XCS330 Azure Guide

This guide will help you set up and use Azure Virtual Machines for any project work in XCS330
that you’d like. Before you start, it cannot be stressed enough: do not leave your machine
running when you are not using it!

Access and Setup
Azure Labs Subscription for this Class
Best Practices for Managing Credit

Registration
Connecting to a VM

Practical Guide for Using the VM

Managing Processes on a VM
TMUX Cheatsheet

Managin Deploymen VM
Managing Memory, CPU and GPU Usage on a VM
Accessing Tensorboard
Tunneling on Azure VM for Jupyter
Step 1: Setup SSH Tunnel
Step 2: Run Jupyter

Step 3: Access Jupyter
Step 4: Enjoy :)

https://docs.google.com/document/d/1Xbsiw6Z3Yft_K2igKL5Nio7PXRikq6y6zi1RdwlGslM/edit#heading=h.xmk036hsc2h9

Access and Setup

Azure Labs Subscription for this Class

We are using Azure Lab Services to manage VMs for the XCS330 course. Every student will be
allocated 65 hours total to use however you'd like. It's important for you to manage credit
wisely in order to make the most efficient use of it (see next section).

Credit has been assigned per student and everyone’s instances are preconfigured with Linux
DSVM (Data Science Virtual Machine) images so you can expect some packages/tools to be
installed.

Best Practices for Managing Credit

Azure virtual machines are charged at a flat rate for each minute they are turned on. This
is irrespective of:

whether you are ssh'd to the machine at that time

whether you are running any processes on the machine at that time

the computational intensity of the processes you're running

whether you're using GPUs

Therefore, the most important thing for managing credit wisely is to
carefully turn your VM on and off only when you need it.

We advise you to develop your code on your local machine (for example your laptop with the
CPU version of Pytorch installed) for debugging (i.e., work on your new code until you are able
to complete several training iterations without errors), then run your code on your Azure VM
when it's time to train on a GPU.

https://azure.microsoft.com/en-us/services/lab-services/

Registration

1. Go to this link: https://labs.azure.com/register/jz00ageau

2. You'll be presented with a large number of options to register. They are:
A. Logging in with an existing Microsoft account using the email/phone associated
with it
or
B. Logging in with a Skype account
or

C. If you click ‘Sign-in Options’ you will also be presented with the option to sign in
using your GitHub credentials

B Microsoft
Sign in

Email, phone, or Skype

No account? Create one!

Can’t access your account?

Sign-in options

Once you've done A, B, or C - follow any additional prompt instructions (depends on
which way you chose) - and you will be registered for the lab!

https://labs.azure.com/register/jz00ageau

Connecting to a VM

1. After signing in you'll be directed to an Azure Lab Services portal where you can view all
your virtual machines. Unless you've used Azure Lab Services before, you'll see only
one machine along with your remaining hours.

Click on the ‘Stopped’ button to start the instance (this will take a few minutes). When it
is up and running, it will look like this and say “Running” in the bottom status bar:

XCS330-Winter-25 &

0.6 / 65 hour(s) used

@) Stopped

XCS330-Winter-25 &

0.6 / 65 hour(s) used

o Running -

2. Click the monitor icon in the window above and you’ll be asked to set the instance
password (make sure you remember/record this password as you will be asked to enter
it when logging into to your VM via SSH).

Set password

Enter a new password to be used when logging in. Setting
the password may take several minutes.

Username

scpdxcs

Password

Cancel

3. Click on the monitor icon and select ‘connect via SSH’ to get the SSH link.

Connect to your virtual machine

To connect to your Linux virtual machine using SSH, use the
following command:

ssh -p 59999 scpdxcs@ml-lab-569a2d7f-acd8-407d-a098-
7e4ee50f7782.eastus.cloudapp.azure.com

Copy

4. Copy the link and paste it into your terminal

[N X] src — scpdxcs@lab0ILB51: ~ — ssh -p 5026 scpdxcs@lab-e7c8c82f-8348-4b75-aabf-c67d37728e58.eastus.cloudapp.azure.com — 145x40

Welcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.15.0-1078-azure x86_64)
System information as of Sat Feb 1 23:10:59 UTC 2025

System load: ©.53 Processes: 191

Usage of /: 60.9% of 145.196B Users logged in:]

Memory usage: 0% IPv4 address for eth@: 10.0.0.30
Swap usage: 0%

* Strictly confined Kubernetes makes edge and IoT secure. Learn how Microk8s
just raised the bar for easy, resilient and secure K8s cluster deployment.

https://ubuntu.com/engage/secure-kubernetes-at-the-edge
Expanded Security Maintenance for Applications is not enabled.
17 updates can be applied immediately.
1 of these updates is a standard security update.

