
 

Derivatives 

⌘​ Course Content 

►​ Derivative of inverse trigonometric, exponential 

and logarithmic function by definition, relationship 

between continuity and differentiability, rules for 

differentiating hyperbolic function and inverse 

hyperbolic function, L’Hospital's rule (0/0, ∞/∞), 

differentials, tangent and normal, geometrical 

interpretation and application of Rolle’s theorem 

and mean value theorem. 

 ⌘​ Learning Outcomes 

On completion of this unit, students will be able to: 

►​ find the derivatives of inverse trigonometric, 

exponential and logarithmic functions by 

definition. 

►​ establish the relationship between continuity and 

differentiability. 

►​ differentiate the hyperbolic function and inverse 

hyperbolic function 

►​ evaluate the limits by L'Hospital's rule (for , ). 

►​ find the tangent and normal by using derivatives. 

►​ interpret geometrically and verify Rolle's theorem 

and Mean Value theorem. 

 

14.1​Introduction 

In this chapter, a brief review of limits, continuity, derivatives and applications of derivatives is 
given as the basic concepts that are given in Grade XI. The derivative of a function is an important 
tool in mathematics. The motion of an object can be described by the derivative. The velocity of the 
object is a measure of the rate of change of distance with respect to time. Acceleration is a measure 
of the rate of change of velocity with respect to time. It also describes the rate of change of current in 
an electric circuit. In biology, derivate is used to determine the rate of growth of bacteria in a culture. 
In economics, it is used to describe the problems dealing with profit and loss.  
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14.2​Limit of a Function 

Let 'a' be a fixed point and f (x) be a function defined in the 
neighborhood of the point x = a. The function f (x) is said to 
have the limit L, L∈  at x = a, if f (x) gets closer and closer to 
a number L as x gets closer and closer to the number 'a' from 
both sides. This behavior of f (x) is expressed by  

​   f (x) = L. 

Geometrically,  f (x) = L means that L is the height of the graph 
of y = f (x) near a, as in the adjoining figure. 

One sided Limits 

A function f (x) is said to tend to the limit L1, (L1∈ ) from the right of 'a' if f (x) approaches L1, 
when x approaches a from the numbers greater than a. This is denoted by   f (x) = L1 or ​
 f (a + h) = L1. This is known as one sided limit or right hand limit of f (x) at x = a. 
Similarly, the function f (x) is said to tend to the limit L2, (L2 ∈ ) from the left of ‘a’ if f (x) 
approaches L2 when x approaches ‘a’ from the numbers smaller than 'a'. This is denoted by  

        f (x) = L2 ​ or​  f (a – h) = L2  

This is known as one sided limit or left hand limit of f (x) at x = a. 

Two sided Limit 

  f (x) = L is called the two sided limit if   f (x) = L =   f (x). 

Example 1.​ Consider f (x) = 2x + 1 and the point x = 3 in the 
domain of f. The table below shows that the functional 
values of f (x) at different values of x. The limiting 
value of f (x) is 7 as x approaches 3, from the left of 3 
and from the right of 3. Therefore   f (x) = 7. 
Table​   

x 2 2.5 2.9 2.99 2.999 → 3 3.5 3.1 3.01 3.001 → 3 

f (x) 5 6 6.8 6.98 6.998 → 7 8 7.2 7.02 7.002 → 7 
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14.3​Continuity of a Function at a Point 

The function f (x) is said to be continuous at the point x = a if and only if the following three 
conditions are satisfied: 

1.​ f (a) exists. 
2.​  f (x) exists. 
3.​  f (x) = f (a). 
If any one of the above conditions are not satisfied, then the function is said to be discontinuous at x 
= a. 

If a function is continuous at x = a, then the limit of f (x) at x = a exists. But the converse may not be 
true. For the converse to be true f (a) must exist. 

Equivalently, the function f (x) is continuous at x = a if  
 f (x) =  f (x) = f (a) = L, L∈. 

📂​ Illustrative Examples 

Example 1.​ The function f (x) =  has limiting value 4 at x = 2, but f (2) does not exists. 
Solution 

The graph in the adjoining figure shows that ​
f (x) is discontinuous at x = 2. There is a break in 
the graph at x = 2. In fact, f (2) is not defined. The 
function f (x) can be made continuous if we take ​
f (2) = 4. 

 
 
 
Example 2.​ The graph of the function f (x) = has a jump at x = 2. Show that f (x) is discontinuous at 

x = 2. 
Solution 

Here, f (2) = 2  
​  f (x) does not exist, since  
​  f (x) = 2 and  f (x) = = 1 
∴​ f (x) is discontinuous at x = 2. 

Example 3.​ Show that the function defined by f (x) =  is 
discontinuous at x = 1. 

Solution 
​  f (x) =  (2x + 1) = 3 
​  f (x) =  (2x + 1) = 3 
Thus 
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​  f (x) = 3. 
But f (1) = 4. 
Therefore,  f (x) ≠ f (1) 
Hence, f (x) is discontinuous at x = 1 
If we take f (1) = 3, then f (x) will be continuous at x = 1. 

Example 4.​ Let h be defined by h(x) = . Show that h(x) is discontinuous at x = 3. 
Solution 

Here, h(3) = 4. 
​   h(x) =     = ∞  
and  ​  h(x) =     = – ∞. 
Therefore,  h(x) does not exist 
Hence, h(x) is discontinuous at x = 3. 

Example 5.​ Let f (x) be a function defined by f (x) = . Show that f (x) is discontinuous at x = 2.  
Solution 

Here, f (2) = 3 
Since |x – 2| = x – 2 if x > 2 
and |x – 2| = – (x – 2) if x < 2 
We have 
 ​  f (x) =  (x – 2) = 0 
and ​ f (x) =  (– x + 2) = 0 
Therefore,  f (x) = 0.  
Here,  f (x) ≠ f (2). 
Hence, f (x) is discontinuous at x = 2. 

Example 6.​ Discuss the continuity of the function f (x) = ‚   when x ≠ 0,2‚           when x = 0)) , at x 
= 0. 

Solution 
Left hand limit of f (x) at x = 0 is 
​   f (x)​ =  f (0 – h)  
​ ​ =   
​ ​ =   =    
​ ​ = 2 
Right hand limit of f (x) at x = 0 is 
​   f (x) ​ =  f (0 + h)  
​ ​ =    
​ ​ = 0 
Here,   f (x) ≠   f (x) 
Hence, the given function is discontinuous at x = 0. 

Example 7.​ A function is defined as f (x) = e1/x, x ≠ 0 and f (0) = 0. Examine it for continuity at x = 
0. 
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Solution 
 f (x) ​ =  e1/x​  
​ ​ =   ⋅⋅⋅⋅⋅  
​ ​ = ∞  
Hence, the given function f (x) is discontinuous at x = 0. 

Example 8.​ Discuss the continuity of the function f (x) = , at x = 0. 
Solution 

We know that for all real x ≠ 0, – 1 ≤ sin ≤ 1 
This implies that – x2 ≤ x2 sin ≤ x2 
Now, (– x)2 = 0 and  x2 = 0. 
Hence by Squeeze theorem, we have  
​  x2 sin = 0 
Also we have f (0) = 0 
Therefore the given function f (x) is continuous at x = 0. 

Example 9.​ Discuss the continuity of  f (x) =  at x = 8. 
Solution 

Right hand limit of f (x) at x = 8 is 
​   f (x) ​ =  f (8 + h)  
​ ​ =    
​ ​ = 1 
Left hand limit of f (x) at x = 8 is 
​  f (x) ​ =  f (8 – h)  
​ ​ =    
​ ​ = – 1 
∴​   f (x) ≠  f (x) 
Thus, f (x) is discontinuous at x = 8. 

 

📂​ Exercise 14.1 

1.​ Discuss the continuity and discontinuity of the following functions at the point specified: 
a.​ f (x) =  , at x = 2.​ b.​ f (x) =  , at x = 0. 
c.​ f (x) =  , at x = 0. 

2.​ For what value of k is the function 
a.​ f (x) =  continuous at x = 2?​ b.​ f (x) =  continuous at x = 0? 

3.​ A function f (x) is defined as f (x) = . Show that it is continuous at x = 0 and x = 1. 
4.​ A function f (x) is defined as f (x) = . Test the continuity of f (x) at x = 0. 
5.​ Examine for continuity at x = 0 for the function f (x) defined by f (x) = . 

Answers 

1.​ a.​ Discontinuous​ b.​ Discontinuous​ c. ​ Discontinuous​  
2.​ a.​ ​ b.​    ​ 4.​ Discontinuous​ 5.​ Discontinuous 
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14.4​Derivative of a Function at a Point 

The derivative of a function f (x) at a point x = a, denoted by f '(a), is defined as 

​ f '(a) =  ​ ​ ​ ​ . . . (1) 

provided the limit exists. 

​ Equivalently, f '(a) =  ​ ​ . . . (2) 
Taking a + h = x in (1), we get (2). 

If f (x) has a derivative at a point, f (x) is said to be differentiable or derivable at that point. The 
derivative of a function is also called its differential coefficient. The process of finding out the 
derivative of a function is called differentiation. 

The differentiable coefficient of y = f (x) is generally written as , f '(x),  ( f (x)), Df (x). 

Thus, f '(x) =   is the derivative of f (x) at x. 

Right Hand and Left Hand Derivatives 

The right hand derivative of f (x) at x = a, denoted by Rf '(a) is defined as 

Rf '(a) = , h > 0 ​ ​ ​ . . . (3) 
provided the limit exists. 
The left hand derivative of f (x) at x = a denoted by Lf '(a) is defined as 
Lf '(a) =  , h > 0 ​​ ​ . . . (4) 
provided the limit exists. If (3) and (4) are equal to a finite number L, then f (x) is said to have 
derivative at x = a. 

