
Introduction

Working Name

SDK3 Response Time Observability

Revision

#1

Document Authors

●​ Mike Goldsmith <mike.goldsmith@couchbase.com>

Creation Date

Oct 11, 2019

Proposal Status

DRAFT

Relates To

Introduction

Working Name

Revision
Document Authors
Creation Date
Proposal Status
Relates To

Motivation

API Concepts
Tracing

Spans
Operation Name
Phase Points
Client / Connection IDs

Threshold Logger
ThresholdSummary

Server Durations
KV - Flexible Framing Extras
FrameInfo
N1QL, Analytics Query Server Duration
N1QL Profiling Baggage (optional)
Views

Enhancements to Timeout Exceptions
Orphaned Responses

Terminology
Implementation Notes
Example Telemetry
Operation Context Properties

Motivation
From a diagnostics point of view it is valuable to collect and analyse each operation an
SDK performs to help identify problem areas. Each operation goes through a number of
phases and tracking each of them both individually and as a whole allows in-depth
interrogation.

In addition, it would also be useful to identify if and when an operation takes an
unusually long time to complete. This analysis will help aid investigation by providing
contextual information that is only available during the operation processing.

API Concepts

Tracing

Tracing is recording details about discrete steps or phases of a request lifecycle, eg
request encoding / decoding or dispatching to server. These phases are timed
independently and contain additional contextual information. A single request is typically
made up of multiple tracing points.

OpenTracing & OpenTelemetry are standardised APIs to structure tracing information in
a consistent and predictable manner. This document will not cover all the topics and
history of tracing or these APIs (please refer to above links for more complete
documentation), and instead will only cover key topics and concepts.

Briefly; tracing data is a nested structure of Spans with durations, contextual information
and relationships to other Spans. A structural example is below:

http://opentracing.io/
https://opentelemetry.io/

A good way to visualise the span structure is with an x-axis time graph like the following:

The key concepts of tracing are described below:

Type Description

Tracer Top level structure that can be used to create a SpanBuilder.

SpanBuilder Creates and starts Spans with contextual information.

SpanContext Contextual information for a given Span. This information can be
transported between process / services.

Span An in-process tracing structure; includes start timestamp, end
timestamps and additional contextual information (referred to as
tags and baggage).

SDKs must ship a separate abstraction do not need to carry a OpenTracing mandatory
dependency and must supply “addons/modules” to allow plugging OpenTracing and
OpenTelemetry subsequently.

Spans

It’s important to uniquely identify operations across each of the services so the full client to
server interaction can mapped out. The following table describes each service and how we can
identify a single operations.

Service Description

KV Operation Opaque

NOTE: Opaque is not unique by itself as some SDK
implementations are internally incrementing numbers. As part of
this RFC, a new Connection ID feature will be added to uniquely
identify a client connection with a Couchbase Server and
combined with the client's opaque, we have a unique KV
operation.

Query Queries provide a client_context_id field. When a
client_context_id field is empty, the SDK will auto-generate a
UUID value.

(Not sure if it's used in server logs?)

Search Not currently available - created MB-27696 to track.

https://github.com/couchbaselabs/sdk-rfcs/blob/master/rfc/0035-rto.md#client-connection-ids
https://issues.couchbase.com/browse/MB-27696

Analytics Queries provide a client_context_id field. When a
client_context_id field is empty, the SDK will auto-generate a
UUID value.

(Not sure if it's used in server logs?)

Views Not currently available

NOTE: Both Query and Analytics queries allow the application to override
client_context_id. Also some SDKs implement a sequence generator that will clash
between instances and/or it uses a HTTP library so doesn't know the local host:port.

NOTE: In the case of data structure operations, the top-level operation should be
represented within the operation hierarchy with remapped subdoc commands as
children. eg MapRemove > Subdoc_Mutate.

Operation Name

Each operation name should represent the activity that is being traced. For example, a
KV operation would have a top-level operation_name of the operation type, eg GET and
a couchbase.operation_id tag with the opaque.

