

السنة الدراسي ـــــة 2012-2013

Www.AdrarPhysic.Com

تمرین 1 (7,5

فرض محروس رقم 1 الدورة 2

مدة الانجاز: ساعتــــان

بفعل تأثير المُخَمِرَات اللبنية، يتحول سكر الحليب (اللاكتوز) تدريجيا إلى الحمض اللبني ذو الصيغة CH3-CHOH-COOH للتبسيط نرمز لهـــذا الحمض بـ R-COOH. كلما كانت كمية الحمــض اللبني الموجودة في حليب معين صغيرة، كلما كان الحليب طريا. لمعرفة كمية الحمض اللبني الموجودة في عينة

من حلیب، نضع فی کأس حجما $V_a = 20$ من حليب و نضيف تدريجيا محلولا لهيدروكسيسد الصوديوم(Na⁺(ag)+OH⁻(ag)) تركيسيزه C_R= 5.10⁻²mol/L الخليط بعد كــل

إضافة، فنحصل على المنحنى pH=f(V_R) الممثل في الشكل أعلاه . نعتبر أن الحمض اللبني هو الوحيد الذي يتفاعل في الحليب مع محلول هيدروكسيد الصوديوم.

- 1- أكتب المعادلة الحصيلة للتفاعل الذي يحدث أثناء المعايرة. (0,75ن)
 - 2- حدد مبيانيا إحداثيات نقطة التكافق. (75,0ن)
- 3- أحسب التركيز ٢٥ للحمض اللبني في عينة الحليب، استنتج كتلة الحمض اللبني الموجودة في لتر واحد من العينة المدروسة. (0,75ن)
 - 4- اكتب تعبير ثابتة الحمضية للحمض R-COOH، ثم اكتب تعبير pH بدلالة 0,75 (0,75)
 - وعند نقطة نصف تكافؤ المعايرة $V_{\rm B}=V_{\rm B.E}/2$ فان $V_{\rm B}=V_{\rm B.E}/2$ احسب النسبة -5

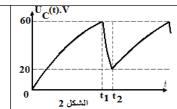
[R-COO-]/[R-COOH] ، استنت ج أن pK_A=3,8 (0,75 ن)

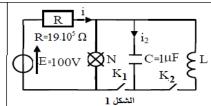
- 6- بين انه يمكن معايرة الحمض اللبني الموجودة في الحليب بمحلول هيدروكسيد الصوديوم (0,75)
- 7- في الصناعات الغذائية، يعبر عن حموضة الحليب ب"درجة دورنيك" و نرمز لها ب D° بحيث
 - 10°توافق الحموضة التي يسببها و جود 0.1g من الحمض اللبني في لتر واحد من الحليب
 - 7-1- أحسب درجة الحموضة لعينة الحليب المدروسة سابقا. (0,75ن)
- 2-7- يعتبر الحليب طريا إذا كانت درجة حموضته محصورة بين 15 C°و 18 C°هل يمكن اعتبار الحليب الموجود في العينة المدروسة طريا؟ (0,75)
 - 8- ندرس محلول الحمض اللبني قبل بداية المعايرة (V_g= 0)
 - 8-1 أكتب معادلة تفكك الحمض اللبني في الماء (0,75))
- 2-8- بالاستعانة بالجدول الوصفى، احسب قيمة نسبة التقدم النهائي للتحول المقرون بتفكك الحمض اللبني في الماء. ماذا تستنتج؟ (0,75ن)
 - معطيات الكتلة المولية للحمض اللبني 1-K_e=10⁻¹⁴; M=90 g.mol:

المستـــوى : . 2émé BAC

الحساسية الأفقيةS_=20V/div ،الحساسية الرأسية S_=20V/div

الشكل 3


U_C(t).V


1- حدد معللا جوابك المنحني الموافق للتوتر بين مربطي الموصل الاومي و المنحني الموافق للتوتر بين مربطي المولد. (0,5) 2- بين أن المقاومة الداخلية للوشيعة غير مهملة و تأكد أن 0,5).r=20Ω.