If (3) and (4) exist but are different, then Rf '(a) is called the progressive and Lf '(a) is called 
regressive differential coefficient of f (x) at x = a. 

Relationship between Continuity and Differentiability 

Theorem: If a function f (x) is derivable at a point, it is continuous at that point. 

Proof:​ Let f (x) be derivable at x = a. Then, 

​ f '(a) =   exists and it is finite.  
Now 
​  [ f (a + h) – f (a)] =  ×h 
or,​  [ f (a + h) – f (a)] = f '(a) ⋅  h  = f '(a) ⋅ 0  
or,​  [ f (a + h) – f (a)] = 0 
∴ ​  f (a + h) = f (a) 
Hence, f (x) is continuous at x = a. 
The converse of the theorem may not be true. This can be illustrated by the following example. 
Example: The function ƒ(x) = | x | is continuous at x = 0 but not differentiable at x = 0. 
​ We have, |x| = . 
For the continuity of f (x) at x = 0: 
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Right hand limit of f (x) at x = 0 
​   f (x) =  f (0 + h) =  | 0 + h | =  h = 0 
Left hand limit of f (x) at x = 0 
​   f (x) =   f (0 – h) =  | 0 – h | =  h = 0 
​ and f (0) = 0 
∴ ​ f (x) is continuous at x = 0. 
For the differentiability of f (x) at x = 0: 
Right hand derivative of f (x) at x = 0 
​ Rf '(0) =   =   = 1 
Left hand derivative of f (x) at x = 0 
​ Lf '(0) =    =   = – 1 
∴ ​ Rf ' (0) ≠ Lf ' (0) 
Hence, f (x) is not differentiable at x = 0. 
Thus "The continuity of a function at a point is the necessary but not the sufficient condition for the 
existence of the derivative of the function at that point." 

Rules of Differentiation 
We first revisit some basic derivatives some of which were derived in Grade XI.  

1.​ a.​ (xn) = nxn – 1 ​ b.​  (ex) = ex 
​ b.​  (ax) = axln a ​ c.​ (ln x) =  
​ d.​  = cos x ​ e.​  = – sin x 
​ f.​  (tan x) = sec2 x ​ g.​  (sec x) = sec x tan x 
​ g.​  (cot x) = –cosec2 x ​ i.​ (cosec x) = –cosec x ⋅ cot x 
2.​ a.​  (sin–1 x) =  , (– 1 < x < 1)​ b.​ (cos–1 x) =  , (| x | < 1) 
​ c.​  (tan–1 x) =  , (x ∈ )​ d.​  (cot–1 x) =  , (x ∈ ) 
​ e.​  (sec–1 x) =  , (| x | > 1)​ f.​  (cosec–1 x) =  , (| x | > 1) 
3.​ a.​  = u  + v ​ b.​  =  
4.​ If x = f (t) and y = φ(t) then,  =   
We now evaluate the derivative of some functions using first principle method.  

📂​ Illustrative Examples 

Example 1.​ Find from first principle the derivative of  

a.​ cos–1 x   ​ b.​ ax​ c.​ esin x 

d.​ ln xx​ e.​ sin (ln x) 
Solution 

a.​ Let f (x) = cos–1 x. Then,  
​ f (x + h) = cos–1(x + h) 
​ From first principle 
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​ f '(x) ​ =   
​ ​ =   
​ Let cos–1 x = z and cos–1 (x + h) = k + z. Then 
​ k = cos–1 (x + h) – cos–1 x, and k → 0 as h → 0  
∴​ f '(x)​ =   
​ ​ =   
​ ​ =  ​ θθθ 
​ ​ = –   =   
​ ​ = ​ ​ [ ∵ cos–1 x = z ⇒ x = cos z ] 
∴ ​ f ' (x) ​ =  . 
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b.​ Let f (x) = ax = eln ax = ex ln a. Then  
​ f (x + h) = e(x + h)ln a 
​ From first principle, we have 
​ f '(x)​=     
​ ​ =   
​ ​ =   exln a  
​ ​ = exln a  ⋅ ⋅ ln a 
​ ​ = exln a ⋅ 1 ⋅ ln a​ ​  
​ ​ = ax ln a 
∴​ f '(x) = ax ln a. 
c.​ Let f (x) = esin x. Then  
​ f (x + h) = esin (x + h). 
​ From first principle, we have 
​ f '(x) ​ =   
​ ​ =   
​ Putting sin x = z and sin(x + h) = z + k, then k = sin(x + h) – sin x and k → 0 as h 

→ 0 
∴ ​ f '(x)​ =     
​ ​ = ez  ⋅ 
​ ​ = ez ⋅ 1 ⋅   
​ ​ = ez   
​ ​ = ez  cos \b(x + \f(h,2)))    
​ ​ = ez ⋅ cos x  ⋅ 1 
∴ ​ f '(x)​ = esin x cos x. 
d.​ Let f (x) = ln xx = x ln x. Then  
​ f (x + h) = (x + h) ln(x + h) 
​ By definition or from first principle, we have 
​ f '(x)​ =   
​ ​ =   
​ ​ =   
​ ​ =   
​ ​ =   +  ln (x + h) 
​ ​ =   +  ln (x + h)  
∴​ f '(x)​ = 1 + ln x.​ ​  
e.​ Let f (x) = sin(ln x). Then,  
​ f (x + h) = sin ln(x + h) 
​ By definition or from first principle, we have 
​ f '(x)​ =    
​ ​ =   
​ Putting z = lnx and z + k = ln(x + h), then k = ln(x + h) – ln x. When h → 0, k → 0 
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​ ​ =  ⋅ 
​ ​ =  \f(sin(z + k) – sin z,k))  \f(k,h)) 
​ ​ =      \f(ln(x + h) – ln x,h)) 
​ ​ =      ⋅ 
​ ​ = cos z ⋅  ⋅ 1  
​ ​ =  
∴​ f '(x) ​ =  . 

Example 2.​ Consider the function f (x) defined as f (x) = . Discuss the continuity and 
differentiability of f (x) at x = 0. 
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Solution 
Right hand limit of f (x) at x = 0 is 
 f (x) ​ =  (0 + h) sin   
​ ​ =  h sin   
​ ​ = 0 

Left hand limit of f (x) at x = 0 is 
 f (x)​=  f (0 – h)  
​ ​ =  (0 – h) sin  
​ ​ =  h sin   = 0  

and f (0) = 0 
∴​  f (x) = f (0) 
Hence, f (x) is continuous at x = 0. 
Again 
​ R f '(0) ​=   
​ ​ =   =  sin , which does not exist 
 ∴ ​ f '(0) does not exist 
Hence, f (x) is not differentiable at x = 0. 

Example 3.​ A function f (x) is defined as f (x) = ∞. Does f ' exist? 
Solution 

The right hand derivative of f (x) at x =  is 
R f '  ​ =      
​ ​ =    
​ ​ =  h = 0 
Left hand derivative of f (x) at x = π 
L f ' ​=     
​ ​ =    
​ ​ =      
​ ​ =   
​ ​ =    
​ ​ = 1 ⋅ 0 = 0 
Here, R f '  = L f '   
Therefore, f ' πexists and is equal to zero. 

Example 4.​ If f (x) = , find f '(0). 
Solution 

The right hand derivative of f (x) at x = 0 is  
R f ' (0) ​ =  ,  
​ ​ =    
​ ​ =    
​ ​ = e   
Putting k = cos h – 1, when h → 0, k → 0 
∴ R f ' (0)  ​ =  ⋅⋅ 
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​ ​ = e  \f(ek – 1,k))  \f(cos h – 1,h)) 
​ ​ = e ⋅ 1 ⋅   
​ ​ = – 2e  ×  
​ ​ = – 2e ⋅ 1 ⋅ 0  
​ ​ = 0 
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The left hand derivative of f (x) at x = 0 is 
L f ' (0) ​ =      
​ ​ =    
​ ​ =     
​ ​ = – e    
​ ​ = – e ⋅ 0 ​ [As above] 
​ ​ = 0 
Since R f ' (0) = L f ' (0) = 0, we have f '(0) = 0 

Example 5.​ Find the differential coefficient of tan–1 . 
Solution 

Let x2 = cos 2θ ⇒ θ =  cos–1 x2 and  
​ tan–1  = y. 
Now 
​ y​ = tan–1  
​ ​ = tan–1  
​ ​ = tan–1   
​ ​ = tan–1 )  
∴​ y​ =  + θ 
Thus 
​  ​ =    
​ ​ =  ×  × 2x =  . 

Example 6.​ If y = ex sin x3 + (tan x)x, find . 
Solution 

Let ​ u = ex sinx3 and v = (tan x)x. Then 
​ y = u + v and  =  + ​ ​ . . . (1) 
Now 
​  ​ = (ex sinx3)  
​ ​ = ex sin x3  (x sin x3) 
​ ​ = ex sin x3 [1 ⋅  sin x3 + x ⋅ cos x3 ⋅ 3x2] 
​ ​ = (sin x3 + 3x3 cos x3)ex sinx3 
Further, ln v = x ln (tan x)  
∴​   ​ = 1 ⋅ ln tan x + x ⋅  sec2 x 
or,​  ​ = v [ ln (tan x) + x cot x sec2 x] 
∴​  ​ = (tan x)x [ ln (tan x) + x cot x sec2 x] 
Hence from (1),  
​  ​ = (sin x3 + 3x3 cos x3)ex sin x3 + (tan x)x [ln (tan x) + x cot x sec2 x]. 

