
[PUBLIC] KEP- 5233: Node Readiness
Gates​

​
KEP: https://github.com/kubernetes/enhancements/issues/5233 ​

K8s Issue: https://github.com/kubernetes/kubernetes/issues/131208

Status: Based on recent feedback, this KEP is revising its approach to explore a simpler design
with less operational risks. The focus is now on using node-local 'probing mechanisms' to verify
readiness, rather than relying on multiple external agents with broader permissions to patch
Node objects.

We will narrow the scope to well-known readiness requirements that can be defined at node
provisioning time. Consequently, a decision on adding a `readinessGates` field to the
`NodeSpec` is deferred until the use-cases can be justified. This KEP will also avoid introducing
a new CRD at this time, to reduce the risk of global misconfiguration.

-​ Release Signoff Checklist
-​ Summary
-​ Motivation

-​ Goals
-​ Non-Goals

-​ Proposal
-​ Main-Idea
-​ User-Stories
-​ Example Walkthrough
-​ Notes/Constraints/Caveats (Optional)
-​ Risks and Mitigations

-​ Design Details
-​ API Changes
-​ Labels for Readiness Gates
-​ Standardized Condition Patterns
-​ Evaluation Logic
-​ Scope of Configuration
-​ Handling Ready -> Not Ready Transitions
-​ Possible Extension
-​ Test Plan

-​ Prerequisite testing updates
-​ Unit tests
-​ Integration tests
-​ e2e tests

-​ Graduation Criteria
-​ Upgrade / Downgrade Strategy
-​ Version Skew Strategy

https://github.com/kubernetes/enhancements/issues/5233
https://github.com/kubernetes/kubernetes/issues/131208

-​ Production Readiness Review Questionnaire
-​ Feature Enablement and Rollback
-​ Rollout, Upgrade and Rollback Planning
-​ Monitoring Requirements
-​ Dependencies
-​ Scalability
-​ Troubleshooting

-​ Implementation History
-​ Benefits
-​ Drawbacks
-​ Alternatives

-​ Taint / Toleration Controller
-​ Retries

-​ Infrastructure Needed (Optional)

Release Signoff Checklist
Items marked with (R) are required prior to targeting to a milestone / release.

​ (R) Enhancement issue in release milestone, which links to KEP dir in
kubernetes/enhancements (not the initial KEP PR)

​ (R) KEP approvers have approved the KEP status as implementable
​ (R) Design details are appropriately documented
​ (R) Test plan is in place, giving consideration to SIG Architecture and SIG Testing input
(including test refactors)

​ e2e Tests for all Beta API Operations (endpoints)
​ (R) Ensure GA e2e tests meet requirements for Conformance Tests
​ (R) Minimum Two Week Window for GA e2e tests to prove flake free

​ (R) Graduation criteria is in place
​ (R) all GA Endpoints must be hit by Conformance Tests

​ (R) Production readiness review completed
​ (R) Production readiness review approved
​ "Implementation History" section is up-to-date for milestone
​User-facing documentation has been created in kubernetes/website, for publication to
kubernetes.io

​Supporting documentation—e.g., additional design documents, links to mailing list
discussions/SIG meetings, relevant PRs/issues, release notes

Summary

This KEP proposes a mechanism, “Node Readiness Gates”, to define custom, extensible
readiness conditions for Kubernetes Nodes. The goal is to allow nodes to signal full readiness
for application workloads only after specific, user-defined conditions are met. These conditions,
representing the status of essential node-level components like monitoring agents, security

https://git.k8s.io/enhancements
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/conformance-tests.md
https://github.com/kubernetes/community/pull/1806
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/conformance-tests.md
https://git.k8s.io/website
https://kubernetes.io/

scanners, CNI plugins, DRA Drivers,CSI drivers or configuration patchers would be defined in
the Node spec, and their status updated by external controllers. The node is considered
fully-schedulable only when the components are confirmed operational by meeting the

readiness conditions. This complements the existing Kubelet managed Ready condition by

providing granular control over node-schedulability.