3- حدد مبيانيا قيمة au و قيمة au ثابتة الزمن. (0,5ن)

4-احسب قيمة الطاقة القصوية التي تختزنها الوشيعة. (0,75ن) الجزء الثاني ننجز التركيب التجريبي (الشكل 1) حيث N مصباح

من النيون. يتصرف المصباح كقاطع للتيار عندما يكون منطفئا حيث التوتر بين مربطيه U≥20V ويتصرف كموصل اومي مقاومة R=10⁵Ω عندما يكون مشتعلا حيث التوتر بين مربطيه U≤60V. نعاين التوتر بين مربطى المكثف فنحصل على الشكل 2

- 1-1- فسر لماذا لا يشتعل المصباح لحظيا عند غلق قاطع التيار 0,5) . الكن
- 2-1- حدد المعادلة التفاضلية التي يحققها التوتر Uc(t (t<t₁. (0,5) عند t<t₁. (
- 3-1- تحقق من أن حل المعادلة التفاضلية يكتب على شكل O,5 (U,(t)=E(1-e^{-t/RC}).
- $_{-1}$ حدد بدلالة برمترات الدارة تعبير اللحظة $_{1}$ التي سيشتعل فيها المصباح، تم احسب قيمتها. (0,5ن) 2- ابتدءا من اللحظة t₁ يشتعل المصباح.
 - 2-1- باستعمالك لقانون العقد حدد المعادلة التفاضلية التي يحققها 0,75 (Uc(t). (0,75)
- و-2-2 حل المعادلة التفاضلية السابقة = \mathbf{t}_2 المعادلة المعادلة التفاضلية السابقة = \mathbf{t}_2 + (6U_c(t) دو المعادلة التفاضلية السابقة = \mathbf{t}_2
 - 3- عند لحظة t_2 نفتح قاطع التيار K_1 ونغلق K_2 ، نعاين التوتر بين مربطي المكثف فنحصل على الشكل 3
 - 3-1 ما طبيعة النظام المحصل عليه، كيف تفسره؟ (0,5)
 - 2-3- احسب قيمة الطاقة القصوية التي اختزنها المكثف. (0,5ن)
 - 3-3- علما أن معامل تحريض الوشيعة L=0,24H و باعتبار $T_{\rm s}$ ، حدد قيمة شبه الدور. (0,5ن)
 - 4-3- احسب الطاقة المفقودة من طرف الدارة خلال الدور الأول . (0,5ن)
- 3-5- الطاقة الإجمالية الله الدارة غير ثابتة حيث dE/dt = -R_{ea}.i(t)²، اعتمادا على هذه الدراسة الطاقية حدد المعادلة التفاضلية التي يحققها التوتر بين مربطي المكثف. (0,75ن)

نطبق في مدخلي الدارة متكاملة المنجزة للجداء توترين فنحصل عند مخرجها على توتر تعبيره

- t) en $V.\pi.t$) + 10).cos(10⁴. $\pi.u$ (t) = k.P_m (4.cos(10³)
- 1- بين أن التوتر المحصل عليه توتر مضمن بالوسع (0,75ن)
- 2- حدد قيمة نسبة التضمين و استنتج جودة التضمين (0,75ن)

الجزء 1: ننجز التركيب التجريبي و المكون من مولد مولد مؤمثل للتوتر قوته الكهرمحركة ع، موصل اومي مقاومته R=100Ω، و وشيعة معامل تحريضا L. نعاين التوتر بين مربطي الموصل الاومي و بين مربطي المولد فنحصل على المنحنيين الممثلين في الشكل جانبه

 3- علما أن معامل تحريض الوشيعة لدارة الانتقاء هي L=10mH حدد قيمة سعة المكثف المناسب من لانتقاء هذه الموجة (0,75ن)

4- بعد استقبال الموجة تتم عملية إزالة التضمين، ما الهدف منها و كيف تتم. (0,75ن) والله ولي التوفيق

```
0,08J=<sup>2</sup>(\frac{R}{U_{R,max}}).\tau(R+r)E_{m}=0,5.
```

جزء الثاني

 $U_c=0V$ فان $U_c=U_N$ عند $U_c=U_N$ فان $U_c=0$. المصباح متوازي مع المكثف اي $U_c=0$ عند $U_c=0$ فان $U_c=0$ حسب الشكل 2 ومنه $U_c=0$ اصغر من $U_c=0$ توتر اشتعال المصباح

2-1- المعادلة التفاضلية التي يحققها التوتر U(t)

 $U_R+U_C=E=R$.i(t)+ U_C عند $t< t_1$ المصباح لا يشتعل ومنه $U_C=U_N<60$ فان $t< t_1$

 $U_c + \frac{dU_c}{dt}$ E=R .C. و منه المعادلة التفاضلية

1-3- لنتحقق أن حل المعادلة التفاضلية هو U_c(t)=E(1-e^{-t/RC}).