Example 7.​ If xy = ey – x, show that  =  . 
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Solution 
We have  
​ xy = ey – x 
Taking logarithm on both sides, we get 
​ y ln x = (y – x)ln e = y – x​ [∵ ln e = 1] 
or,​ y – y ln x = x  
or, ​ y(1 – ln x) = x 
∴​ y =  
Now, differentiating both sides w.r.t. x, we get 
​  ​ =  
​ ​ =    
​ ​ =  . 



​ ​ Derivatives ​ UNIT 14​ 331 

Example 8.​ If  +  = a(x – y), show that  =  . 
Solution 

Let x = sin θ, y = sin φ, then, we have 
​  +  = a(sin θ – sin φ) 
or,​ cos θ + cos φ = a(sin θ – sin φ) 
or,​ 2 cos  cos  = 2a cos  sin    
or, ​ cos  = a sin     
or, ​ cot  = a 
or,​   = cot–1 a  ⇒ θ – φ = 2 cot–1 a 
or,​ sin–1 x – sin–1 y = 2 cot–1 a  
Differentiating with respect to x, we get 
​  –  ⋅  = 0 
∴​  =   

📂​ Exercise 14.2 

Find, from first principle, the derivatives of the following functions (1 – 5). 
1.​ a.​ e               ​ b.​ ecos x                   ​ c.​  
2.​ a.​ ln cos x​ b.​ ln sin        ​ c.​ ln sec x             
3.​ a.​ sin–1 x               ​ b.​ tan–1 x​ c.​ ln cos–1 x   
4.​ a.​ x ln x        ​ b.​ xx​ c.​ 2x2 
5.​ a.​ sin x2​ b.​ x2 tan x​ c.​  
6.​ Find the derivatives of the following functions at the points specified: 
​ a.​ ecosx at x = 0   ​ b.​ ln cos x at x = 0  ​  
7.​ If f (x) = , then show that f (x) is continuous at x = 0, but f '(0) does not exist. 
8.​ If f (x) =  , does f ' exist? 
9.     Find f '(0) for the following functions: 

​ a.​ e sin x​ b.​ ln cos x ​ c.​ f (x) = ≠.​  
10.​ Find the derivatives of   

​ a.​ (sin x)cos x​ b.​ (ln x) tan x​ c.​ (sin x)ln x. 
​ d.​ exx​ e.​ xex​  

11.​ Find , when 

​ a.​ xyyx = 1​ b.​ xmyn = (x + y)m + n​ c.​ esin x + esin y = 1 
​ d.​ xy = yx​ e.​ xsin x = ysin y.​  
12.​ If xy = ex – y, prove that  =  . 
13.​ If x cos y = sin (x + y), find  . 
14.​ If sin y = x sin (a + y), prove that  = . 
15.​ a.​ If y = (sin x)tan x + (cos x)sec x, find  . 

​ b.​ If y = (cos x)ln x + (ln x)x, find  . 
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16.​ Find  of the following functions: 
​ a.​ y =  –  ln. 
​ b.​ y =  +  sin–1 . 
​ c.​ y = tan–1 . 

Answers 

1.​ a.​ ,2\r(x))​ b.​ – sinx ecos x​ c.​  
2.​ a.  ​ – tan x ​ b.​ ​ c.  ​ tan x ​  
3.​ a.​  ​ b.​ ​ c.​ ​ ​ ​  
4.​ a.​ 1 + ln x​ b.​ xx(1 + ln x)​ c.​ 2x ln2 ⋅ 2x2 
5.​ a.​ 2x cos x2​ b.​ 2x tan x + x2 sec2 x​ ​ c.​   
6.​ a.​ 0​ b.​ 0 

8.​ Yes 

9.​ a.​ 1​ b.​ 0​ c.​ 0 
10.​a.​ [(sin x)cos x (cos x cot x – sin x ln sin x]​ ​ b.​ (lnx)tan x  
​ c.​ (sin x)ln x ​ d.​ exx xx (1 + lnx)​ e.​ xex . ex     ​  
11.​ a.​ ​ b.​ ​ c.​ ​ d.​ ​ e.​  
13.​   ​ ​  

15.​a​ (sin x) tan x [1 + ln sin x sec2 x] + (cos x)sec x ⋅ secx tan x [ln (cosx) – 1] 
​ b.​ ⋅ 
16.​a.​   ​ b.​   ​ c.​  

📂​ Multiple Choice Questions 

1.​ Which of the following statement is true? 
a.​ If a function is differentiable at a point, it is continuous at that point 
b.​ If a function is continuous at a point, it is differentiable at that point 
c.​ A function is differentiable if and only if it is continuous​  
d.​ None of them 

2.​ The function f (x) = | x | is 
a.​ differentiable at each point​ b.​ differentiable at x = 0 only 
c.​ not differentiable at x = 0​ d.​ None of them 

3.​ The derivative of sin–1 2x is 
a.​ ​ b.​  
c.​ ​ d.​  

4.​ The derivative of ln (sin x) is 
a.​ cot x​ b.​ cosec x 
c.​ cos x​ d.​ tan x 

5.​ The derivative of etan–1x is 
a.​ ​ b.​ etan–1x 
c.​ ​ d.​  

6.​ The derivative of ax is 
a.​ ax​ b.​ ax ln a 
c.​ ln a​ d.​ None of them 
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Answers 
 

1 2 3 4 5 6     
a c b a d b     

 

14.5​Hyperbolic Functions 

The combination of ex and e–x give a new function, known as hyperbolic function. The hyperbolic 
sine is defined as  
​ sinh x =  ​ ​ ​ ​ . . . (1)​  
and hyperbolic cosine is defined as    
​ cosh x = ​ ​ ​ ​ . . . (2) 
The hyperbolic functions are related to the hyperbola in much the same way that the trigonometric 
functions are related to the circle. 

The functions defined in (1) and (2) have properties similar to the trigonometric functions sin x and 
cos x . 

Therefore 

​ tanh x =  =   ,     x ∈  
​ cosech x =  =   ,  x ∈   
​ coth x =  =  ,    x ∈ – {0} 

Also, cosh x  + sinh x = ex 

​ cosh x – sinh x = e–x 

It is important to note that  

​ cos x =  and sin x =  
∴​ cosh x = cos ix  ​ ​ (∵ i2  = – 1) 
​ sinh x = – i sin x 

Moreover, sinh 0 = 0 and cosh 0 = 1 

Also, sinh (–x) = – sinh x, cosh (–x) = cosh x and cosh2 x – sinh2 x = 1 

We also have 
​  sin h x =   = ∞ 
​  sin h x =   = – ∞ 
Similarly,   cosh x = ∞, which can easily be seen in the graphs of Figure 1. 

Also, tanh 0 = 0 and tanh (–x) = – tanh x 
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Now 
​  tanh x ​ =    
​ ​ =   = 1. 
and​  tanh x​ =    
​ ​ =   = – 1. 
The graph of y = tanh x is shown in fig 2. Similarly other graphs are shown in figs 3, 4 and 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

14.6​Derivative of Hyperbolic Functions 

Derivative of sinh x 

Let  y = sinh x, then 
​   = (sinh x) =  (ex – e–x ) =  = cosh x 
Similarly, (cosh x)  =  sinh x. 
Derivative of tanh x 
Let y = tanh x =  
∴​  = =  = sech2 x 
Hence,  (tanh x) = sech2 x 
Similarly,​(coth x) = – cosech2 x 
​ ​ (sech x) = – sech x ⋅ tanh x 
​ ​ (cosech x) = – cosech x ⋅ coth x. 

Derivative of Inverse Hyperbolic Functions 

Derivative of sinh–1x 
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Let ​ y ​ = sinh–1 x 
then​x ​ = sinh y and  
​  ​ = cosh y  
​ ​ =   
​ ​ =  
∴ ​  ​ =  
Similarly 
​  (cosh–1x)  = , (x > 1) 
​  (tanh–1 x)  = ,​  (– 1 < x < 1) 
​ (coth–1 x) =  , (| x | > 1) 
​  (sech–1 x) =   , (0 < x < 1) 
and ​ (cosech–1 x) =  , (x ∈  – {0}). 

📂​ Illustrative Examples 

Example 1.​ Show that sinh–1 x = ln [x + ]. Also, find [sinh–1 x]. 
Solution 

Let ​ y = sinh–1 x. Then 
​ x = sinh y =  
or,​ ey – 2x – e–y = 0 
or,​ e2y – 2xey – 1 = 0,  which is quadratic in ey 
​ (ey)2 – 2xey – 1 = 0 
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Solving by the quadratic formula, we get 
​ ey =  = x ±  
Since ey > 0, but x –  < 0 
So the minus sign is inadmissible and we have 
​ ey = x +  
Therefore, y = ln (x + ) 
Now 
​ (sinh–1 x)​ =  [ln (x +   )] 
​ ​ =   
​ ​ =   
​ ​ =     
​ ​ =  
∴​  ​ =  . 

Example 2.​ If y = tanh–1 (sin x), then show that  = sec x. 
Solution 

​ y = tanh–1 (sin x) 
Differentiating w.r.t. x, we get 
​ ​ =  
​ ​ = ⋅  
​ ​ =  cos x 
​ ​ =   
​ ​ =   
​ ​ = sec x 
∴ ​  ​ = sec x. 
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Example 3.​ Find the derivative of 2 tanh–1  . 
Solution 

Let y = 2 tanh–1 . Then 
​  ​ = ),d \b(tan \f(x,2)))   
​ ​ = 2 ⋅  sec2  ⋅  
​ ​ =   =   
​ ​ =  = sec x 
∴​ ​ = sec x. 

Example 4.​ Find the derivative of esinh x. 
Solution 

Let y = esinh x, then 
​  ​ =  
​ ​ =   
​ ​ = esinh x ⋅ cosh x 
∴​ ​ = esinh x cosh x. 

