
Time To Interactive
Metrics and calculation

bckenny@, paulirish@, tdresser@
Created: June, 2016

Last Updated: 19 July 2016
Status: draft

Time to interactive is a progressive web metric which seeks to report when a page first looks
and feels interactive to the user.

Tracking bug here.

Time To Interactive
TTI At A Glance
TTI in Detail

Diagnostic Metrics
EQT between FMP and TTI

Online Computation
Alternatives

Not Just FMP
Main thread availability alternatives

Time To Interactive
A page load has a number of important timings to capture. (See: Progressive Web Metrics).
While FCP and FMP mark important early delivery of content to the user, Time To Interactive
(TTI) seeks to identify a more mature time where the page looks and feels interactive to the
user.

■ First Contentful Paint “is it happening?”
Has my navigation started successfully (the server has responded, etc.)?

■ First Meaningful Paint “is it useful?”

https://bugs.chromium.org/p/chromium/issues/detail?id=631010
https://docs.google.com/document/d/1oiy0_ych1v2ADhyG_QW7Ps4BNER2ShlJjx2zCbVzVyY/edit#


Has the page painted enough critical content that I could engage with it?

■ Time to Interactive “is it usable?”
Can I actually engage with the page or is it still busy?

TTI At A Glance
TTI is marked when Layout has stabilized & key webfonts are visible, and The main thread is
available enough to handle user input.

TTI in Detail

Page is looking nearly done
● First contentful paint and/or DOMContentloaded has fired.

The main thread is available enough to handle user input
● If the main thread isn’t going to be responsive to the user, then the page shouldn’t be

considered interactive.
● We consider the page interactive during any time window of length > 10 seconds which

contains 0 tasks longer than 50ms.
● Our first candidate window starts at FMP and ends 10 seconds later.

○ If satisfied, our TTI is the beginning of the window.
○ If not, then we reposition left edge of the window at the end of the window’s last

50ms task and try again.
● If no such window exists, the page has an infinite TTI, which is okay.

Diagnostic Metrics
EQT between FMP and TTI
We should expose the expected queueing time for the time window in which lack of main thread
responsiveness is preventing TTI from firing:

https://docs.google.com/document/d/1b9slyaB9yho91YTOkAQfpCdULFkZM9LqsipcX3t7He8/edit


This window is [FMP, TTI].

We should also expose the diagnostic metrics for EQT during this window.

Online Computation
At the end of each time window that the page was interactive for, input code will send the page
load logic the time window's start and end timestamps. Loading logic will store all window
durations until it computes FMP. Since each window will be > 10 seconds long, There should be
a fairly small number of windows before FMP. Once we've computed FMP, there are 3 cases:

● There's a window of interactivity which includes FMP, FMP == TTI
● We know about a window of interactivity after FMP, use its start timestamp
● We haven't seen the page become interactive since FMP, report the start time of the next

reported window of interactivity

Alternatives

Not Just FMP
We could wait for additional signals before starting to check main thread availability. These
signals may not be available everywhere we want to surface these metrics. We may end up
surfacing additional metrics in some places - perhaps “Visual FMP” and “Visual TTI”?

The user believes the page is done enough to start interacting with
1. Layout has stabilized & key webfonts are visible (FMP)
2. Page looks nearly done

The page is actually ready for user:
1. domContentLoaded has fired
2. The main thread is available enough to handle user input

Page looks nearly done
● Using Perceptual Speed Index (slide deck), we evaluate the visual completion of the

page. While this requires a fairly expensive calculation of visual similarity across
screenshots, it provides considerable confidence that the user considers the page near
done and ready to interact with.

● Based on a manual evaluation of 50 page loads, 85% Visually Complete hits a sweet
spot of feels ready enough even though I know it's not totally done. 80% starts hitting
false positives.

● Caveat: This metric considers only above-the-fold.
Requirements: Perceptual Visual Completion @ 85%

domContentLoaded has fired
● DCL fires when HTML parsing has finished, but we’re interested in when all DCL event

handlers have completed.
● Many event handlers are often bound to DCL, which leads to two concerns we want to

https://docs.google.com/document/d/1b9slyaB9yho91YTOkAQfpCdULFkZM9LqsipcX3t7He8/edit?pref=2&pli=1#heading=h.oo4zjtpeukw1
http://www.parvez-ahammad.org/blog/perceptual-speed-index-psi-for-measuring-above-fold-visual-performance-of-webpages
http://www.slideshare.net/pahammad/psiabovefoldparvez201607pptx


mitigate. 1) Any visual changes to the page made in DCL are complete. 2) No surprises
of inactive buttons/actions as DOM element event handlers should be bound

Requirements: domContentLoadedEventEnd has fired.

Main thread availability alternatives
There have been many approaches discussed to identify a timestamp of interest for TTI.

1. First time window of 10s where there are 0 tasks over 50ms
● (Described above)
● Left edge of window is our TTI timestamp

2. Compute from ILR’s RAIL Likelihood
● An earlier approach wanted a 10 second window where the RAIL likelihood was 75%.

Once satisfied, an inner window would work backwards to find the largest window where
the RAIL Likelihood was 90%.

○ The left edge of that window would be the TTI timestamp.
● There are discussions around using EQT as a distribution, it’s mean, or median. These

approaches may have different implications for TTI. Currently we need more data to
validate what matches reality best.

https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/domContentLoadedEventEnd
https://docs.google.com/document/d/1b9slyaB9yho91YTOkAQfpCdULFkZM9LqsipcX3t7He8/edit?ts=577bfbf4#heading=h.x59eyyfqqdl