R .C.[E. e^{-t/RC}/RC] + E-Ee^{-t/RC})=E

1-4- تعبير اللحظة t₁ التي سيشتعل فيها المصباح، عند اشتعال المصباح Uc(t₁)=U_N=60V اي

 $\frac{U_c(t_1)}{E}$) = - 19. 10⁵. 10⁻⁶ ln $ln\left(1 - \frac{60}{100}\right)$ = 1,74s t_1 =-R.C.ln(1- ومنه (U_c(t_1)=E(1- $e^{-t_1/RC}$)

1-2- ابتدءا من اللحظة t_1 يشتعل المصباح اي يتصرف المصباح كموصل اومي ، قانون العقد $i=i_1+i_2$ مع

 $\frac{dv_c}{dt}$ اء= C. بالاضافة i=(E-U_c)/R ومنه E=U_R+U_N=R.i+U_C

 $i_1=U_c/R_N$ ومنه $U_N=U_C=R_N.i_1$

و بالتالي المعادلة التفاضلية التي يحققها $rac{dU_c}{dt}$ E-U $_{
m c}$)/R= U $_{
m c}$ /R $_{
m N}$ + C.)

 $\frac{R.E}{R_N + R} \mathbf{U_c} = + \frac{dU_C}{dt} \mathbf{C} \cdot \frac{R_N \cdot R}{R_N + R}$

 $Uc(t_2)=U_N=20V$ عند انطفاء المصباح عند الدخلة و التي سينطفئ فيها المصباح عند انطفاء المصباح الدر t_2 التي سينطفئ فيها المصباح و $e^{-20.t}$ ($e^{-20.t}$ ($e^{-20.t}$ ($e^{-20.t}$ ($e^{-20.t}$ ($e^{-20.t}$ ($e^{-20.t}$) $e^{-20.t}$

 $\mathbf{t_1}$ اي ابتدءا من اللحظة $-\frac{RC}{20} \ln \ln \left(\frac{20 - \frac{E}{20}}{60 - E} \right) = 0$, 12s $\mathbf{t_2}$

 $\frac{20}{60-\frac{2}{20}}$

1-3 طبيعة النظام المحصل عليه نظام شبه دوري ، كيف تفسره بضياع الطاقة في الدارة بمفعول جول

 $U_c(t_2)=20$ فإن فإن التي اخترنها المكثف، عند لحظة t_2 فإن $t_2=0$

 E_e =0,5.C. U_c^2 =0,5.10⁻⁶.(20)²=2.10⁻⁴J

 $\pi\sqrt{LC} = 2\pi\sqrt{0}, 24.10^{-6} = 3,07.10^{-3}$ **د-3**-3 قيمة شبه الدور، **3-3**-3 **د**

t=T و $t=t_2$ الطاقة المفقودة من طرف الدارة خلال الدور الأول . اي بين

عند t=t₂ عند الدينا (t=t₂)=0,5.C. U_c²=0,5.10⁻⁶.(20)²=2.10⁻⁴ عند t=t₂

 $U_c(T)$ =15V $E_e(T)$ =0,5.C. U_c^2 =0,5. 10^{-6} . $(15)^2$ =1,25. 10^{-4} ليناt=T

 $E_{e}(T)-E_{e}(t_{2})=0,75.10^{-4}J=\Delta E$

 المنفة الدراسيــــة 2012-2012 المستـــــوى : .8M. المستــــوي

فرض محروس رقم 1 الدورة 2 مدة الانجاز: ساعتـــــان

تمرین 1 (7,5ن)

Www.AdrarPhysic.Com

1- المعادلة الحصيلة للتفاعل الذي يحدث أثناء المعايرة.

1- اعتداله العظيية للفاض الذي يعدل الفاخ المد

 $OH^-+R-COOH$ $R-COO^-+H$ $_2O$

2-ت حديد مبيانيا إحداثيات نقطة التكافق. pH_E=8; V_B=12mL

3- التركيز CA للحمض اللبني في عينة الحليب،

 $C_AV_A=C_BV_{BE}$ $C_A=C_BV_{BE}/V_A=3.10^{-2}$ mol/L

كتلة الحمض اللبني الموجودة في لتر واحد من العينة المدروسة.