Motivation

Currently, a Node’s Ready condition primarily reflects the Kubelet's health, basic network setup

(via CNI config), and its ability to run a basic pod sandbox. However, many clusters often rely on
critical DaemonSets or agents (e.g., for device driver readiness, monitoring, logging, security,
storage, or applying runtime configurations) that need to be fully functional on a node before
general application pods are scheduled onto it.

Scheduling application pods onto a node where these critical components are not yet fully
configured the Node can lead to:

●​ Missing observability data during pod startup.
●​ Pods starting in an insecure or non-compliant state.
●​ Pods fail if they depend on runtime patches or configurations applied by a DaemonSet

that hasn't finished yet.
●​ Non-preferred pods are scheduled onto the node before driver installation and readiness

state is achieved, filling up valuable node capacity

Goals
The primary goals of this KEP are to:

1.​ Establish clear semantics using NodeSpec for declaring desired prerequisites (gates)
and NodeStatus for reporting observed operational readiness (conditions) in node,
aligning with Kubernetes API conventions.

2.​ Define a standard API field (spec.readinessGates) on the Node object to specify
required readiness conditions beyond the default Kubelet Ready state.

3.​ Enable external controllers / agents (daemon-sets) responsible for node-level services to
report the status of these conditions by patching node status.Conditions, requiring
only nodes/status patch permissions.

4.​ Integrate the evaluation of these readiness gates into the node schedulability checks
performed by the Kube-Scheduler (via a filter-plugin).

5.​ Improve scheduling correctness by also considering the reliability of the node lifecycle by
preventing application pods from being scheduled onto nodes until declared readiness
gates are met.

6.​ Allow the system to react to critical components becoming unready (eg., during restarts
or upgrades) by making the node unschedulable for new pods until the critical
components report ready again.

Non-Goals
This KEP does not aim to

1.​ Replace the existing Kubelet-managed Ready condition. Node Readiness Gates act as
an additional check.

2.​ Define how external controllers, or agents (daemon-sets) responsible for satisfying the
readiness conditions are deployed or managed. It only provides the standard API for
them to report that readiness.

3.​ Guarantee general pod admission order on node-bootstrap or recovery. While this KEP
will enable DaemonSets’ pods to be deployed earlier than non-daemon-pods until
readiness-requirements are met, it does not provide a comprehensive solution for all
arbitrary pod startup ordering.

4.​ Gate DaemonSet pod scheduling. Node Readiness Gates are not intended to block or
delay the scheduling or execution of DaemonSet pods themselves. DaemonSet pods
(with appropriate tolerations for initial node taints) are often the very components
responsible for satisfying the readiness gate conditions and therefore must be allowed to
run early in the node lifecycle.

5.​ Directly modify Kubelet’s admission or pod-startup logic for existing pods. This KEP does
not implement changes within Kubelet to make it actively check NodeReadinessGates or
their corresponding status.Conditions before starting or restarting pods already assigned
to the Node.

6.​ Directly manage pod execution on the node. Node Readiness Gates are a mechanism to
only gate the scheduling of new pods based on declared readiness requirements. It does
not evict or manage the life-cycle of pods already running on the node beyond the initial
scheduling decision influenced by the gates.

Proposal

Main-Idea:

This proposal introduces a new field readinessGates to the NodeSpec and leveraging the

existing NodeStatus.Conditions array to make node readiness/schedulability dependent on

custom criteria defined by the cluster administrator or specific workloads. This would allow
critical components to directly influence when a node is considered fully available for general
pod scheduling.

The core idea is to introduce a mechanism where the node's transition to a fully schedulable

state depends not only on the Kubelet's default Ready condition but also on the successful

status of custom conditions defined in the Node's spec. This should look similar to Pod
Readiness Gates that the node must satisfy. Components (external controllers or agents /
daemon-sets) responsible for these conditions will update their respective

NodeStatus.Conditions using a PATCH to the /status sub-resource. DaemonSets will be

exempted from NodeReadiness checks.