Example 5.​ Find the derivative of xcosh x. 
Solution 

Let y = xcosh x, then ln y = ln xcosh x = cosh x ln x 
Differentiating w.r.t. x, we get 
​ (ln y) =  (cosh x ln x) 
or, ​   = cosh x  + ln x (cosh x) 
or,  ​   = cosh x ⋅  + ln x ⋅ sinh x  = ⋅ 
∴​  = . 

Example 6.​ Find the differential coefficient of (sinh x)cosh–1 x. 
Solution 

Let y = (sinh x)cosh–1 x, then  
​ ln y = cosh–1 x ln (sinh x) 
Differentiating w.r.t. x, we get 
​    = cosh–1 x  ⋅  + ln (sinh x) (cosh–1 x )  
or,​   ​ = cosh–1 x ⋅  ⋅ cosh x + ln (sinh x) . ​  
or,​  ​ = cosh–1 x coth x +  
or,​  ​ =  
∴ ​   =  . 

📂​ Exercise 14.3 

Find the derivative of the followings: 

1.​ ln ​ 2.​ ln (cosh 3x) ​ 3.​ ecosh–1 x 
4.​ sech–1 x – cosech–1 x ​ 5.​ sech tan–1 x​ 6.​ tan–1 sinh x​  
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7.​ tanh–1 ​ 8.​ cosh–1 (sinh x)   ​ 9.​ x tanh–1  
10.​ xcosh  ​ 11.​ ​ 12.​  
13.​ xcosh2     ​ 14.​ ​  

Answers 

1.​  ​ 2.​ 3 tanh 3x      ​ 3.​  
4.​ –  ​ 5.      ​ 6.​ sech x​  
7.​        ​ 8.  ​9.    + tanh–1     

10.​ ​ 11.​    ​  

12.​  \b\bc\[(\f(x2,a) coth \f(x,a) + 2x ln sinh \f(x,a))​  13.​​  
14.​n   

📂​ Multiple Choice Questions 

1.​ The derivative of cosh 3x is 
a.​ sinh 3x​ b.​ – sinh 3x 
c.​ 3 sinh 3x​ d.​ – 3 sinh 3x 

2.​ The derivative of sinh–1 is 
a.​ ​ b.​  
c.​ ​ d.​  

3.​ If y = tanh–1 (sin x), then is 
a.​ sec2 x​ b.​ sec x 
c.​ ​ d.​  

4.​ If y = ln , then is 
a.​ tanh ​ b.​ tanh  
c.​ ​ d.​ – tanh  

5.​ The derivative of esinh 2x is 
a.​ esinh 2x​ b.​ ecosh 2x 
c.​ 2 cosh 2x esinh 2x​ d.​ 2 esinh 2x 

Answers 
 

1 2 3 4 5      
c d c a c      
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Application of Derivatives 
14.7​Differentials and Approximations 

If y = f (x), then its derivative with respect to x is  

​  = f '(x)​ ​ ​ . . . (1)  

where  is not a fraction. We wish to define the symbols dy and dx so that f '(x) is represented by the 
ratio of dy to dx. The quantities dx and dy are called differentials. 
If Δx and Δy are the corresponding increments in x and y, respectively of the function y = f (x), then 

​ f '(x) =   
Hence,   = f '(x) + ∈, 
with ∈→ 0 when Δx → 0.  
Thus 
Δy = f '(x) Δx + ∈Δx​ ​ . . . (2) 

Since ∈ is numerically small when Δx is small, f '(x) Δx is called the differential of f (x) and is 
denoted by dy or df (x) which geometrically represents the amount that the tangent line rises or falls. 
Thus 

        dy = f '(x) Δx​ ​ . . . (3) 

From the figure, tanφ =  and slope of the tangent PT is tan φ = f '(x), 

​ Thus,  f '(x) =  
∴ ​ SR = f '(x) Δx = dy 

and Δy = QR. The curve in the figure above is concave upward and dy < Δy. In the case where the 
graph is concave downward, dy > Δy. 

When Δx → 0, dy and dx are almost the same and dy can be calculated as a good estimate of Δy, i.e. 
dy is the approximate value of Δy. From the figure, it is clear that 

​ Δy – dy = ∈Δx and since ∈→0 as Δx → 0 
​ Δy – dy is the error 
Relative error =  ≈  
and percentage error = 100 ×  ≈ 100 ×  
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Remarks: Approximate change in y ​ : dy = f '(x)Δx 
​ ​ Actual change in y​ : Δy = f (x + Δx) – f (x) 
​ ​ Error in the estimate​ : Δy – dy 
​ ​ Percentage error in the estimate ​ : Δ× 100 

📂​ Illustrative Examples 

Example 1.​ If y = x2 + x, find dy. 
Solution 

If y = f (x) = x2 + x, then f '(x) = 2x + 1 
∴​ dy  = f '(x) dx = (2x + 1) dx 

Example 2.​ If u = 2 sin θ, find du. 
Solution 

If u = 2sinθ, then du = 2cos θ dθ 

Example 3.​ If y = 3x2 – 2x + 1, find dy when x = 2 and Δx = 0.01. 
Solution 

If y = f (x) = 3x2 – 2x + 1, then f '(x) = 6x – 2 and  
dy ​ = f '(x) Δx  
​ = (6x – 2) Δx  
​ = (6 ⋅ 2 – 2) 0.01  
​ = 0.1 

Example 4.​ If y = f (x) = x2 + 1, calculate Δy and dy, if x = 2 and Δx = dx = 0.01. 
Solution 

Δy ​ = f (x + Δx) – f (x)   
​ =  [(2.01)2 + 1] – (22 + 1)  
​ = 0.0401 
dy  ​ = f '(x) dx  
​ = 2x ⋅ dx  
​ = 2 ⋅ 2 (0 ⋅ 01)  
​ = 0.04 

Example 5.​ Find the approximate values using differentials, of cube root of 0.009. 
Solution 

Let y = x1/3 

Take x = 0.008 and dx = 0.001 as the nearest number to 0.009 is 0.008 whose cube root 
can be determined. Then, x + dx = 0.009 
Now    
​ Δy​ = (x + Δx) 1/3 – x1/3 
​ ​ = (0.009) 1/3 – (0.008) 1/3 
​ ​ = (0.009) 1/3 – 0.2 
∴​ Δy + 0.2 = (0.009) 1/3​ ​ ​ . . . (1) 
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and  
​ dy ​ = dx =  ⋅ dx 
​ ​ =  x –2/3 (0.001)  
​ ​ =  (0.008) –2/3 (0.001) 
​ ​ =  .  (0.001)   
​ ​ =  =  
​ ​ = 0.008 
Hence, (0.009)1/3 is approximately equal to 0.2 + 0.008 = 0.208. 

Example 6.​ A circular metal plate expands under heating so that it increases by 2%. Find the 
approximate increase in the area of the plate if the radius of the plate before heating is 
10 cm. 

Solution 
Let S be the area and r be the radius of the circular plate, then 
​ S = πr2 ⇒  = 2πr 
Given dr = 2% of 10 =  = 0.2 
​ ΔS is approximately equal to dS and  
​ dS = dr = 2πr ⋅ dr = 2π × 10 × 0.2 = 4π sq. cm. 
 Hence, approximate increase in the area of the plate is 4π sq. cm. 

Example 7.​ If y = x4 – 10 and if x changes from 2 to 1.99, what is the exact and approximate 
change in y? 

Solution 
Let y = x4 – 10, then Δy = [(1.99)4 – 10] – (24 – 10) = – 0.3176 
is the exact change in y 
Again 
​  =  = 4x3 
At x = 2,     = 4(2)3 = 32 
As x changes from 2 to 1.99, we have 
​ x = 2 and x + Δx = 1.99  
⇒ ​ Δx = – 0.01 
Now, dy =  Δx  = 32 ( – 0.01) = – 0.32 
Hence, approximate change in the value of y is – 0.32. 

Example 8.​ If y = sin x and x changes from  to . What is the approximate change in y? 
Solution 

Let y = sin x. Then  = cos x  
As x changes from  to  , we have 
​ x =  and x + Δx =  ⇒ Δx =  – x 
∴​ Δx =  –  . 
 Now  
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​ dy =  Δx = cos x ⋅ Δx = cos   = 0  
Hence, approximate change in y is zero, i.e. there is no change in y. 

Example 9.​ Find the approximate increase in the surface area of a cube if the edge increases from 
10 to 10.01 cm. Calculate the percentage error in the use of differential approximation 
also compare the two values. 

Solution 
Let a side of a cube x = 10 cm 
Δx ​ = dx = 10.01 cm – 10 cm = 0.01 cm 
Surface area = S = 6x2 
Now,  =  = 12x 
​ dS = 12x × dx  = 12 × 10 × 0.01 = 1.2 cm2 
The approximate increase in area = 1.2 cm2 
Again, S = 6x2,   
​ S + ΔS = 6(x + Δx)2 
∴​ ΔS ​ = 6(x + Δx)2 – 6x2  
​ ​ = 6(10.01)2  – 6 × (10)2  
​ ​ = 1.2006 
The actual increase in area = 1.2006 cm2 
​ Error​ = Actual increase in area – Approximate increase in area 
​ ​ = 1.2006 – 1.2  
​ ​ = 0.0006 
​ % Error =  × 100 = 0.0001 % 
The comparison of two areas 
​  =  =  
i.e.​ ds : ΔS = 0.995 : 1. 

Example 10.​Find the approximate change necessary in the radius of a spherical pot in order to 
increase the volume by 10 cubic cms if the radius of the pot is 20 cms. 

Solution 
We have, v = π r3, r = 20, Δv = 10, then dv ≈ 10.  
Since dv = π. 3r2 dr = 4πr2dr, we have 
​ 10 = 4π ⋅ 202 ⋅ dr    
or, ​ dr =  = 0.001999 = 0.002 cm 
Hence, the required change in r is approximately 0.002 cm. 