Phase Points

The following is a list of phase points that each SDK should implement for each service
(KV, View, N1QL, Search and Analytics) and each operation name should match the
trace point name.

Name Description

request_encoding Request transcoding is when a request content provides
content to the server (eg UPSERT) and converts the value
from a native object into a common structure (eg JSON).

NOTE: This can be omitted if the SDK does not perform
request encoding or the request does not require have a
body.

dispatch_to_server The time spent sending the request to the server and waiting
for a response. This phase encompasses a number of
layers, many of which are outside of the SDKs control, for
example; task scheduling and writing/reading to the network.

response_decoding Response transcoding is when a request retrieves content
(eg GET) from the server and reconstructs the response
body into a native data type.

NOTE: This can be omitted if the SDK does not perform
response decoding or the response does not require have a
body.

Due to SDK3 introducing ContentAs which is called by the
application to perform the decoding of the bytes into a nativ
object, and that the application can wait any amount of time
between receiving a result and executing ContentAs, it’s not
a good idea to try to capture decode time at this time.

NOTE: This is different from SDK2 because the native object was decoded as part of
the original request, before control was handed back to the application. Attempting to
keep references to operations that have been returned to the application and not yet
called decode is both dangerous and risks performance. The application may wait an
unknown length of time (seconds or minutes), or never call ContentAs.

Client / Connection IDs

Previously, a KV operation was identified using a combination of the local FQDN or IP,
port and opaque, however this relies on both the client and server agreeing on network

names and is complicated when some components may run under a local NAT, for
instance, kubernetes pods.

To address this; the 'hello' request has been extended to be a JSON object with the
following properties defined. The server will associate the given uuid to the socket and
use it when logging slow operations and tracing data.

Name Description

a (string) The client agent string - this can not be longer than 200
characters and must be trimmed if exceeds 200.

NOTE: This is the same value that was previously sent and
includes details such as client name, version, etc.

i (string) The connection ID is made up of two components
separated by a forward slash. The first value will be
consistent for all connections in a given client instance, and
the second value is per connection.

Each part is a randomly generated uint64 number that is
formatted as a hex string and padded to 16 characters.

An example key is below

{

 "a":"couchbase-net-sdk/2.4.5.0 (clr/4.0.30319.42000) (os/Microsoft Windows NT

10.0.16299.0)",

 "i":"66388CF5BFCF7522/18CC8791579B567C"

}

NOTE: The indentation is for visibility where the JSON that is sent to the server should
be compressed to remove whitespace.

Tracing Interface

When implementing Response Time Observability, the SDK must mark all interfaces as volatile
(and preferably keep them internal). They are very likely to change in a later time frame and
users must not rely on them.

Threshold Logger

To help identify when an operation is exceeds a reasonable threshold, each SDK will
implement a ThresholdLogger that will track operations that exceed the threshold and
log them periodically.

The threshold logger receives completed spans and verifies if an operation has
exceeded the given threshold for the operation type. Operations that exceed the
threshold are periodically logged with a total count and a sample of the slowest ones
per service.

The following are configuration properties for threshold logger.

Property Name Description

Interval The interval between executions that processes
the collected operation spans.

Default value: 10000 (10 seconds)

Expressed as milliseconds.

SampleSize The maximum number of items to log per
service.

Default value: 10

KVThreshold The KV operation operation threshold.

Default Value: 500000 (500 milliseconds)

Expressed as microseconds.

ViewsThreshold The View query operation threshold.

Default Value: 1000000 (1 second)

Expressed as microseconds.

QueryThreshold The N1QL query operation threshold.

Default Value: 1000000 (1 second)

Expressed as microseconds.

SearchThreshold The FTS query operation threshold.

Default Value: 1000000 (1 second)

Expressed as microseconds.

AnalyticsThreshold The Analytics query operation threshold.

Default Value: 1000000 (1 second)

Expressed as microseconds.