User-Stories

Story 1: Ensuring Comprehensive Network Readiness
As a cluster administrator, I want to prevent application pods from being scheduled onto nodes
until all crucial network components are fully operational (ref: kubernetes/kubernetes#130594)

Story 2: Reliable Readiness Signal for Autoscaling
As a cluster operator, I want to ensure the scaling decisions are accurate to prevent
overprovisioning and stuck pods awaiting resources:

●​ Enable custom resources (eg: GPUs) and DRA resource drivers to self-publish their
ready states, so the Pods can't schedule on it until they are available, and
Cluster-Autoscaler does not perform unnecessary scale-up. (ref:
kubernetes/autoscaler/7780)

●​ Allow CSI plugins to signal their operational readiness, providing accurate CSI node
awareness to the Scheduler and Cluster-Autoscaler to prevent overcommitting. (ref:
kubernetes/autoscaler#8083)

Story 3: Security Agent / Policy Readiness
As a cluster administrator, I need a kubernetes native mechanism to prevent application pods
from being scheduled onto nodes where essential security or compliance-enforcing components
are not yet fully operational.

Example Walkthrough

Let's consider a scenario where a node needs CNI installed, Datadog agent to be healthy and a
custom runtime patch applied before being used for business pods.

Use-case 1:

●​ kubernetes user is running Datadog and doesn't want the node to be marked ready until
verification from Datadog that the observability pieces are up and running.

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-readiness-gate
https://github.com/kubernetes/kubernetes/issues/130594
https://github.com/kubernetes/autoscaler/issues/7780
https://github.com/kubernetes/autoscaler/pull/8083

None

○​ datadog-agent-ds: daemonset with hostnetwork=False and
nodeSelector: readiness-gate.datadog.com/AgentReady=”true”

○​ Patch node status: datadog.com/AgentReady

Use-case 2:

●​ kubernetes user wants to patch some runtime configuration in the node using a
daemonset before running a business pod. Since this is a runtime patch, this needs to
happen before other pods.

○​ runtime-patcher-ds: daemonset with hostNetwork=False and
nodeAffinity: matchExpressions: {key:
readiness-gate.ai-corp.com/RuntimePatchApplied, operator:
Exists}

○​ Execute a patch script and sets node status
ai-corp.com/RuntimePatchApplied

Use-case 3:

●​ kubernetes user intends to install Cilium CNI for pod-network. This needs to be ready
before the pods that are hostNetwork: false could be admitted.

○​ cilium-cni-install-ds: daemonset with hostNetwork=True and
nodeSelector:
readiness-gate.network.kubernetes.io/CNIReady=”true”

○​ Configure CNI and sets CNI readiness as node status
network.kubernetes.io/CNIReady=True

Detailed flow

1.​ Node is created with configuration:

Kubelet Configuration:

Kubelet upon self-registration will add the nodeReadinessGates to the node-spec. Kubelet

itself will not evaluate these conditions, it will only populate this in node-spec for external
controllers / agents to consume.

apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration

None

-- Proposed Configuration --
`nodeReadinessGates` specifies the conditions that will be added
by kubelet to nodespec after self-registration.
nodeReadinessGates:
- conditionType: datadog.com/AgentReady
 timeoutSeconds: 180
 failureAction: BypassWithWarning
- conditionType: "ai-corp.com/RuntimePatchApplied"
 timeoutSeconds: 300
 failureAction: Taint
 readinessTaint:
 key: ai-corp.com/runtime-patch-not-installed
 effect: NoSchedule
 value: "true"
- conditionType: network.kubernetes.io/CNIReady
 timeoutSeconds: 180
 failureAction: Taint
 readinessTaint:
 key: node.cilium.io/agent-not-ready​​ # example for existing taint
based implementation migration
 effect: NoSchedule