To see these additional updates run: apt list —-upgradable

62 additional security updates can be applied with ESM Apps.
Learn more about enabling ESM Apps service at https://ubuntu.com/esm

New release '22.04.5 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

sokkokkokkkokkkkkkkkkkokkkokkkokkkokkkokkakokkakok kakokskakokskakakakakakkakokakakk kak sk kR Rk kR kR kKK koK oK
Welcome to the Ubuntu 20.04 Data Science Virtual Machine!

X2Go, or run JupyterLab from a browser on your computer
For more information, see the docs at https://aka.ms/dsvm/docs.
sofrokkollookkokkkakokkokkkaiokkokkkaiokkskokakakokokkokkakokokkokkokaokkokkokaokokoklokaokokakokakaokkokokokakokkokok

*
*
* You can access this DSVM, view the graphical desktop with
*
*

Last login: Sat Feb 1 19:49:54 2025 from 79.231.66.216
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

scpdxcs@lab@ILB51:~$ []

5. Important, to assure the GPU is fully available before continuing, run the following
command in the terminal:

nvidia-smi

You should be getting the following:

scpdxcs@lab@ILB51:~$% nvidia—smi
Sat Feb 1 23:14:29 2025

Driver Version: 535.183.01 CUDA Version: 12.2

Persistence-M | Bus-Id
Pwr:Usage/Cap | Memory-Usage
I
==
Tesla V180-PCIE-16GB On | PPPEEPR1:00:80.0 Off

31C Pe 27W /[256w | @MiB / 16384MiB

Processes:
GI Process name
ID

6. Anaconda

The VM template comes with Anaconda already installed and multiple environments are
already available as can be seen below:

scpdxcs@ML-RefVm-435444:~$% conda env list

conda environments:

#

base /anaconda

azureml_py31@_sdkv2 /anaconda/envs/azureml_py31@_sdkv2
azureml_py38 /anaconda/envs/azureml_py38
azureml_py38_PT_and_TF /anaconda/envs/azureml_py38_PT_and_TF
py38_default /anaconda/envs/py38_default

scpdxcs@ML-RefVm-435444:~3 I

The azureml py38 PT and TF environment comes with PyTorch and Tensorflow
pre-installed. Check the next points for more information.

7. With the azureml py38 PT and TF environment activated, check that Pytorch can
access the GPUs by opening Python and typing the following:

$ python

import torch
torch.cuda.current device()
torch.cuda.device (0)
torch.cuda.device count ()
torch.cuda.get device name ()
torch.version.cuda

torch. version

You should see something like this:

scpdxcs@Plab@ILB51:~$ conda activate azureml_py38_PT_and_TF
(azureml_py38_PT_and_TF) scpdxcs@lab@ILB51:~% python

Python 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:23:14) [GCC 10.4.0]1 on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch

>>> torch.cuda.current_device()

e

>>> torch.cuda.device(®@)

<torch.cuda.device object at @x7f894dd2f8e0>

>>> torch.cuda.device_count()

1

>>> torch.cuda.get_device_name()

'Tesla V100-PCIE-16GB'

>>> torch.version.cuda

'12.4"

>>> torch.__version__

'2.5.1+cul24’

>>>

>>> []

If you receive error messages or find that this isn’t working, post to Slack and/or
reach out to your Course Facilitator!

Practical Guide for Using the VM

Managing Processes on a VM

In developing your deep learning models, you will likely have to leave certain processes, such
as Tensorboard and your training script, running for multiple hours. If you leave a script running
on a VM and log-off, your process will likely be disrupted. Furthermore, it is often quite nice to
be able to have multiple terminal windows open with different processes all visible at the same
time, without having to SSH into the same machine multiple different times.

TMUX or "Terminal Multiplexer" is a very simple solution to all the problems above.

Essentially, TMUX makes it such that in a single SSH session, you can virtually have multiple
terminal windows open, all doing completely separate things. Also, you can actually tile these
windows such that you have multiple terminal sessions all visible in the same window.

The basic commands are below. Terminal commands are prefaced with a" $ " otherwise the
command is a keyboard shortcut.

