd5f0f21/appinventor/components/src/com/google/appinventor/components/runtime/Camera.java#L173

🅸 SOLUTION

●​ Using a conditional check to know the SDK version and the new

android.intent.extras.LENS_FACING_FRONT should get the job done.

if (useFront) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP_MR1)
 intent.putExtra("android.intent.extras.LENS_FACING_FRONT", 1);
 else
 intent.putExtra("android.intent.extras.CAMERA_FACING", 1);
}

Taking photos automatically
The current camera component invokes an Android intent to call an Android

camera. This is not a self-baked camera, it just requires the Android OS to take a

photo using the native camera.

Therefore, to avoid confusing users, I will create a new component. Users connect

the camera to the normal phone's camera. However, having two separate

components makes this easier, as they do not conflict with each other.

Add SurfaceView Component
Provides a dedicated drawing surface embedded inside of a view hierarchy, In order

to create a new component in MIT App Inventor, the following files need to be

altered…

Images.java

path : appinventor/appengine/src/com/google/appinventor/client/

This file is the one that links the component images to the image path usable in the GWT,

which is presented in the Google App Engine.

@Source("com/google/appinventor/images/surfaceView.png")
ImageResource surfaceView();

OdeMessages.java

path : appinventor/appengine/src/com/google/appinventor/client/

OdeMessages.java is the file that contains all localizable strings in App Inventor.

surfaceView.png

path : appinventor/appengine/src/com/google/appinventor/images/

This is the image file for the new component.

YaVersion.java

path : appinventor/components/src/com/google/appinventor/components/common/

...

//For SURFACEVIEW_COMPONENT_VERSION
public static final int SURFACEVIEW_COMPONENT_VERSION = 1;

...

SurfaceView.java

path : appinventor/components/src/com/google/appinventor/components/common/

Source code of the component.

SimpleComponentDescriptor.java

path : appinventor/appengine/src/com/google/appinventor/client/editor/simple/palette

...

bundledImages.put("images/surfaceView.png", images.surfaceView());

...

Application Challenge
To complete the application challenge I have created this simple demo application

using ML Kit which detects text from images.

The demo app has been successfully built through an online server as well as a local

instance of App Inventor.

Here in the folder you will find a demo .aia and .apk file. Folder Link

https://drive.google.com/drive/folders/1Xgi0Ef8ISVQaOAJ9KELlV4XFY1_TF8Wk?usp=sharing

Timeline

 to May 20 June 12 COMMUNITY BONDING
​Discussion with mentors, power users, teachers, and

students on what exactly they want from this project.

 to June 13 July 24 PHASE - 1 CODING
​Basic stuff with OpenGL and AR-Core with android. In the first

phase of the development I will focus more on detecting

surfaces for AR-View.

​After that, The basic objects like cube and pyramid will be

implemented on android studio and App Inventor.

 to July 25 July 29 PHASE - 1 EVALUATIONS
​Presenting the work progress to mentors.

​Documenting the work progress.

 to July 30 Sep 4 PHASE - 2 CODING
​This will be a main coding phase of the summer in which I will

replicate all the features which will be completed during the

first phase of the program.

 to Sep 5 Sep 12 FINAL EVALUATIONS
​Presenting the work progress to mentors.

​Documenting the work progress.

	3D Components in App Inventor
	Table of Contents
	Long Answers
	
	Introduction
	Interest in MIT App Inventor
	Interest In Introductory Programming
	Experience with teams, online developer communities, and large codebases
	Experience with Development Tools
	Project Proposal
	
	Abstract
	Use Cases
	Impact on App Inventor's Educational Mission
	Origin of Idea
	Deliverables
	Implementation
	
	Basic of OpenGL ES
	Changes to AndroidManifest.xml
	GLSurfaceView
	GLSurfaceView.Renderer

	Implementation in App Inventor
	Space
	Execution Flow
	AIGLSurfaceView.java
	AIGLRenderer.java

	3D Objects
	Cube Example
	

	Discussion with Evan Patton
	
	Application Prerequisites
	
	Design Challenge
	Problem
	Solution
	UseFront Property
	Taking photos automatically
	Add SurfaceView Component
	Images.java
	OdeMessages.java
	surfaceView.png
	YaVersion.java
	SurfaceView.java
	SimpleComponentDescriptor.java

	Application Challenge
	Timeline
	COMMUNITY BONDING
	PHASE - 1 CODING
	PHASE - 1 EVALUATIONS
	PHASE - 2 CODING
	FINAL EVALUATIONS

	