NodeSpec:

apiVersion: v1
kind: Node
metadata:
 name: node-123
 labels:

readiness-gate.datadog.com/AgentReady: true
readiness-gate.ai-corp.com/RuntimePatchApplied: true
readiness-gate.network.kubernetes.io/CNIReady: true

spec:
 readinessGates:
 - conditionType: datadog.com/AgentReady
 timeoutSeconds: 180
 failureAction: BypassWithWarning
 - conditionType: ai-corp.com/RuntimePatchApplied

None

None

 timeoutSeconds: 300
 failureAction: Taint
 readinessTaint:
 key: ai-corp.com/runtime-patch-not-installed
 effect: NoSchedule
 value: "true"
 - conditionType: network.kubernetes.io/CNIReady
 timeoutSeconds: 180
 failureAction: Taint
 readinessTaint:
 key: node.cilium.io/agent-not-ready
 effect: NoSchedule

2.​ Kubelet starts and registers node

status:
 conditions:
 - type: Ready
 status: "False"
 reason: KubeletStarting
 message: Kubelet is starting.

●​ Node is not schedulable because Ready is not True and the conditions defined in

readinessGates are missing from the status.
●​ DaemonSet controller adds default tolerations to datadog-agent-ds,

runtime-patcher-ds and cilium-cni-install-ds and these are scheduled at
the node.

3.​ Kubelet becomes ready

status:
 conditions:
 - type: Ready
 status: "True"
 reason: KubeletReady

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/#taints-and-tolerations

None

None

 message: Kubelet is ready.

●​ The node is still not considered fully schedulable because the readinessGates

conditions are not yet met.

4.​ Network Controller (eg: CNI daemon-set) reports CNI is ready
●​ CNI plugin initializes on the node and handles network-setup.
●​ Associated controller updates the node-status

network.kubernetes.io/CNIReady

status:
 conditions:
 - type: Ready
 status: "True"
 reason: KubeletReady
 message: Kubelet is ready.
 - type: network.kubernetes.io/CNIReady # Added/Updated
 status: True
 reason: CNIPluginReady
 message: "Cilium version: quay.io/cilium/cilium:v1.9.1"

●​ The node is not considered schedulable because the readiness-gates conditions are not

met.

6.​ External Controller (eg: Daemonset): Datadog agent is ready
●​ Datadog agent (daemonset) starts on node-123.
●​ Agent / operator monitors status of the agent health
●​ Operator uses kubernetes api to update node /status ​

status:
 conditions:
 - type: Ready
 status: "True"
 # ...
 - type: "network.kubernetes.io/CNIReady"

None

 status: "True"
​ # ...
 - type: "datadog.com/AgentReady" # Added/Updated
 status: "True"
 reason: AgentHealthy
 message: "Datadog agent started successfully."

7.​ External Controller: Runtime is patched / ready

status:
 conditions:
 - type: Ready
 status: "True"
 # ...
 - type: "network.kubernetes.io/CNIReady"
 status: "True"
​ # ...
 - type: "datadog.com/AgentReady"
 status: "True"
 # ...
 - type: "ai-corp.com/RuntimePatchApplied" # Added/Updated
 status: "True"
 reason: PatchSucceeded
 message: "Runtime patch v1.2 applied successfully."

8.​ Node becomes fully-schedulable.

Design Details

API Changes

1.​ NodeSpec.ReadinessGates (New Field):
●​ Add an optional field `nodeReadinessGates` to `NodeSpec`.
●​ Type: []NodeReadinessGate
●​ NodeReadinessGate struct

None

// NodeReadinessGate specifies a condition that must be true for the node to
be considered fully-schedulable.
type NodeReadinessGate {
 // ConditionType refers to a condition in the Node's `status.Condition` array
with matching type.
 // Each conditionType must be unique within node.spec.readinessGates and must
be a valid dns-domain
 // name (eg: domainname.com/MyCondition).
 // +required
 ConditionType v1.NodeConditionType `json:”conditionType”`

 // TimeoutSeconds is the duration in seconds the system should wait for the
condition to be satisfied
 // before taking the configured failure action.
 // +required
 TimeoutSeconds *int32 `json:"timeoutSeconds,omitempty"`

 // FailureAction defines what action to take when the condition is not
satisfied within the timeout period.
 // Valid values are: Taint, BypassWithWarning.
 // Default is Taint.
 // +required
 FailureAction string `json:"failureAction,omitempty"`

 // ReadinessTaint provides the taint to apply when the failure action is
Taint.
 // Required if failureAction is Taint, ignored otherwise.
 // +optional
 ReadinessTaint *v1.Taint `json:"readinessTaint,omitempty"`
}

// NodeSpec describes the attributes that a node is created with
type NodeSpec struct {
 // Existing fields..