NOTE: The per-service operation and query floors are a guide for default values and
how they are expressed. How the SDK receives these values can be represented by
whatever is idiomatic to the SDK.

Slow operation summaries are to be logged at the INFO, or equivalent, level.

This RFC does not go into how logging should be configured as each SDK and
environment is different and the standard SDK logging infrastructure / abstraction
should be used. Also, some logging infrastructure implementations provide ways to
send log entries to an alternative source, eg LogStash, so this RFC will not go into
alternatives storing locations at this time.

See each SDKs documentation on how to configure logging:

https://developer.couchbase.com/documentation/server/current/sdk/dotnet/collecting-inf
ormation-and-logging.html

ThresholdSummary

When the ThresholdLogger executes to process any collected spans, each of the spans
that is to be output should be transformed into this structure.

Property Description

operation_name The operation name is operation type that the application
used with the

eg get, get_and_touch, upsert, etc

last_operation_id The last operation ID. eg KV opaque, n1ql context ID.

Note: for KV operations that use the opaque for the the
operation ID should use the 0x prefix to indicate it's a hex
value.

last_local_address The local socket hostname / IP and port, separated by a
colon.

For example: 255.123.11.134:54321

last_remote_address The server hostname / IP and port separated by a colon.

https://developer.couchbase.com/documentation/server/current/sdk/dotnet/collecting-information-and-logging.html
https://developer.couchbase.com/documentation/server/current/sdk/dotnet/collecting-information-and-logging.html

For example: 10.112.170.101:11210

last_local_id The last connection ID used to send a packet to the
server.

For example: 66388CF5BFCF7522/18CC8791579B567C

total_us The total time taken for the operation.

Expressed as microseconds.

encode_us The calculated sum of all encode sub-spans.

Expressed as microseconds.

dispatch_us The calculated sum of all dispatch sub-spans.

Expressed as microseconds.

server_us The calculated sum of all server duration sub-spans.

Only present if server durations are enabled.

Expressed as microseconds.

last_dispatch_us The time taken for the last dispatch to server.

Expressed as microseconds.

NOTE: Any of the above properties can be omitted if there is no appropriate value to be
used.

An example output from the threshold logging tracer:

[

 {

 "service":"kv",

 "count":75,

 "top":[

 {

 "operation_name":"get",

 "last_operation_id": "0x21",

 "last_local_address":"10.211.55.3:52450",

 "last_remote_address":"10.112.180.101:11210",

 "last_local_id": "66388CF5BFCF7522/18CC8791579B567C",

 "total_duration_us":18908,

 "encode_us":256,

 "dispatch_us":825,

 "server_duration_us":14

 },

 {

 "operaion_name":"set",

 "last_operation_id": "0x22",

 "last_local_address":"10.211.55.3:52450",

 "last_remote_address":"10.112.180.101:11210",

 "last_local_id": "66388CF5BFCF7522/18CC8791579B567C",

 "total_duration_us":11468,

 "encode_us":3832,

 "dispatch_us":565

 },

 {

 "operaion_name":"get",

 "last_operation_id": "0x23",

 "last_local_address":"10.211.55.3:52450",

 "last_remote_address":"10.112.180.101:11210",

 "last_local_id": "66388CF5BFCF7522/18CC8791579B567C",

 "total_duration_us":2996,

 "encode_us":4,

 "dispatch_us":2829

 },

 {

 "operaion_name":"set",

 "last_operation_id": "0x24",

 "last_local_address":"10.211.55.3:52450",

 "last_remote_address":"10.112.180.101:11210",

 "last_local_id": "66388CF5BFCF7522/18CC8791579B567C",

 "total_duration_us":2777,

 "encode_us":15,

 "dispatch_us":2627

 },

 {

 "operaion_name":"set",

 "last_operation_id": "0x25",

 "last_local_address":"10.211.55.3:52450",

 "last_remote_address":"10.112.180.101:11210",

 "last_local_id": "66388CF5BFCF7522/18CC8791579B567C",

 "total_duration_us":1331,

 "encode_us":16,

 "dispatch_us":1206

 }

]

 }

]

Server Durations

As part of the spans that dispatch a request to a server, it is desirable to track the
server-side duration to help identify where a requests duration is spent (SDK, Server or
in-between) . Most services provide a mechanism to retrieve the duration, as described
below.