📂​ Exercise 14.4 

1.​ Find the differential dy in each of the followings: 

​ a.​ y = x3 + 2​ b.​ y = 2t2 + t + 1​ c.​ y = (x + a)2 

2.​ In each of the followings, find Δy and dy: 
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​ a.​ y = x3 + 3, for x = 2 and Δx = 0.1 

​ b.​ y = , for x = 4 and Δx = 0.41 

3.​ If y = x2 – 3x, find Δy – dy in terms of x and Δx.​  

4.​ What is the exact change in the value of y = x2 when x changes from 10 to 10.1? What is the 
approximate change in y?  

5.​ The edge of a cube increases from 10 cm to 10.025 cm. Find the approximate increments in the 
volume and the surface area of the cube.  

6.​ Use differentials to approximate the change in x3 as x changes from 5 to 5.01.   

7.​ A circular copper plate is heated so that its radius increases from 5 cm to 5.06 cm. Find the 
approximate increases in area and also the actual increase in area. 

8.​ Find the approximate increase in the volume of a sphere when its radius increases from 2 to 2.1. 
Find also the actual increase in volume and compare these two volumes. 

9.​ Find the approximate change in the volume of a cube of side x cm caused by increasing the 
sides by 1%.  

10.​ If the radius of a sphere changes from 3 cm to 3.01 cm, find the approximate increase in its 
volume.  

11.​ If the radius of a circle is increased from 5 cm to 5.1 cm, find the approximate increase in area. 

Answers 

1.​ a.​ dy  = 3x2 dx  ​ b.​ dy = (4t +  1) dt  ​c.​ dy = 2(x + a) dx 
2.​ a.​ 1.261, 1.2         ​ b.​ 0.105, 0.1 
3.    (Δx)2​ 4.​ Δx = 2.01, dy = 2 ​ 5.     7.5 cm3, 3 cm2​​ 6.​ 0.75​  
7.​ 0.6π, 0.6036π​ 8.​ ​ 9.  3%​  
10.​0.36π cm3​ 11.​  π cm2​  
 

📂​ Multiple Choice Questions 

1.​ If y = f (x), then the approximate change in y is 
a.​ Δy = f (x + Δx) – f (x)​ b.​ dy = f '(x) Δx 
c.​ Δy – dy​ d.​ None of them 

2.​ For the function y = f (x), percentage error in the estimate is given by 
a.​ Δ× 100​ b.​ × 100 
c.​ Δ× 100​ d.​ None of them 

3.​ If y = f (x) = x2 + 1, then the actual change in y when x = 1 and Δx = dx = 0.1 is 
a.​ 0.21​ b.​ 0.2 
c.​ 0.01​ d.​ 0.5 

4.​ If the radius of circle is increased from 10 to 10.1 cm, then the approximate increase in area is 
a.​ 100 π cm2​ b.​ 102.01 π cm2 
c.​ 0.01 π cm2​ d.​ 2 π cm2 

5.​ If the radius of a sphere changes from 2 to 2.1 cm, then the approximate increase in its surface 
area is 
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a.​ 16 π cm2​ b.​ 1.6 π cm2 
c.​ 17.64 π cm2​ d.​ 1.64 π cm2 

Answers 
 

1 2 3 4 5      
b c a d b      

14.8​Tangents and Normals 

To find equations of tangents and normals, it is necessary to understand the geometrical meaning of 
the derivative 

Let y = f (x) be a function represented by the curve as in the 
adjoining figure. Let P(x, y) be a fixed point and Q (x + Δx, y + 
Δy) be a neighbouring point on the curve. From P and Q, draw 
PL and QM perpendiculars to the x-axis. Also, draw 
perpendicular PR on QM. From the figure, QR = Δy and PR = 
LM = Δx 

Slope of the secant PQ = tanθ =  = ,  
​ where ∠QL1M = ∠QPR = θ 
The ratio   is called difference quotient, where 
​  =  
Now, when Q → P, Δx → 0, Δy → 0, θ → φ, PT will be tangent at P. Thus, the slope of tangent PT 
is 
        =    = tan φ, if the limit exists 
By the definition of derivative, f '(x) = tan φ is the slope of the tangent PT 
Hence, the slope of the tangent to the curve y = f (x) at a point of tangency (x, y) is given by the 
value of the derivative of the function f (x) with respect to x, at any point x.  

 NOTE ​ 1. ​ The derivative of f (x) at x = a is written as 
​    ​  f ' (a) =   
​ 2. ​ The slope of the tangent to a curve is sometimes called the slope of the curve 
​ 3.​   If the tangent is parallel to x axis, then φ = 0, then  = 0 
​ 4.​   If the tangent is perpendicular to x axis, then φ = 90° 
​ ∴​   = tan φ = tan 90° = ∞,   i.e.  = 0 

Example 1.​ Find the slope of the curve of the function f (x) = x2 + x at x = 3. 
Solution 

The slope of the curve y =  f (x) = x2 + x at  x = 3 is  
         =  = 2x + 1 
∴​ At x = 3,  = 2 ⋅ 3 + 1 = 7. 

Equations of Tangents and Normals 

Let y = f (x) be the equation of the curve and P(x1, y1) be any point on the curve. If a line passes 
through P(x1, y1), then the equation of the line with slope m is  
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​ y – y1 = m(x – x1).  

 This line becomes the tangent at P(x1, y1) if  

​ m =   

Hence, the equation of the tangent to the curve  

​ y ​ = f (x) at P(x1, y1) is   
​ y – y1 =  (x – x1) ​ ​ ​ . . . (1) 

The normal at the point P(x1, y1) is the line passing through P(x1, y1) and perpendicular to the tangent 
at P. 
If m1 is the slope of the normal at P(x1, y1), then 
​ m1  = – 1 
or, ​ m1 = –   
Hence, the equation of normal to the curve y = f (x) at P(x1, y1) is  
​  y – y1 = –   (x – x1) ​ ​ ​ . . . (2) 
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Tangent at the Origin 

Tangent at any point (x1, y1) is y – y1 =  (x – x1) and hence the tangent at (0, 0) is y =  x. 
Tangents at the origin are obtained by equating the lowest degree terms to zero in the equation of the 
curve. 

Angle of Intersection of Two Curves 

The angle of intersection of two curves at a point of intersection is the 
angle between the tangents to the two curves at the point. If m1 and m2 
are the values of  for the two curves at a point of their intersection, then 
θ, the angle of intersection of the curves is given by 
​ tan θ = ±  
The two curves will cut orthogonally or at right angle if m1m2 = – 1. 

📂​ Illustrative Examples 

Example 1.​ Find the equations of the tangent and normal to the curve y = 2x2 – 3x – 1 at (1, – 2). 
Solution 

Equation of the curve is y = 2x2 – 3x – 1 
∴​  = 4x – 3 
This is the slope of the tangent at (x, y). 
Now, the slope at the point (1, – 2) is m = 4 × 1 – 3 = 1 
∴​ Equation of the tangent at (1, – 2) is  
​ y – y1 = m(x – x1) 
or,​ y + 2 = 1 (x – 1)    
or,​ x – y – 3 = 0 
Slope of the normal (m1) = – 1  
Equation of the normal at (1, – 2) is  
​ y + 2 = – 1(x – 1)    
∴ ​ x + y + 1 = 0. 

Example 2.​ Find the tangents at the origin to the curves: 
a.​ x2y2 = a2 (x2 – y2)    ​ b.​ y2 = 4ax  ​ c.​ x3 + y3 = 3axy 

Solution 
As the curve passes through origin, equating to zero the lowest degree terms in each 
case, we get 
a.​ a2 (x2 – y2) = 0 
or, ​ y = ± x 
b.​ 4ax = 0  
or, ​ x = 0 i.e. y axis 
c.​ 3axy = 0  
or,​ x = 0, y = 0 i.e. x-axis and y-axis. 

Example 3.​ Find the equation of the tangent and normal to the curve y = x2 + 4x + 1 at the point 
whose abscissa is 3. 
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Solution 
Equation of the curve is y = x2 + 4x + 1 
We have to find out the equation of the tangent at (3, y). Therefore, the ordinate y of the 
point whose abscissa is 3 is  
​ y = 32 + 4 × 3 + 1 = 22 
The given point on the curve is (3, 22) 
Now 
​  = 2x + 4 
The slope of the tangent at the point (3, 22) is  
​  = 2 × 3 + 4 = 10 
Equation of the tangent at (3, 22) is  
​ y – 22 = 10 (x – 3)    
or, ​ 10x – y – 8 = 0 
Now, slope of the normal at (3, 22) is –   
Equation of the normal at (3, 22) is  
​ y – 22 =  (x – 3)   
or, ​ 10(y – 22) = – (x – 3) 
∴​ x + 10y – 223 = 0. 

Example 4.​ Determine the points on the curve 2y = (3 – x2) at which the tangent is parallel to the 
line x + y = 0. 

Solution 
Equation of the curve is  
​ 2y = 3 – x2​ ​ ​ ​ . . . (1) 
Slope of the line x + y = 0 is – 1  
Differentiating (1) w.r.t. x, we get 
​ 2 = – 2x  
or,​  = – x 
Since the tangent is parallel to the given line, we have 
​ Slope of tangent = Slope of line = – 1 
or,​ – x = – 1   
∴ ​ x = 1 
Putting x = 1 in (1), we get 
​ 2y = (3 – 1)  
∴ ​ y = 1 
Hence, the required point is (1, 1). 