 // ReadinessGates
 ReadinessGates []NodeReadinessGate `json:"readinessGates,omitempty"
patchStrategy:"merge" patchMergeKey:"conditionType"`
}

●​ API Validation:
○​ ConditionType within ReadinessGates must be unique.
○​ ConditionType must adhere to dns-domain conventions.

○​ Node readinessGates are fully mutable.​

2.​ NodeStatus.Conditions (Existing Field):
●​ This existing array would be used by external controllers to report the status of

the conditions listed in spec.readinessGates.
●​ The external controller would add or update entries in this array, setting the type

to match the gate's conditionType, and setting the status field to "True",
"False", or "Unknown", along with reason and message fields for details.

High Level Design

Labels for Readiness Gates

To improve the integration of node readiness-gates, each gate supported by a node will be
represented by a unique label within a reserved namespace:

None

None

readiness-gate.<gate-name>: true. This approach is consistent with existing node
metadata practices, such as topology labels and NFD feature discovery labels. This will enable
users to be able to easily select nodes based on specific readiness gates using label selectors
and node affinity rules.

Kubelet will dynamically manage these labels during node-status synchronization. Kubelet will
detect the configured readiness gates and ensure corresponding labels are set and cleaned up
if necessary. This ensures advertised node readiness-gates are accurate throughout the
node-lifecycle.

Example:

// labels
readiness-gate.datadog.com/AgentReady: true
readiness-gate.ai-corp.com/RuntimePatchApplied: true
readiness-gate.network.kubernetes.io/CNIReady: true

Pros
●​ Allows users to target essential DaemonSets satisfying readiness-conditions based on

specific readiness–gate labels.

Example:

// matching readiness-gate labels allow targeting specific nodes and integrates
with existing kubernetes tooling.

spec:
 nodeSelector:
 environment: test
 nvidia.com/gpu.product: A100
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - {key: kubernetes.io/os, operator: In, values: [linux]}
 - {key: readiness-gate.ai-corp.com/RuntimePatchApplied, operator:
Exists}
 containers:

 - name: my-script
 image: debian
 command: ["/bin/sh", "-c", "path/to/run-patch-script.sh"]

​

●​ Facilitate testing of new readiness-gate requirements on a subset of nodes by applying
labels selectively, thus avoiding cluster-wide impact.

Cons

●​ conditionType already a subdomain with length restrictions, risks truncation. This can
be lessened by reducing the maximum allowed conditionType length to 238 to
include the readiness-gate. label prefix requirement.

●​ Labels are already cluttered, adding a number of ‘readiness-gate’ labels will only make it
worse.

Standardized Condition Patterns

To promote consistency for common / standard readiness scenarios, this KEP proposes the
adoption of standardized conditionType prefixes for certain readinessGates.

Example: Node Network-Readiness

Network readiness can involve multiple sub-components / plugins (CNI, IPAM, Network-Policy
etc.). This can be expressed with individual readiness-conditions for improving node-visibility as
follows,

●​ Granular conditions related to network sub-systems would use the prefix
network.kubernetes.io/.

●​ Cluster administrators would list these as network readiness-gates, eg:
network.kubernetes.io/CNIReady and
network.kubernetes.io/NetworkProxyReady,if they are direct prerequisites for
general workload scheduling.

●​ An external controller could optionally aggregate on these conditions to determine the
network-health of the node based on these standardized network.kubernetes.io/
prefix listed in spec.readinessGates.