KV - Flexible Framing Extras

KV operation server duration timings are encoded into the response using "flexible
framing extras"
(https://github.com/couchbase/kv_engine/blob/master/docs/BinaryProtocol.md#respons
e-header-with-flexible-framing-extras).

Server duration is enabled via Hello negotiation with the feature code (0x10) and when
enabled the response packet has the following changes:

●​ Magic byte is 0x18 (instead of 0x81)
●​ Header byte index 2 indicates the total extras length
●​ Framing extras is encoded as a series of variable length FrameInfo structures

and is is returned directly after the header and before the regular extras byte

FrameInfo

Each FrameInfo has a descriptor byte followed by a variable number of bytes depending
on the type of information.

https://github.com/couchbase/kv_engine/blob/master/docs/BinaryProtocol.md#response-header-with-flexible-framing-extras
https://github.com/couchbase/kv_engine/blob/master/docs/BinaryProtocol.md#response-header-with-flexible-framing-extras

Bit Description

0-3 Frame type descriptor

4-7 Length

The initial design of framing extras defines one structure, the server duration. This is a
two byte floating number described in microseconds with a variable precision and is
encoded/decoded as follows:

encoded = (micros * 2) ^ (1.0 / 1.74)

decoded = (encoded ^ 1.74) / 2

Decoding examples:

C

std::chrono::microseconds Tracer::decodeMicros(uint16_t encoded) const {

 auto usecs = uint64_t(std::pow(encoded, 1.74) / 2);

 return std::chrono::microseconds(usecs);

}

.NET (C#)

public static double Decode(ushort encoded)

{

 return System.Math.Pow(encoded, 1.74) / 2;

}

An example unit test to prove the encoded values are being decoded as expected:

[TestCase((ushort) 0, 0.0)]

[TestCase((ushort) 1234, 119635.03533802561)]

[TestCase((ushort) 65535, 120125042.10125735)]

public void Can_Decode_Server_Duration(ushort encoded, double expected)

{

 var decoded = Math.Pow(encoded, 1.74) / 2;

 Assert.AreEqual(expected, decoded);

}

N1QL, Analytics Query Server Duration

N1QL, FTS and Analytics queries are all dispatched over HTTP with both the request
and response encoded as JSON. The query duration time is returned in the response
body JSON in the metrics.elapsedTime property for N1QL and Analytics and the root
property took for FTS. This value is expressed as microseconds, so is the same
precision as other metrics.

Because the request durations form part of the response body it cannot be read
independently of the response body. This is troublesome for streamed responses as the
server duration timings may not be readable until after all results have been read, which
could be a long time depending on how the application processes them. To help
distinguish the different phases, a streamed request should be made up of the following
spans:

Phase Name Description

request_encoding The amount of time taken to prepare the JSON request body
ready for dispatching to the server.

dispatch_to_server The amount of time taken between sending the request to
the server and when the response HTTP header has been
read. The response body has not been processed yet.

N1QL Profiling Baggage (optional)

N1QL returns additional metrics related to a query execution as part of the payload and
can be added as tags to the query span. A summary of the default properties is below:

Property Description

elapsedTime The time taken between receiving the request and returning a
response. The property is used for the server-duration property
described above.

Expressed as milliseconds.

executionTime The time taken to execute the query, not taking into account
preparing the response.

Expressed as milliseconds.

resultCount The number of result sets.

resultSize The number of rows.

N1QL also provides an enhanced profiling mode where additional details are recorded
and returned in the response JSON. Profiling is enabled by setting a request property
and the extra information described in the enhanced profiling could be converted into
Span Tags to provide in-depth analysis but is not required at this stage.

