$\boldsymbol{p}_{\text{initial}}$

 $\Sigma J = \Delta p = p_f - p_i$

What does Impulse mean?

The Impulse J imparted by a force on a system is equal to the amount of force exerted on the object/system multiplied by the time during which the force has acted.

The net Impulse ΣJ on an object/system is equal to the change in momentum of that object/system.

Impulse J is a vector so it can be positive or negative! And J can have components.

$J = F \Delta t$

J = impulse imparted by force F

F = Force imparting the impulse

 Δt = time during which the force F acts on the object

$$\Sigma F = ma = m \frac{\Delta v}{\Delta t} = \frac{m\Delta v}{\Delta t} = \frac{\Delta (mv)}{\Delta t} = \frac{\Delta p}{\Delta t}$$

$$\Sigma F = \frac{\Delta p}{\Delta t}$$

...or we can multiply both sides by Δt and get

$$\Delta p = \Sigma F \Delta t$$

$$\Sigma J = \Delta p = \Sigma F \Delta t$$

this eqn. works for each direction too

$$\Sigma J_x = \Delta p_x = \Sigma F_x \Delta t$$

$$\Sigma J_v = \Delta p_v = \Sigma F_v \Delta t$$

Are there any conditions that must be met in order for the formulas to be true?

 $J = F\Delta t$ always gives the impulse from a force since it is the definition of impulse.

However, $\Sigma J = \Delta p$ is only true if you use the net impulse on the object as opposed to the impulse from only a single force.