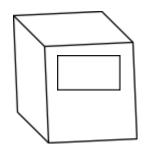
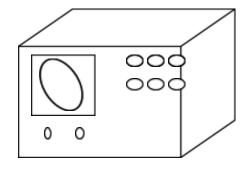
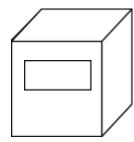
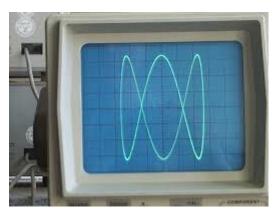

EXPERIMENT NO: 4


Aim: To study Lissajous pattern on Cathode ray oscilloscope (CRO).


and calculate unknown frequency of AC signals.

Apparatus: CRO, two frequency generators, connecting wires etc.


Diagram:


Frequency generatorY

CRO

Formula:

Unknown frequency: $\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right]$

Where,

 $\mathbf{F}_{\mathbf{Y}}$ = Frequency of frequency generator- \mathbf{Y}

 $\mathbf{F}_{\mathbf{X}}$ = Frequency of frequency generator- \mathbf{X}

 L_X = No. of loops along X- direction

 L_Y = No. of loops along Y- direction

Observation Table:

Sr.	Pattern of	No. of	No. of	Known	Unknown	Ratio of
No.	Lissajous	loops	loops	frequency	frequency	frequency
	figure	along X-	along Y-	(Applied	(calculated	$\left[\left[F_{X}:F_{Y}\right] \right]$
		direction	direction	frequency)	frequency)	
1.		$[L_X]$	$[L_{\rm Y}]$	$[F_X]$	[F _Y]	
1.						
2.						
3.						
4.						
7.						
5.						
6.						
7.						
/.						
8.						
9.						
10						
10.						

Calculation:

Calculate unknown frequencies:

1.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] =$$

2.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] =$$

3.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] =$$

4.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] = = ---- \mathbf{Hz}$$

5.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] =$$

6.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] =$$

7.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \left[\frac{Lx}{Ly} \right] = ------- Hz$$

8.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \begin{bmatrix} \frac{Lx}{Ly} \end{bmatrix} = \mathbf{Hz}$$

9.
$$\mathbf{F}_{\mathbf{Y}} = \mathbf{F}_{\mathbf{X}} \begin{bmatrix} \frac{Lx}{Ly} \end{bmatrix} =$$

Procedure:

- 1. Connect frequency generator-2 to Y-input of CRO, whose signal frequency is to be measure.
- 2. Connect frequency generator-1 to X -input of CRO, whose signal frequency is to be applied.
- 3. Now the known frequency is adjusted so Lissajous pattern can be obtained on the screen which depends on the ratio of two frequencies.
- 4. Now count no. of loops along x-direction and along y- direction.
- 5. Calculate frequency of frequency generator-2 i.e unknown frequency by using above given formula.
- 6. Continue change the frequency of frequency generator-1 and from above method find the unknown frequency.
- 7. For different values of frequency of frequency generator-1 calculate frequency of frequency generator-2.

Result:

In study of Lissajous figure on CRO, we found out above unknown frequencies of different signals using Lissajous pattern.

Precaution:

- 1. CRO must be calibrated.
- 2. All nobes of CRO must be in proper condition of ON or OFF as required.
- 3. During taking reading sinusoidal wave pattern must be stationary.
- 4. Applied voltage must be in small range.