Example 5.​ Find the angle of intersection of curves xy = 6 and x2y = 12. 
Solution 

Given 
​ xy = 6​ ​ ​ ​ ​ . . . (1)  
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and ​x2y = 12  
∴ ​ y = ​ ​ ​ ​ ​ . . . (2) 
From (1) and (2), we get 
  ​ x2  = 12 
or, ​ x = 2 
Putting x = 2 in (1), we get y = 3. 
∴ ​ The point of intersection is (2, 3) 
Differentiating (1) w.r.t. x, we get 
​ y + x  = 0 
∴​ m1 =  =  =  at the point (2, 3) 
Differentiating (2) w.r.t. x, yields 
​ 2xy + x2  = 0 
∴​ m2 ​ =   
​ ​ =  = – 3 at (2, 3) 
Let θ be the angle between the two curves, then 
​ tan θ ​ =   
​ ​ =   
​ ​ =  
∴​ The angle between the two curves (θ) = tan–1 . 

Example 6.​ Find the equations of horizontal and vertical tangents to the curve x2 + y2 – xy – 27 = 0. 
Solution 

The given curve is  
​ x2 + y2 – xy – 27 = 0​ ​ ​ . . . (1) 
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Differentiating (1) w.r.t. x, we get 
​ 2x + 2y  – x  – y = 0           
∴ ​  =  
For the horizontal tangent, i.e. the tangent parallel to the x axis 
​  = 0  
∴​ y = 2x​ ​ ​ ​ ​ . . . (2) 
Solving (1) and (2), the points of horizontal tangents are (3, 6) and (– 3, – 6) 
Hence, the equations of the horizontal tangents are 
​ y – 6 = 0(x – 3)  
∴ ​ y = 6 
and​ y + 6 = 0(x + 3)  
∴ ​ y = – 6 
For the vertical tangent, i.e., the tangent parallel to the y axis  
​  = 0 
or,​ x = 2y ​​ ​ ​ ​ . . . (3) 
Solving (1) and (3), the points of vertical tangents are (6, 3) and (– 6, – 3) 
Hence, the equations of the vertical tangents are  
​ y – 3 =  (x – 6)   
∴ ​ x = 6 
and​ y + 3 =  (x + 6) 
∴​ x = – 6. 

Example 7.​ Find the equation of the normal line to the curve x2 + y2 = 16 which makes an angle of 
30° with the positive direction of x axis. 

Solution 
Equation of the curve is  
​ x2 + y2 = 16​ ​ ​ ​ . . . (1) 
Differentiating (1) w.r.t. x, we get 
​ 2x + 2y  = 0  
or, ​  = –  
∴​ Slope of the tangent at (x, y) is –  and the slope of the normal is  . 
Since the normal makes an angle of 30° with the x-axis,  
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​ Slope of the normal = tan 30° =  
or,​  =   
or, ​ x = y​ ​ ​ ​ . . . (2) 
From (1) and (2), we get 
​ 3y2 + y2 = 16  
or,​ y = ± 2​​ ​ ​ ​ . . . (3) 
From (2) and (3), we conclude that there are two points on the curve where the normal 
makes an angle 30° with the x axis. The points are (2, 2) and   (– 2, – 2) 
The equation of normal at (2, 2) is  
​ y – 2 = (x – 2) 
or, ​ y – 2 = x – 2 
∴ ​ x – y = 0 
The equation of normal at (– 2, – 2) is  
​ y – (– 2) =  [x – (– 2]   
or,  ​ y + 2 = x + 2 
∴​ x – y = 0. 

Example 8.​ Show that   +  = 1 touches the curve y = beat the point where the curve crosses the axis 
of y. 

Solution 
The point where the curve y = be cuts the y axis, i.e., x = 0 is y = b e0 = b 
Now 
​  = –   e 
At x = 0 
​  = –  e0 = –  
The equation of the tangent at the required point (0, b) is given by 
​ y – b = –  (x – 0)   
or, ​ ay – ab = – bx 
or,​  = 1 
∴ ​   +  = 1. 
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Example 9.​ Show that the tangents to the curve x3 + y3 – 3axy = 0 at the points where it meets the 
parabola y2 = ax are parallel to y-axis. 

Solution 
Equation of the curve is 
​ x3 + y3 – 3axy = 0​ ​ . . . (1) 
Differentiating (1) w.r.t. x, we get 
​ 3x2 + 3y2  – 3a  = 0   
or, ​ (3y2 – 3ax)  =  3ay – 3x2  
∴​  =  =  is the slope of the tangent at (x, y) 
If the tangent is parallel to y axis at (x, y), then  
​  = 0 
or,​ y2 – ax = 0  
∴ ​ y2 = ax is the parabola 
Hence, the tangents at the common points of the given curve and the parabola y2 = ax 
are parallel to y axis. 

 

📂​ Exercise 14.5 

1.​ Find the slope and the inclination with the x-axis of tangent of 

a.​ y = – 3x – x4 at x = – 1.​  

b.​ x2 + y2 = 25 at (0, 5). 

2.​ Show that the tangents to the curve y = 2x3 – 3 at the points x = 2 and x = – 2 are parallel. 

3.​ At what angles does the curve y(1 + x) = x cut the x-axis? 

4.​ a.​ Find the equation of the tangent to the curve y = – 5x2 + 6x + 7 at the point (1, 8). 

​ b.​ Find the equation of the normal to y = 2x3 – x2 + 3 at (1, 4). 

5.​ Find the equation of the tangent and normal to the given curves at the given points. 

a.​ y = x3 at (2, 8).​  

b.​ y = x3 – 2x2 + 4 at (2, 4). 

c.​ x2 – y2 = 7 at (4, 3). ​  

d.​ x2 + 3xy + y2 = 5 at (1, 1). 

6.​ Find the equation of the tangent line to the curve y = x2 + 4x – 16 which is parallel to the line ​
3x – y + 1 = 0. 

7.​ Find the points on the circle x2 + y2 = 16 at which the tangents are parallel to the (a) x axis (b) y 
axis. 
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8.​ Find the angle of intersection of the following curves. 

a.​ y2 = x3 and y = 2x ​  

b.​ x2 + 4y2 = 8 and x2 – 2y2 = 4 

c.​ y = x2 and 6y = 7 – x3 at (1, 1).  

9.​ Find the equation of the tangent and normal to the parabola y2 = 4ax at (at2, 2at). 

Answers 

1.​ a.​  ​ b.​ 0, 0 ​ 3.​ π 
4.​ a.​ 4x + y – 12 = 0​​ ​ b.​ x + 4y = 17 
5.​ a.​ 12x – y – 16 = 0; x + 12y – 98 = 0​ b.​ 4x – y – 4 = 0; x + 4y = 18​ ​  
​ c.​ 4x – 3y = 7; 3x + 4y = 24​ d.​ x + y = 2; x – y = 0​ ​ ​   
6.​ 12x – 4y = 65 
7.​ a.​ (0, 4), (0, – 4)​ b.​ (4, 0), (– 4, 0)   
8.​ a.​ tan–1 ​ b.​ 0​ c.​  
9. ​ ty = x + at2; tx + y = 2at + at3  

📂​ Multiple Choice Questions 

1.​ The slope of the tangent to the curve of f (x) = x2 at x = 1 is 
a.​ 1​ b.​ 2 
c.​ 3​ d.​ None of them 

2.​ The equation of the normal to the curve y = x3 – 2x at the point (1, – 1) is 
a.​ x + y = 2​ b.​ x – y = 2 
c.​ x + y = 0​ d.​ x – y = 0 

3.​ The inclination with the x-axis of tangent of x2 + y2 = 16 at (0, 4) is 
a.​ π​ b.​ 0 
c.​ π​ d.​ π 

4.​ The equation of the tangent to the curve x2 – y2 = 7 at (4, 3) is 
a.​ 4x – 3y = 7​ b.​ 4x + 3y = 7 
c.​ 3x – 4y = 24​ d.​ 3x + 4y = 24 

5.​ The tangents at the origin to the curve x2y2 = a2(x2 – y2) is 
a.​ y = 0​ b.​ x = 0 
c.​ x = 0, y = 0​ d.​ y = x, y = – x 

Answers 
 

1 2 3 4 5      
b c b a d      
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14.9​L' Hospital's Rule 

We first discuss about indeterminate forms. 

Indeterminate Forms 
The forms , ∞∞, 0 × ∞, ∞ – ∞, 00, ∞0, 1∞ are known as indeterminate forms. 
In this chapter, we will know the methods of evaluating the limits of the indeterminate forms through 
the use of differentiation and expansion in series. 

Indeterminate Form  

L' Hospital's Rule: If φ(x) and ψ(x) and their derivatives φ'(x) and ψ'(x) are continuous at x = a and 
if φ(a) = ψ(a) = 0, then 
​  φψ= φψ= φψ  provided ψ'(a) ≠ 0. 
Proof: By Taylor's theorem 
​ φ(x)​= φ(a) + (x – a) φ'(a) + φ"(a) + ⋅ ⋅ ⋅ 
​ ψ(x)​= ψ(a) + (x – a) ψ'(a) + ψ"(a) + ⋅ ⋅ ⋅ 
∴​ φψ= φφφ⋅⋅⋅ψψψ⋅⋅⋅ 
​ Now, φ(a) = ψ(a) = 0 
∴​ φψ= φφ⋅⋅⋅ψψ⋅⋅⋅ 
∴​  φψ= φψ= φψ. 

 NOTE ​ If φ(x) and ψ(x) are functions such that  φψtakes the indeterminate form  and the functions ​
φ n (x) and ψ n (x) satisfy the conditions of the L’Hospital's theorem, then 

​  φψ= φψ= ⋅ ⋅ ⋅ =  φψ. 

The Indeterminate form ∞∞ 

If  φ(x) = ∞ and ψ(x) = ∞, then 
​  φψ= φψ 
the same rule as that for evaluating the indeterminate form . 