●​ Meaning: network.kubernetes.io/CNIReady condition will signal the pod-network
is configured and operational on the node.

●​ Node-Behavior: Kubelet will not monitor or aggregate external conditions as it should not
be responsible for watching arbitrary conditions set by various other agents.

Node Readiness Timeout

The primary risk with custom readiness-gates is that if a condition never becomes satisfied due
to misconfiguration, buggy controller or component failures, nodes could remain in a perpetually
“not-ready for business workloads” state, effectively locking them out of the cluster’s usable
capacity.

This proposal addresses this risk by introducing a configurable timeout duration for each
readiness-gate. After the timeout, the condition will transition to {status:“Unknown”,
reason:“TimeoutExceeded”} state following a failure action as fallback. The possible
failure actions are:

a.​ Taint: applies a specific taint when timeout occurs (default).
b.​ BypassWithWarning: adds a warning at the node-object

Pros:

●​ Integrates well with existing tooling support for taints.
●​ Layered readiness can be implemented with established methods, such as ‘tolerations’

in pods, and can address specific missing readiness conditions.
●​ By allowing a specific fallback taint for each readiness-gate, this approach allows

existing taint-toleration based components to easily be migrated to readiness-gates.
●​ Extensible failure-action allows for future actions beyond tainting for node

readiness-gates. For instance, cordon or automated remediation-actions for node
recovery.

●​ Taint as a side-effect to readiness-gate failure allows components to implement more
aggressive workload-protection when severe node issues requiring maintenance occur.
Eg: driver detecting device failure can apply NoSchedule or NoExecute effects on the
node by linking their health status with their readiness conditions.

Cons:
●​ Kubelet 'bypassing’ status.conditions for external controllers is problematic as it

can hide underlying problems to automation. This is a compromise for protecting
node-lockouts. For conditions that are critical, taint failure-action could be configured for
the readiness-gate for stronger guarantees.

●​ Lack of global timeout means the node schedulability will have to wait until the longest
readiness timeout. This was a deliberate design choice to accommodate varying
initialization durations across different components.

●​ Tight coupling with pods when used with taint as failure-action, but is a known pattern.
Application-owners need to add tolerations for critical readiness-requirements.

Alternate options evaluated for handing node-lockout risks:

●​ Single default timeout in kubelet-configuration for all readiness-gates eg:
node-readiness-gate-timeout.

○​ Drawback: lack of granular control over readiness-gates. Readiness-gates and
timeouts are domain specific, condition owners are best positioned to define the
timeout requirements for specific conditions.

●​ A cluster-level API to force-satisfy specific readiness-gates.
○​ Drawback: implementation complexity. This API action has to reflect at the

scheduler plugin to apply for all pods.
●​ Partial readiness scheduling by allowing pods to define the node readiness-requirements

they require. This option is more about optimizing scheduling when nodes are generally
ready than unblocking a stuck node.

○​ Advantages:
■​ enables selective scheduling and improves node utilization (eg: non-gpu

workloads don't need to be blocked on GPUReady).
■​ pod / application owners only need to define their direct node

requirements, and don't need to know what else it has to tolerate.
○​ Disadvantages:

■​ weakens node-level readiness guarantees, as pods might land and wait
for only their specified requirements.

■​ while this is helpful for situations such as pod-failures due to
missing-dependencies (eg: missing driver or storage not ready), it could
conflict with infrastructure admin readiness requirements (eg:
security-policies). This could be mitigated by handling cluster-scoped
requirements in pod admission-controllers.

○​ This optimization falls outside the scope of this KEP and could be explored in a
future KEP focusing on additive workload-level node-readiness requirements.

Implementation considerations:

1.​ Timeouts will be handled as node-local actions without involving external actors to avoid
node-lockout in network partition scenarios.

2.​ Individual readiness-timeouts begin when the node reports kubelet-managed
“Ready=True” condition, so if there’s a kubelet restart, it will reset all the timer for
conditions.