TMUX Cheatsheet

Start a new session with the default name (an integer) $ tmux

Start a new session with a user-specified name $ tmux new -s [name]
Attach to a new session $ tmux a -t [name]

Switch to a session $ tmux switch -t [name]

Detach from a session $ tmux detach OR ctrl - b - d

List sessions $ tmux list-sessions

Kill a session ctrl - b - X

NooabkowN-~

8. Split a pane horizontally ctrl - b -
9. Splita pane vertically ctrl - b - %
10. Move to pane ctrl - b - [arrow_key]

Managing Code Deployment to a VM

You are welcome to use scp/rsync to manage your code deployments to the VM. However, a
better solution is to use a version control system, such as Git. This way, you can easily keep
track of the code you have deployed, what state it's in and even create multiple branches on a
VM or locally and keep them sync'd.

The simplest way to accomplish this is as follows.

Create a Git repo on Github, Bitbucket or whatever hosted service you prefer.
Create an SSH key on your VM. (see the link below)

Add this SSH key to your Github/service profile.

Clone the repo via SSH on your laptop and your VM.

When the project is over, delete the VM SSH key from your Github/service account.

abrwbd-~

Resources:
e Github SSH key tutorial
e Codecademy Git tutorial (great for Git beginners to get started)

Note: If you use Github to manage your code, you must keep the repository private until the
class is over.

Another option is to use a tool called scp, which stands for “secure copy”. scp uses a similar
command to ssh for transferring files to and from your VM. Let’s say you can access your VM
with the following ssh command:

ssh -p 54003 scpdxcs@ml-1lab-XXXXXXXXXXXXX.southcentralus.cloudapp.azure.com

To transfer files to the VM from your local machine, use the following command (differences
highlighted):

scp -r -P 54003 path/to/local/file
scpdxcs@ml-1ab-XXXXXXXXXXXXX.southcentralus.cloudapp.azure.com:path/to/remote/destination

To transfer files from the VM to your local machine, use the following command:

scp -r -P 54003 scpdxcs@ml-1lab-XXXXXXXXXXXXX.southcentralus.cloudapp.azure.com:path/to/remote/file
path/to/local/destination

The -r option indicates that a recursive copy should be performed, meaning that you can
transfer an entire directory structure with just this one command! (note that the -p (lowercase)
is now a -P (uppercase))

https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://www.codecademy.com/learn/learn-git

Note: scp commands copies files all the time regardless of the file changes from the source to
the destination; however, rsync will only copy files when the file is updated on the source
location. So if you have a large file (such as a model), then rsync could be helpful, here is the
tutorial on how to use it. Just remember trailing slash (/) is important as in the tutorial.

Here is an example of rsync command with specific port that can be found from Azure
web:

rsync -—arvz —-e 'ssh -p PORT NO --progress
/Users/name/SCPD/XCS330/PROJ/
scpdxcs@ml-lab-xxx:/home/scpdxcs/SCPD/XCS330/PROJ

Managing Memory, CPU and GPU Usage on a VM

If your processes are suddenly stopping or being killed after you start a new process, it's
probably because you're running out of memory (either on the GPU or just normal RAM).

First of all, it's important to check that you are not running multiple memory hungry processes
that maybe have slipped into the background (or a stray TMUX session).

You can see/modify which processes you are running by using the following commands.

1. View all processes $ ps au
2. To search among processes for those containing the a query, use

$ ps -fA | grep [query].

For example, to see all python processes run ps -fA | grep python.
3. Killaprocess$ kill -9 [PID]

You can find the PID (or Process ID) from the output of (1) and (2).

To monitor your normal RAM and CPU usage, you can use the following command: $ htop
(Hit g on your keyboard to quit.)

To monitor your GPU memory usage, you can use the $ nvidia-smi command. If training is
running very slowly, it can be useful to see whether you are actually using your GPU fully. (In
most cases, when using the GPU for any major task, utilization will be close to 100%, so that
number itself doesn't indicate an Out of Memory (OOM) problem.)

However, it may be that your GPU is running out of memory simply because your model is
too large (i.e. requires too much memory for a single forward and backward pass) to fit on the
GPU. In that case, you need to either:

1. Train using multiple GPUs (this is troublesome to implement, and costs much more on
Azure)

https://www.digitalocean.com/community/tutorials/how-to-use-rsync-to-sync-local-and-remote-directories
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/

2. Reduce the size of your model to fit on one GPU. This means reducing e.g. the number
of layers, the size of the hidden layers, or the maximum length of your sequences (if
you're training a model that takes sequences as input).