As an example, the available N1QL tags may look like this. Because the profile details
are returned in a multi-level JSON structure, each level must be concatenated together
using an underscore. Primitive types (integers, strings, boolean) map easily in a one to
one with their tag name and arrays should be concatenated together with a double
underscore '__'. Also note any non alphanumeric characters should be trimmed, eg
"~version" becomes "version".

For example, given the below structure, it would create the following tags:

"profile": {

 "phaseTimes": {

 "authorize": "1.544104ms"

 },

 "phaseCounts": {

 "fetch": 1,

 "primaryScan": 1

 },

 "~version": [

 "2.0.0-N1QL",

 "5.1.0-1256-enterprise"

]

}

https://gist.github.com/MikeGoldsmith/4dc4e39ebb099c670080c6833226a81b

Name Value

profile_phaseTimes_authorise "1.544104ms"

profile_phaseCounts_fetch 1

profile_phaseCounts_primaryScan 1

profile_version "2.0.0-N1QL__5.1.0-1256-enterprise"

Views

There is not currently a way to retrieve the server duration for a view query.

Enhancements to Timeout Exceptions

Currently, error handling may return messages that are generic in nature. Tracing
information must be added to key messages such as Timeouts to help correlate data
between when a timeout happens and when the response is received from the server.

Consider this line of Java code:

JsonDocument fetched = bucket.get("u:king_arthur", 1, TimeUnit.MICROSECONDS);

It will always throw a RuntimeException, since the timeout specified is too short for even
a kernel context switch, let alone to get network IO done. When catching the exception
and printing the message, one gets "java.util.concurrent.TimeoutException". This does
not help the user understand possible causes.

Tracing information will be appended log messages, with the format:

{existing message} {compresed_json_object}

For example, the above exception log entry would look like:

java.lang.concurrent.TimeoutException:

{"s":"kv:get","i":"0x7b1","i":"002c2b0d250e6fc5/002c2b0c723e11c5","b":"default","l":"

10.157.77.74:16584","r":"my.server.io:11210"," t":2500000}

Where appropriate, Timeout exceptions should be extended to append the following
information:

Property Description

Operation name One of: kv, view, n1ql, fts, cbas

Operation ID The operation's unique identifier, as described in the trace
information.

Local endpoint The local hostname / IP and port, formatted with a colon.

For example: localhost:12345

Time observed before
timeout

The amount if time observed before the timeout occurred.

Expressed as microseconds.

Server last
dispatched to

The last server the operation was dispatched to. Note this
may be empty as a server may not have been selected if a
timeout is that low.

Orphaned Responses

For packets that come in whose request may have timed out, it is important to be able
to know if the server duration was related directly or indirectly. However, we also do not
want to overwhelm the log when there may be a big burst of operations that have timed
out and the responses come in delayed putting the system into a pathological state.

For this, we have specific handling of orphaned responses.

NOTE: Orphan response is not related to Threshold logging and works independently. It
is possible to replace the Tracer implementation and still have orphan response logging
enabled.

Terminology

Orphan response -> A response received on a connection whose original requester (or
requesters in the case of request deduplication) is no longer in scope.

We only maintain the key information from each orphan, utilising the Operation Context
(described below) structure.

Implementation Notes

Prerequisites: Generate a random uint64 client instance and connection IDs.

In implementation, an SDK will change any timeout return messages to include the
operation type, instance ID and opaque along with the hostname and timeout duration
specified by the app. Separately, as network requests complete that are not associated
with any operations in scope, aggregate them for logging, limiting the number to the top
10 by reported server duration on a per ten second basis.

This results in timed out log messages from the application which can be further
categorized into a few possible causes with further correlation:

Bucket 1: No orphan responses are received and the connection is eventually disrupted.
This likely means network issues.

Bucket 2: Only some map up to an orphan response. All orphan responses are from
one server. The topmost orphan response has a large server duration and the
subsequent responses are fast (or become fast) and have increasing opaques for this
individual client log. This means one slow operation caused congestion per MB-10291
(or other causes).