3.​ Kubelet: Track individual timeouts and update the corresponding status.Conditions with
{status:“Unknown”, reason:“TimeoutExceeded”}.

4.​ NodeLifeCycleController: If the failureAction was BypassWithWarning, NLC will record
a warning event at the node-object. If the failureAction was TaintNode, NLC will create
a taint (as per configuration) against the node on timeout.

5.​ If this is a result of delayed action, the agent will eventually update the condition
correctly. If there’s a side-effect (taint), NLC will be required to recover the node by
untainting (similar to handling existing node-conditions today).

6.​ When a new ReadinessGate gets added after the node is already Ready, NLC will detect
the new gate is added from the node watch and will start the timeout calculation when
the gate is added.

Why Kubelet shouldn’t handle the taints (along with timeouts) -

a.​ Kubelet doesn’t watch its own node object; this means that external condition updates
will be visible to kubelet only after the node status sync cycle. This will cause a
node-update latency for nodes based on nodeStatusUpdateFrequency.

b.​ Kubelet handling taints for timeouts will introduce additional complexity and weaken
security-posture for nodes.

c.​ In line with the current responsibility model (eg: node pressure related conditions),
kubelet will set node-managed conditions, and the node-lifecycle-controller will manage
taints.

Cons:

a.​ Delay in Kubelet observing the externally set readiness conditions (API server
dependency) on the node, could cause incorrect / early ‘node-timeout’ determination by
kubelet, especially when the timeout configurations are small.

b.​ Node-restart in a slow network (or partition) could make this even more a concern with
kubelet on bootstrap will not be able to reliably handle timeouts. But both of these
concerns can be accommodated by having a longer buffer for timeout conditions.

Post Taint operations:

detail the admin and agent flow to recover this?

Evaluation Logic

Scheduling Condition:

A Node would be considered fully ready for scheduling general workloads only if:

1.​ The standard Ready condition in node.status.conditions has status: "True".
2.​ AND all declared gates are satisfied:

a.​ For every conditionType listed in node.spec.readinessGates, there is a
corresponding entry in node.status.conditions. If a declared gate’s
condition is missing from the status, the gate is considered as not satisfied.

b.​ The found conditions must satisfy one of the following:
i.​ its status: "True".
ii.​ OR status: “Unknown” and reason: “TimeoutExceeded”

Scope of Configuration

Declaring Gates (spec.readinessGates):

This KEP defines the API field on the Node object for listing required conditionTypes. There
will also be standardized conditionTypes in kubernetes.io/ and subdomains.

Reporting Status (status.conditions):
This KEP relies on components using node.status.conditions array to report their
readiness for the declared gate types.

Methods of Populating spec.readinessGates:
While crucial for usability, this KEP does not mandate a specific method for populating
spec.readinessGates on nodes. It focuses on the existence and evaluation mechanism of
the spec.readinessGates field, assuming it gets populated by one of the below (or other)
mechanisms:

●​ Statically defined at KubeletConfiguration at node / kubelet bootstrap.
●​ Dynamically configured via kubernetes-native, cluster-level mechanisms such as:

○​ Mutating Admission Webhooks
○​ CEL Admission control (xref: #3488)
○​ NodeClass

Addressing Specific Scenarios:

●​ Kubelet/containerd customization requiring restarts:
○​ The restart itself is out of scope.
○​ A Readiness Gate, such as node.my-corp.com/CustomConfigApplied, can be

explicitly set by an agent or controller to manage this. Following a kubelet restart,
the agent verifies the operational status of the new configuration and then sets
the gate to True.

●​ Changing kernel command line which requires reboot:
○​ The reboot and kernel param change are out of scope.

■​ This fits more in ‘Node Capability’ which differs from ‘Node Readiness’.
Capabilities define the “what” while Readiness Gates aims to answer the
question “is this prerequisite component operational now”, both address
different layers of node suitability.

○​ A Readiness Gate (eg: feature.my-corp.com/KernelFeatureXActive)
could be used. An agent would check for the feature post-reboot and update the
condition.

