Project: An actually good realism
constraint for honeypots using seeds

Fabien Roger 18 avr. 2025

While there are many methods for finding specific dangerous behaviors from models, they don’t
find the sort of inputs that would trigger bad behavior in deployment with benign users. | have an
idea for how to fix that.

The sad state of searching for bad model behaviors

When people search for bad model behaviors, they either do:

e No-holds-barred: looking for inputs that trigger behaviors that LLMs are designed to
never do (e.g. helping to build bioweapons). People are very good at finding jailbreaks
that meet this criteria

o Examples: the whole jailbreaking literature, jailbreaking challenges, ...

e Trying-to-be-analogous/natural: looking for inputs that trigger bad behaviors while only
using inputs that are analogous to future realistic settings / that don’t “hint too hard” at
the bad behavior.

o Examples: Apollo’s scheming evals, people tweeting about weird things models
do

The first category is basically useless when trying to understand more “natural” failures of LLMs,
but it is successful at finding inputs that trigger bad behaviors.

The second category is more relevant, but it is very hand-wavy, and does not scale: you can’t
compare methods, you can’t organize a challenge to find the best analogous/natural inputs, and
people on twitter argue endlessly about how cherry-picked examples are. This also prevents
people from hill-climbing on finding interesting bad behaviors.

The problem of optimizing directly for “realism”

Adversarial robustness work is good at finding inputs that trigger bad behavior (GCG, ...), but
these don’t look realistic. Some works try to work with realism constraints, often measured by
how likely a particular input string is according to an LLM modeling the likelihood of user inputs,
or how “realistic-looking” inputs are.

But “looking realistic” is not the right criteria. If you have as input an agentic trajectory with lots
of millisecond-precise timestamps, | would not be shocked if some carefully chosen timestamps
resulted in evil behaviors (as observed in image adversarial robustness).

mailto:fabien@anthropic.com

“Being likely” is also not the right one: real deployment inputs have millisecond-precise
timestamps, which are very high entropy.’

Constraining inputs to be less cherry-picked

One solution to define what it means to not cherry-pick inputs is to try to make it so that the
search for bad behaviors succeeds if and only if a similarly egregious input was also found in
natural deployment (ignoring adversarial red-teaming). If models would have demonstrated
misaligned behavior against benign users, then your model is scary and maybe dangerous.

Here is my proposed method:

First, train a model SIM to imitate benign user input. We’'ll assume this model perfectly captures
the input distribution (somewhat unrealistic, but it's probably fine).

Then, the typical way to reduce cherry-pickingness is to constrain input to be in the set
{SIM(seed) for seed in range(n_deployment_inputs)}

Because the deployment distribution is very close to the distribution of SIM(Seed), you are likely
to find a seed that results in an input that results in bad behavior if and only if you are likely to
get bad behavior in deployment.

But searching over seeds is too hard. The caricatural way of making the search easier is to “split
the seed”: for example, to split a seed in 2 if all inputs are of length 2n, you can use a first seed
between 1 and sqrt(n_deployment_inputs) for the first half and between 1 and
sqrt(n_deployment_inputs) for the second half. The distribution over SIM((first-half-seed,
second-half-seed)) is still really close to the deployment distribution but now we can leverage
human intuition or LLMs to predict which first half are more promising - which makes the search
more efficient.

I think the fully general “split seed” space | want is something like a set of tuples like

(seed0, gap0, seed1, gap1, ..., gapk, seedk) where we start with seed0, sample gap0 tokens,
then switch to seed1, ...

This allows picking the first token, then picking the next token where SIM disagrees with where
you wanted to steer things.

' This is not just a speculative concern. For example, the advbench distribution (composed of
only short harmful prompts) is already too high entropy. When few-shot prompting davinci-002
with advbench questions, the likelihood of another advbench prompt is are already on the order
of 22{-30}, which means that if you get me a likely advbench prompt on which the model does
something bad, | have no way to know if this so cherry-picked that it would never happen across
a 1M outputs deployments on advbench prompts or not even if your prompt perfectly looks like
an advbench prompt.

I have some ideas for how you compute the cherry-pickingness / equivalent seed range for a
tuple of arbitrary size - e.g. | think that you can encode the seeds and gaps in base 2 and then
add a “2” between each and then decode it in base3, but | think getting this exactly right does
not matter.

Building a challenge

There are two cool baselines:
e Reverse engineering the seed for regular attacks
e Doing MCTS to search over good seed tuples

But actually | think humans will crush LLMs at this, and so | am most excited about organizing a
challenge where people try to find the least cherry-picked inputs possible that result in bad
behavior. (We could also have a track for having low perplexity, which would also be interesting
even if | think it's less principled.)

Some interesting target bad behavior (to be found within the first n generated tokens to avoid
tricks where you make the model generate extremely long outputs):
1. Some evil words
2. Some harmful explanation
3. A vulnerability that is not flagged
4. A self-propagating jailbreak (i.e. a harmful output that is not classified as harmful by a
model that just looks at the output but is classified as harmful according to some other
criteria, e.g. the presence of certain key numbers)
5. Some prompt injection
a. For summarizer
b. A jailbreak for another model, e.g. prompt-guard or llama guard

Generalization to multi-turn

This can be straightforwardly generalized to multi-turn behavior by just having (seed0, gap0,
seed1, gap1, ..., gapk, seedk) where you use the user/environment simulator in user turns and
the actual Al in assistant turns. The main difficulty this introduces is training the user/env
simulator becomes more difficult.

Upshot

| expect this to give us interesting information about natural misalignment. | suspect that training
against these prompts will have much better generalization properties than training against
GCG, so if we could find automated ways to find these attacks that may be good progress
towards more robust good behavior. If this goes really well, | could see this becoming
automated honeypot generation.

Related work

Some related work which have similar targets

| think they don’t provide the same sort of “clean evidence that something bad would happen in
deployment” than red-teaming seed constraints does, but they can be used for inspiration.
https://www.anthropic.com/research/forecasting-rare-behaviors

https://arxiv.org/abs/2404.17546

On doing deterministic sampling

https://thinkingmachines.ai/blog/defeating-nondeterminism-in-lim-inference/
https://github.com/huggingface/transformers/issues/31787 (see the code for how to be
deterministic in pytorch).

| suspect it will be relatively hard to be both efficient and use the fancy sampling that | am
suggesting. | think we can drop the efficiency for now.

https://www.anthropic.com/research/forecasting-rare-behaviors
https://arxiv.org/abs/2404.17546
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
https://github.com/huggingface/transformers/issues/31787

	Project: An actually good realism constraint for honeypots using seeds
	The sad state of searching for bad model behaviors
	The problem of optimizing directly for “realism”
	Constraining inputs to be less cherry-picked
	Building a challenge
	Generalization to multi-turn
	Upshot
	Related work
	Some related work which have similar targets
	On doing deterministic sampling