Bucket 3: Only some map up to an orphan response. orphan responses are from
multiple servers. The orphan responses have small server durations relative to the
timeout value. This means general environmental issues at the client, the network or at
the servers not severe enough to cause connection disruption caused the issue.

Bucket 4: Only some map up to an orphan response. orphan responses are from one
server. The orphan responses have small server durations relative to the timeout value.

https://issues.couchbase.com/browse/MB-10291

This means an environmental problem (e.g., THP being enabled) at the server in
question is causing the issue.

Because there is no way to order the orphaned responses, the insertion order should be
maintained up to the sample size.

Example Telemetry

The following table describes the properties that will form a JSON object that will be
appended after the existing timeout message:

Operation Context Properties

Property Description

s (string) Service Type - one of:

kv, view, n1ql, search, analytics

KV operations should be in the format:

kv:{operation_type} eg kv:get, kv:upsert

i (string) Operation ID - the service specific identifier for a given operation

KV use opaque (with a 0x prefix and hex formatted) eg "0x7b1"

N1QL & Analytics use the context ID which is a GUID.

c (string) Connection ID (optional)

eg KV would use the new connection ID described above

b (string) Bucket name (optional)

l (string) Local endpoint host & port (optional)

r (string) Remote endpoint host and port

t (string) Timeout value (optional)

Should be present for timeout contexts

d (string) Server Duration (optional)

Should be present for orphaned contexts

A Java example would look like this:

java.lang.concurrent.TimeoutException

{"s":"kv:get","i":"0x7b1",c":"002c2b0d250e6fc5/002c2b0c723e11c5","b":"default","r":"_

10.157.77.74:16584"_,"r":"my.server.io:11210"," t":2500000}

Logged orphaned responses, here with a sample size of 2, every ten seconds while
there are orphans to log:

2018-01-08 15:36:51,903 [16] WARN Couchbase.Core.KVNode - Orphaned responses

observed:

[{"service":"kv","count":2,"top":[{"s":"kv:get","i":"0x71b","c":"002c2b0d250e6fc5/002

c2b0c723e11c5","l":"192.168.1.101:11210","r":"10.112.181.101:12110","d":123},{"s":kv:

upsert","i":"0x71c","c":"121345/13321/7612","l":"192.168.1.101:11210","r":"10.112.181

.101:12110","d":43}]}]

Example Orphaned response output:

https://gist.github.com/MikeGoldsmith/147b85e960378a47bcb0169581952af1

Given the two output examples above, the log entries can be used to correlate
operations to identify if a timeout was caused by server duration or was due to
something else. The operation_id 0x_0769020a and connection ID_
002c2b0d250e6fc5/002c2b0c723e11c5 appears in both logs.

https://gist.github.com/MikeGoldsmith/147b85e960378a47bcb0169581952af1

Orphaned operation summaries are to be logged at the WARN, or equivalent, level.

Signoff
Language Team Member Signoff Date Revision

Node.js Brett Lawson

Go Charles Dixon

Connectors David Nault

Python Ellis Breen

Scala Graham Pople

.NET Jeffry Morris

Java Michael Nitschinger

C Sergey Avseyev

Ruby Sergey Avseyev

	Introduction
	Working Name
	Revision
	Document Authors
	Creation Date
	Proposal Status
	Relates To

	
	Motivation
	API Concepts
	Tracing
	Spans
	Operation Name
	Phase Points
	Client / Connection IDs

	Tracing Interface
	Threshold Logger
	ThresholdSummary

	Server Durations
	KV - Flexible Framing Extras
	FrameInfo
	N1QL, Analytics Query Server Duration
	N1QL Profiling Baggage (optional)
	Views

	Enhancements to Timeout Exceptions
	Orphaned Responses
	Terminology
	Implementation Notes
	Example Telemetry
	Operation Context Properties

	Signoff