 NOTE ​ We try to reduce the different forms of indeterminate forms either to the form  or to the form ∞∞, so that the 
theorem can be applied to evaluate the limit of the function. 

📂​ Illustrative Examples 

Example 1.​ Evaluate , using L’Hospital's rule. 
Solution 

​  ​ ​ ​  
=​  ⋅  ​ ​  
= ​  
= ​  
=​ . 

Example 2.​ Evaluate ∞, using L’Hospital's rule. 
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Solution 
​ ∞​ ​ ​ ∞∞ 
=​ ∞​ ​ ​ ​ ∞∞ 
=​ ∞ 
=​   
=​ . 

Example 3.​ Evaluate  , using L’Hospital's rule. 
Solution 

​   ​ ​ ​  
=​  ​ ​ ​  
= ​  ​ ​ ​  
= ​  ​ ​       ​     ​   
= ​   
= ​  
=​ . 

Example 4.​ Evaluate  , using L’Hospital's rule. 
Solution 

​   ​ ​ ​ ​ ∞∞​  
= ​  ⋅ 
= ​    
= ​  –  ⋅  sin x2 
= ​ – 1 ⋅ 0  
= ​ 0. 

Example 5.​ Evaluate , using L’Hospital's rule. 
Solution 

​    
= ​  ​ ​ ​  
=​  ⋅⋅​ ​ ​  
= ​    
= ​  ​ ​ ​  
= ​  = . 

Example 6.​ Evaluate  , using L’Hospital's rule. 
Solution 

​    
= ​   ​ ​ ​ ​ ​  
= ​  ​ ​ ​ ​  
= ​  ​ ​ ​ ​  
= ​    
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= ​   ​ ​ ​  
= ​    
=​   ​  
=​    
=​ –  
= ​ – . 

📂​ Exercise 14.6  

1.​ Evaluate by using L’Hospital's rule: 

a.​  ​ b.​   

c.​  ​ d.​   

e.​ π π​ f.​   

g.​ ​ h.​ . 

2.​ Evaluate by using L’Hospital's rule: 

a.​ ∞ ​ b.​  ππ 

c.​  π​ d.​ π  

e.​ ∞  (n being a positive integer)​ f.​  . 

Answers 

1.​ a.​ ​ b.​ nan – 1​ c.​ ​ d.​ ​ e.​ 1 
​ f.​ 2​ g.​ 2​ h.​ 2​  
2.​ a.​ ​ b.​ 3​ c.​ 0​ d.​ 3​ e.​ 0 
​ f.​ 1 

📂​ Multiple Choice Questions 

1.​ Which of the following is not an indeterminate form? 
a.​ ∞∞​ b.​  
c.​ ∞ + ∞​ d.​ ∞0 

2.​ The value of →∞is 
a.​ 2​ b.​ 0 
c.​ 1​ d.​ None of them 

3.​ The value of →is 
a.​ 2​ b.​ 0 
c.​ 1​ d.​ None of them 

4.​ The value of →ππis 
a.​ 3​ b.​  
c.​ 0​ d.​ π 

5.​ The value of →is 
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a.​ 0​ b.​ – 1 
c.​ 1​ d.​ None of them 

Answers 
 

1 2 3 4 5      
c b a b c      
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14.10​ Mean Value Theorem 

Intervals 

A number x is said to belong to 
1.​ a closed interval [a, b] if a ≤ x ≤ b 
2.​ an open interval (a, b) if a < x < b 

Upper and Lower Bound 

Suppose a function ƒ(x) is bounded in a ≤ x ≤ b. If M and m are the upper and lower bounds, then M 
has the properties: 
1.​ ƒ(x) ≤ M for all x in a ≤ x ≤ b 
2.​ ƒ(x) > M – ∈, ∈ > 0 for at least one value of x in a ≤ x ≤ b 
and m has the properties: 
1.​ ƒ(x) ≥ m for all a ≤ x ≤ b 
2.​ ƒ(x) < m + ∈, ∈ > 0, for at least one value of x in a ≤ x ≤ b. 

 NOTE ​ If a function ƒ(x) is continuous in a closed interval [a, b], then ƒ(x) is bounded and attains its bounds which 
then becomes the maximum and minimum values of the function in [a, b]. 

​ In other words, if ƒ(x) is continuous in the closed interval [a, b], then there exist real numbers m and M 
such that m ≤ ƒ(x) ≤ M for all x ∈ [a, b] and ƒ(c) = m, ƒ(d) = M for c, d ∈ [a, b]. 

We now state and prove two standard theorems, namely Rolle's and Lagrange's mean value theorem. 
The proofs of these theorems are not in the syllabus.  

Rolle's Theorem 

If ƒ(x) be a function defined in [a, b] such that 
1.​ ƒ(x) is continuous in [a, b] 
2.​ ƒ(x) is differentiable in (a, b) 
3.​ ƒ(a) = ƒ(b) 
then there exists at least one point c ∈ (a, b) such that ƒ'(c) = 0 
Proof: Since ƒ(x) is continuous in [a, b], it is bounded and attains its bounds at least once in [a, b]. 
Let m and M be the lower and upper bounds of ƒ(x) in [a, b] 
Case I: If M = m, then ƒ(x) = M = m for every value of x in the interval, i.e. ƒ(x) is constant in [a, b] 
∴​ ƒ '(x) = 0, for all x in [a, b]. 
Thus the theorem is true in this case. 
Case II: If M ≠ m, i.e., ƒ(x) is not constant in [a, b].  

Let the upper bound M ≠ ƒ(a) = ƒ(b). Suppose ƒ(c) = M for c in (a, b). The number c, being 
different from a and b belongs to the open interval (a, b) and the function which is differentiable in 
the open interval, is derivable at x = c i.e., ƒ'(c) exist in (a, b). 

∴​ ƒ'(c)​=  ​ ​ ​ . . . (i) 
Since ƒ(c) is the greatest value 
​ ƒ(c) > ƒ(c + h) for positive as well as negative values of h 
∴​  < 0 if h > 0 ​ ​ ​ . . . (ii) 
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and​  > 0 if h < 0 ​ ​ ​ . . . (iii) 
From (ii) and (iii), making h → 0 through positive values and through negative values, we get 
​ ƒ '(c) ≤ 0 and ƒ '(c) ≥ 0 
∴​ ƒ'(c) = 0 
Similarly, if the lower bound m is attained at c, ƒ'(c) = 0. 
Failure of Rolle's Theorem 
If any of the conditions of Rolle's theorem be not satisfied, then the Rolle's theorem will not be true. 

Geometrical Interpretation of the Rolle's Theorem 

If the graph of y = ƒ(x) continuously drawn between 
two points x = a and x = b such that tangent can be 
drawn at each point on the curve between x = a and ​
x = b and ƒ(a) = ƒ(b), then there exists at least one 
point c ∈ (a, b) on the curve at which the tangent is 
parallel to the x-axis. 

 

📂​ Illustrative Examples 

Example 1.​ Verify Rolle's theorem for the function 
a.​ ƒ(x) = x2 – 5x + 7 in the interval [2, 3]. 
b.​ ƒ(x) = sin x in [0, π]. 

Solution  
a.​ We have 
​ f (x) = x2 – 5x + 7 
i.​ Here, f (x) being a polynomial function is continuous on , so it is continuous in 

[2, 3] 
ii.​ Also, f '(x) = 2x – 5 which exists for all x ∈ (2, 3). So f (x) is differentiable in (2, 

3) 
iii.​ f (2) = f (3) = 1 
​ Hence, there exist at least one point c ∈ (a, b) such that ƒ '(c) = 0. We have to 

determine this c 
​ Now  
​ f '(c) = 0 implies 
​ 2c – 5 = 0 
or,​ c =  ∈ (2, 3) 
​ Hence, the Rolle's theorem is verified. 
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b.​ Here, f (x) satisfies the followings: 
i.​ f (x) is continuous in [0, π] 
ii.​ f '(x) = cos x which exists for all x ∈(0, π). So f (x) is differentiable on (0, π) 
iii.​ f (0) = f (π) = 0 
​ Hence, there exist one point c ∈ (0, π) such that f '(c) = 0. We have to find this c. 
​ Now 
​ f '(c) = 0 implies  
​ cos c = 0   
or,​ c = π ∈ (0, π). 
Hence, the Rolle's theorem is verified. 

Example 2.​ Show that there is no real number p for which the equation x2 – 3x + p = 0 has two 
distinct roots in [0, 1]. 

Solution 
Suppose that there is a real number p for which the given equation has two distinct 
roots α and β in [0, 1] where α < β 
​ Consider ƒ(x) = x2 – 3x + p in [α, β] 
Since α and β are roots of f (x), f (α) = f (β) = 0. Also, f (x) being polynomial function 
is continuous and differentiable on (α, β), the conditions of Rolle's theorem are 
satisfied. Hence, there exist one point c ∈ (α, β) such that ƒ'(c) = 0 
Now 
​ f '(x) = 2x – 3 
​ f '(c) = 0  
or,​ 2c – 3 = 0 
or,​ c =  ∉ (0, 1) 
Also, (α, β) ⊂ (0, 1) is not true, a contradiction to the supposition 
Hence, there is no real number p having two distinct roots in [0, 1]. 