3. Lower the batch size used for the model. Note, however, that this will have other effects
as well (as we have discussed previously in class).

Accessing Tensorboard

When running tensorboard for the assignments, you will need to run the following two steps to
ensure that you can access the tensorboard runs via your local machine.

Step 1: Configure port 6006

1. ssh -p <vm port> -N -f -L localhost:6006:1ocalhost:6006 username@<your VM
public ip address>
i.e ssh -p 59022 -N -f -L localhost:6006:1localhost:6006
scpdxcs@ml-1lab-Xxxxxxxxxxxxx.southcentralus.cloudapp.azure.com

Step 2: Go inside VM and Run Tensorboard

Next you will need to run your tensorboard command as follows
1. tensorboard --logdir <some directory> --port 6006

Tunneling on Azure VM for Jupyter

(Thanks Luis Valerio Hernandez for sharing this method!)

You may need to run the notebook located in the server from your own computer. In that case,
you will need to establish a tunnel between your local computer and the remote computer.
Below are the necessary steps to establish it.

Reference: documentation for using jupyter with multiple options.

Step 1: Setup SSH Tunnel

Access your remote machine with a regular ssh command with an additional part that
establishes a tunnel between a and EEESEEIBEH as exemplified below.

224u_student@*****x*x*x* southcentralus.cloudapp.azu

8080

udent@ml- b7c-aabd-428a-874a-cl4ab55dff7a.southcentralus.cloudapp.azure.

https://docs.google.com/document/d/1_Lmitj7SMYdjHE5pnZxZ00o1aXSlQgoNJRbTBWR2ln4/edit?usp=sharing

Step 2: Run Jupyter
Simply run the jupyter as usual with an ip parameter [and an optional --port=- parameter].
ok —--no-brc
nda/envs
/data/anaconda/env

/data/home/xc

Control-C s O his server and shut down all kernels

~ when you connect for the first time,

Step 3: Access Jupyter
Go to the link nttp://10calnost:[J43 in the browser of your local machine and enter the [Jecken

As of 9/26/2021, Chrome browser on Mac did warn about the certificate, but didn't give me an
option to go ahead and connect.

Safari (version 15) on Mac warned, but gave an option to continue. Once you accept that you
will continue, a connection will be established.

 Jupyter Notebook X + N = X
& C' ® localhost:8080/login?next=%2Ftree%3F © Guest
— Jupyter

Password or token: | secccccece Log in
Token authentication is enabled
If no password has been configured, you need to open the
notebook server with its login token in the URL, or paste it above.
This requirement will be lifted if you enable a password.
The command:
jupyter notebook list
will show you the URLSs of running servers with their tokens, which
you can copy and paste into your browser. For example:
: Home X + - o R
&< C' @ localhost:8080/tree? e Guest :
: J u pyter Quit Logout
Files Running Clusters
Select items to perform actions on them. Upload New~ &
0o v B/ Name ¥ Last Modified File size
0 data a year ago
O fig 10 days ago
O test 10 days ago
& colors_overview.ipynb 10 days ago 48.7 kB
& contextualreps.ipynb 10 days ago 26.6 kB
& evaluation_methods.ipynb 10 days ago 74.8 kB
& evaluation_metrics.ipynb 10 days ago 138 kB
& hw_colors.ipynb 10 days ago 29.9 kB
& hw_rel_ext.ipynb 10 days ago 27.1 kB

Step 4: Enjoy :)

This is the most important step! Enjoy experimenting with Jupyter on Azure VM)

	XCS330 Azure Guide
	
	Access and Setup
	Azure Labs Subscription for this Class
	Best Practices for Managing Credit
	
	Registration
	
	Connecting to a VM

	
	
	Practical Guide for Using the VM
	Managing Processes on a VM
	TMUX Cheatsheet

	Managing Code Deployment to a VM
	Managing Memory, CPU and GPU Usage on a VM
	Accessing Tensorboard
	Step 1: Configure port 6006
	Step 2: Go inside VM and Run Tensorboard

	Tunneling on Azure VM for Jupyter
	Step 1: Setup SSH Tunnel
	
	
	Step 2: Run Jupyter
	Step 3: Access Jupyter
	Step 4: Enjoy :)