 $m=C_AV.M(A)=0,03.1.90.=2,7g$ ومنه $C_A=m/M(A).V$

4- اكتب تعبير ثابتة الحمضية للحمض R-COOH،

 $\frac{[R-COO-]}{[R-COOH]}$ pK_A. pH=pK_A+log بدلالة pH بعيد بعبير $\frac{[H_3O^+][R-COO-]}{[R-COOH]}$ K_A=

5- حسابُ النسبة [R-COOH]/[R-COOH] بالاستعانة بالجدول الوصفي لتفاعل المعايرة

 $[HO^{-}] = K_{e} / [H_{3}O^{+}] = (V_{A} + V_{B}) / [x_{f} - [HO^{-}]] = [n_{0}(HO^{-})]$ $(K_{e} / [H_{3}O^{+}]) \cdot (VA + VB) = 2,99 \cdot 10^{-4} mol x_{f} = C_{B}V_{B} - x_{f} / (V_{A} + V_{B}) = 0,011 mol / L[R - COO -] =$

 $\frac{CA.VA - xf}{(VA + VB)} = 0,011 mol/L = [R - COOH]$

، استنتـــج أن pK_A=3,8 pH=

6- بين انه يمكن معايرة الحمض اللبني الموجودة في الحليب بمحلول هيدروكسيد الصوديوم حسب التمرين الحمض هو الوحيد الذي يتفاعل مع الحمض اي ان التحول انتقائي

تابتة التوازن هي $\frac{10^{-4.8}}{KA(H_2O/OH-)} = \frac{10^{-4.8}}{10^{-14}} = \frac{KA(R-COOH/R-COO-)}{KA(H_2O/OH-)}$ التحول كلي

اذن يمكن معايرة الحمض اللبني الموجودة في الحليب بمحلول هيدروكسيد الصوديوم

7-1- درجة الحموضة لعينة الحليب المدروسة سابقا.

1°D: 1L2 0,1g de R-COOH

X °D : 1L 2,7g R-COOH أذن درجة دورنيك للحليب المدروس 27°D

2-2- حليب العينة المدروسة ليس طريا لان درجة حموضته ليست محصورة بين 15 °D و 18

1-8- معادلة تفكك الحمض اللبني في الماء

⁺H₂O +R-COOH2R-COO⁻+H₃O

2-8- قيمة نسبة التقدم النهائي للتحول المقرون بتفكك الحمض اللبني في الماء.

التحول غير كلي au=0, 13 استنتج ان التحول غير كلي au=0 استنتج ان التحول غير كلي التحول غير كلي

تمرین 2

تمرین 3

1- بين ان التوتر المحصل عليه توتر مضمن بالوسع: وسع التوتر هو $10.\pi$.A($4\cos(10^3 + (t))$) بما انه يتغير بتغير الزمن فالتضمين تضمين بالوسع

2- قيمة نسبة التضمين $1 > m = S_m/U_0 = 4/10 = 0.4$. استنتج ان التضمين جيد

ومنه LC ومنه الابتقاء لابد من تحقق $N_0 = f_p = 1/2$ حيث $\pi \sqrt{LC}$ حيث $\pi \sqrt{LC}$ حيث و الانتقاء المضمنة و $\pi \sqrt{LC}$ الانتقاء الابد من تحقق $\pi \sqrt{LC}$ الانتقاء الابد من تحقق $\pi \sqrt{LC}$ الانتقاء الابد من تحقق الابد

4- بعد استقبال الموجة تتم ، ما الهدف من عملية إزالة التضمين هو استرجاع الاشارة من الموجة الحاملة كيف تتم: عندما يأخذ التوتر الحامل قيمة موجبة يكون الصمام التاني مستقطبا في المنحى المار فيشحن المكثف و عندما يأخذ التوتر الحامل قيما سالبة يصبح الصمام التانني قاطعا فيفرغ المكثف وبهذه العمليات نحصل على ققم غلاف التوتر المضمن و الذي يوافق الاشارة 1- المنحنى الموافق للتوتر بين مربطي الموصل الاومي هو 2 لان بتغير شدة التيار يتغير التوتر بين مربطي الموصل الاومي المنحنى الموافق للتوتر بين مربطي المولد هو 1 لان ثابت لا يتغير

2- لنبين أن المقاومة الداخلية للوشيعة غير مهملة و نتأكد أن r=25Ω.

نعتبر حسب قانون اضافيات التوترات $E=U_L+U_R$ اي $U_L=E-U_{R,max}$ في النظام الدائم $U_L=E-U_{R,max}$ اي $U_L=E-U_{R,max}$ في النظام الدائم $U_L=E-U_{R,max}$ حسب قانون اوم $U_L=E-U_{R,max}$ و $U_L=E-U_{R,max}$ انتراك عسب قانون اوم $U_L=E-U_{R,max}$

 $\frac{U_L}{I} = \left(E - U_{R,max}\right) \cdot \frac{R}{U_{R,max}} = (100 - 80) \cdot \frac{100}{80} = 25\Omega$

au = 2msو قيمة ثابتة الزمن au = 100V

au.(L=(R=r اي au=L/(R+r) مع au=L/(R+r) اي au=L/(R+r) اي au=L/(R+r)