Lagrange's Mean Value Theorem 

Let ƒ(x) be a function defined in [a, b] such that 
1.​ ƒ(x) is continuous in [a, b] 
2.​ ƒ(x) is differentiable in (a, b), 
then there exists at least one c ∈ (a, b) such that 
​ ƒ(b) – ƒ(a) = (b – a) ƒ '(c) 
Proof: Consider the function  
​ φ(x) = ƒ(x) + Ax​ ​ ​ . . . (i) 
where A is a constant to be so chosen that  
​ φ(a) = φ(b). 
Thus​ φ(a) = ƒ(a) + Aa​ ​ ​ . . . (ii) 
and​ φ(b) = ƒ(b) + Ab​ ​ ​ . . . (iii) 
From (ii) and (iii)  
​ φ(a) = φ(b) 
or,​ ƒ(a) + Aa = ƒ(b) + Ab 
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or.​ A = –   
Therefore from (i), we have 
​ φ(x) = ƒ(x) –   ⋅ x . 
Now, φ(x) is continuous in [a, b] and derivable in (a, b) and φ(a) = φ(b). Thus, φ(x) satisfies Rolle's 
theorem. Hence, there exist a point c ∈ (a, b) such that φ'(c) = 0, 
i.e.,​ ƒ'(c) –   = 0 
or,​ ƒ'(c)​=  
or,​ ƒ(b) – ƒ(a) = (b – a) f '(c) 
Hence, the theorem is proved. 

 NOTE ​  This theorem is the generalization of Rolle's theorem and is usually known as "the first mean value 
theorem" or "the law of the mean." It is named after the French Mathematician Joseph Louis Lagrange 
(1736 – 1813). 

Geometrical Interpretation of Lagrange's Theorem 

On the graph of y = ƒ(x), let A and B be the end 
points at x = a and x = b, then 
slope of the chord AB ​=  
​ ​ =  
and the slope of the tangent to the curve at x = c is 
ƒ'(c) 
Now, ƒ'(c) = means 

 
 

the slope of the chord is equal to the slope of the tangent 
Thus, if a curve is continuously drawn between two points A and B such that the tangent can be 
drawn at each point of the curve between A and B, then there exist at least one point of the curve 
where the tangent is parallel to the chord AB. 

 NOTE ​ It is usual to take the interval as (a, a + h) and the value of c as a + θh, where 0 < θ < 1. 
​ Thus the mean value theorem can be written as, in another form, 
​ ƒ(a + h) – ƒ(a) = hf '(a + θh), where b – a = h. 

Example 3.​ Verify Lagrange's Mean value theorem for ƒ(x) = x3 – x2 – 5x + 3 in [0, 4]. 
Solution 

As a polynomial function, ƒ(x) is continuous in [0, 4] and differentiable in (0, 4). 
Hence, there exists c in (0, 4) such that 
​  = ƒ'(c) ​ ​ ​ ​ . . . (1) 
Now 
​ ƒ'(x) = 3x2 – 2x – 5​ ​ ​ ​ . . . (2) 
​ ƒ(4) = 43 – 42 – 5 ⋅ 4 + 3 = 31 
​ ƒ(0) = 3 
​ ƒ'(c) = 3c2 – 2c – 5​ ​ ​ ​ [from (2)] 
Substituting these values in (1), we get 
​  = 3c2 – 2c – 5 
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or,​ 7 = 3c2 – 2c – 5 
or,​ 3c2 – 2c – 12 = 0 
or, ​ c = ± = ± 
∴​ c =  ∈ (0, 4).​ ​ ​ ​ [Taking +ve sign] 
Hence, the theorem is verified. 

📂​ Exercise 14.7 

1.​ Verify Rolle's theorem for each of the followings: 

a.​ ƒ(x) = x2; x ∈ [– 1, 1]​ b.​ ƒ(x) = (x – 2) (x – 3) (x – 4); x ∈ [2, 4] 

c.​ ƒ(x) = x(x – 2)3; x ∈ [0, 2]​ d.​ ƒ(x) = sin x; x ∈ [0, 2π] 

e.​ ƒ(x) = ; x ∈ [0, π]​ f.​ f (x) = ; x ∈ [– 5, 5]​  

2.​ Verify Rolle's theorem for the function f (x) = sin x, x ∈ [0, π]. Also find a point on the curve 
represented by given function where the tangent is parallel to the x-axis. 

3.     Verify Lagrange's Mean Value Theorem: 

a.​ ƒ(x) = x(x – 2); x ∈ [1, 2]​ b.​ ƒ(x) = x (x – 1) (x – 2); x ∈  

c.​ ƒ(x) = (x – 1) (x – 2) (x – 3); x ∈ [1, 4]​ d.​ ƒ(x) = ex; x ∈ [0, 1] 

e.​ ƒ(x) = ; x ∈ [1, 4]​ f.​ ƒ(x) = cos x; x ∈ π 

g.​ ƒ(x) = ln x; x ∈ [1, e]​ h.​ f (x) = ; x ∈ [2, 4] 

4.​ If the mean value theorem is ƒ(b) – ƒ(a) = (b – a) ƒ '(x1), find x1 when ƒ(x) = x (x – 1) (x – 2); ​
x ∈ . 

5.​ a.​ Using Lagrange's mean value theorem, find the point on the curve f (x) = x(x – 2), the 
tangent at which is parallel to the chord joining the points (1, – 1) and (4, 8). 

​ b.​ Examine whether the function f (x) = x2 – 6x + 1 satisfies Lagrange's mean value theorem. 
If it satisfies, then find the coordinates of the point at which the tangent is parallel to the 
chord joining the points A(1, – 4) and B(3, – 8). 
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6.​ Is Lagrange's Mean Value Theorem applicable to the functions defined below? 

a.​ ƒ(x)​ = x cos  for x ≠ 0 

​ ​ = 0 for x = 0, in the interval [– 1, 1]. 

b.​ ƒ(x) = 4 – (6 – x)2/3 in [5, 7]. 

Answers 

2.​ π​ 4.​ x1 = 0.23​  
5.​ a.​ ​ b.​ (2, – 7) 
6. ​ a.​ Not applicable, as ƒ '(x) does not exist at x = 0, where 0 ∈ (– 1, 1) 
​ b.​ Not applicable, ƒ'(x) does not exist at x = 6, 6 ∈ (5, 7) 
 

📂​ Multiple Choice Questions 

1.​ "If f (x) is continuous in [a, b], derivable in (a, b) and f (a) = f (b), then there exists at least one 
point c ∈ (a, b) such that f '(c) = 0." This is the statement of  
a.​ L'Hospital rule​ b.​ Rolle's theorem  
c.​ Lagrange's mean value theorem ​ d.​ None of them 

2.​ "If f (x) is continuous in [a, b] and differentiable in (a, b), then there exists at least one point ​
c ∈ (a, b) such that f (b) – f (a) = (b – a) f '(c) = 0." This is the statement of 
a.​ L'Hospital rule​ b.​ Rolle's theorem  
c.​ Lagrange's mean value theorem ​ d.​ Generalized mean value theorem 

3.​ If f (x) = sin x is defined on [0, π], then the value of c ∈ (0, π) for which f '(c) = 0 is 
a.​ 0​ b.​ π 
c.​ π​ d.​ π 

4.​ In the graph of a continuous curve y = f (x) whose end points are at x = a and x = b, the 
expression is the slope of  
a.​ secant line​ b.​ tangent line 
c.​ any line​ d.​ all of them 

5.​ The point on the curve f (x) = x2 – 2 where the tangent is parallel to the x-axis is 
a.​ (0, 0)​ b.​ (0, – 2) 
c.​ (, 0)​ d.​ (0, ) 

Answers 
 

1 2 3 4 5      
b c d a b      

 

📂​ Miscellaneous Exercise 

1.​ Discuss the continuity and discontinuity of the following functions: 
a.​ f (x) = ⋅, at x = 0​ b.​ f (x) = | x | + | x – 1 | at x = 0, 1 
c.​ f (x) = ,  at x = 0​ d.​ f (x) =   , at x = 0. 

2.​ Find f (0) if the function f (x) = , x ≠ 0 is continuous at x = 0. 
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3.​ Examine the continuity of the function f (t) = πππ, at t =π.​  

4.​ If f (x) = ≠, then prove that f (x) is continuous at x = 0. 

5.​ If f (x) = . Is f (x) differentiable at x = 1 and 2?  

6.​ If xy + yx = 2, find  . 

7.​ If ex + ey = x + y, find  . 

8.​ If y = xxx. . ., prove that  = . 

9.​ If y = ⋅⋅⋅, prove that  =  . 

​ Hint: y = . 

10.​ If y = (cos x)cos x cos x ⋅ ⋅ ⋅, prove that    =  . 

11.​ Find the equation of the normal to the parabola y2 = 4ax in the form y = mx – 2am – am3, where 
m is the slope of the normal. 

12.​ Find the equation to the tangent to x3 = ay2 at (4am2, 8am3). 

13.​ Find the equation of the tangent to the curve 

a.​ y = cot2 x – 2 cot x + 2 at x = ​ b.​ y = 2 sin x + sin 2x at x = . 
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14.​ Evaluate: 
a.​ π (1 – sin x) tan x​ b.​ (1 – x) tan π 
c.​  sin x ln x2​ d.​  x2 ln (x2) 

15.​ Evaluate: 
a.​  ​ b.​  ​  
c.​  ​ d.​ π (sec x – tan x)           
e.​ π ​ f.​  ​  
g.​   

Answer 

1.​ a.​ Continuous ​ b.​ Continuous​ c.​ Continuous​ d.​  Discontinuous 
2. ​ 1​ ​  
3.​ Continuous​  
5.  ​Continuous at x = 1, and 2 
6.​ – ⋅, xy ln x + ⋅) ​  
7. ​ ​  
11.​ y = mx – 2am – am3​  

12.​y = 3mx + 8am3 – 12am3 
13.​a.​ 2x – 2y + 2 – π = 0​​ b.​ 2y = 3 
14.​a.​ 0​ b.​ π​ c.​ 0​ d.​ 0​  
15.​a.​ 0​ b.​ ​ c.​ ​ d.​ 0​ e.​ – ∞ 
​ f.​ ​ g.​ 0 

 

✵✵✵ 
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