●​ Installing a systemd service:
○​ The installation (eg., by DaemonSet) is out of scope.
○​ A Readiness Gate (eg: systemd.my-corp.com/MyServiceHealthy) would

be set to True by an agent (or side-car to the DaemonSet handling installation)
once the systemd service is confirmed running and healthy.

https://github.com/kubernetes/enhancements/blob/master/keps/sig-api-machinery/3488-cel-admission-control/README.md

Handling Ready → Not Ready Transitions

Node Readiness Transition:

The primary Ready condition of a Node object reflects fundamental node operation. When the
kubelet's health signal changes from True to False (or Unknown), the basic node functionality
is considered impacted. At such times, the status of custom component readiness conditions
should also be reliably re-evaluated. However, these custom conditions are "owned" by specific
agents/DaemonSets, and the responsibility lies with these agents to also manage the
conditions. The kube-system cannot accurately determine the true-state for these
domain-specific conditions.

When there is a node reboot or kubelet restart, the node will get the persisted status.Conditions
from etcd. However, this information might be outdated and requires components to reassert
their current status.

Principles:

1.​ The agent / controller managing a specific conditionType is the sole-authority for its
readiness condition.

2.​ Upon its own startup or restart, an agent MUST ensure its managed condition reflects
the right state (status: “True”) upon successful verification.

3.​ For dynamic conditions, the agents MUST promptly update their condition if the
underlying component’s readiness changes at any time.

4.​ Patches to NodeStatus MUST only occur on meaningful changes in status, reason or
message to avoid API load.

Scenarios:
Node Reboots

1.​ When a node reboots (BootID is detected as changed), the persisted node conditions
from etcd could be stale. Kubelet will update any readiness-gate conditions that are
present to status: “Unknown” and reason: “NodeRestarted” to ensure the
components reassert their conditions.

2.​ During node reboot, all pods in it, including the DaemonSets responsible for
readiness-gate conditions are also restarted.

3.​ Upon startup, these agents must re-evaluate their readiness states.
4.​ The agents upon starting will set their respective status.Condition to an appropriate initial

state, typically status:”False” and reason: “Initializing”.
5.​ After they successfully initialized and verified their functionality should they update their

readiness condition to status:”True”.

Kubelet Restart

1.​ Kubelet will not influence the readiness conditions as there is no BootID change.
2.​ The agent pods might still be running.

3.​ If an agent’s readiness status is independent of the Kubelet’s running state, its condition
will correctly remain as “True”.

4.​ If the agent’s readiness status depends on the Kubelet’s availability, the agent will detect
the kubelet-restart, considers itself as not ready and update its condition status:
“False”. When kubelet is back and the agent re-establishes its connection, it will
update the condition status to “True”.

Network partition

1.​ The agents on the node are running and consider themselves ready locally.
2.​ When there is loss of network, and the node-isolation lasts more than

node-monitor-grace-period (default 50s), the node-lifecycle-controller sets the
node as ‘unhealthy’ (Ready=”Unknown”), and also applies the unreachable taints.

3.​ The scheduler will therefore not schedule new pods onto this node, regardless of the
status (stale or not) of the custom gate conditions. The main Ready condition acts as a
fundamental gate.

4.​ The agents cannot update their corresponding status.Condition on the API server.
The last reported status of the condition remains in the etcd.

a.​ Agents running on the partitioned node will not be able to reach the API server
for specific Condition updates.

b.​ For a controller running off-node (eg: operator), it will likely not be able to
determine the true state of the components running on the partitioned node. If it
has network connectivity to the API server, it could still send API updates about
the node, but should follow good-practice to verify the actual status on the node
before setting the status of the condition. Depending on the use-case, it could
transition the condition to ‘Unknown’ or leave as the last-known status if valid.

c.​ If the external controller cannot reach the API server for condition update, it will
retry to set the right status of the node.

5.​ If the pod-eviction-timeout (default 5m) expires before network-connectivity
recovers, the node-controller applies NoExecute taints on the node and the pods get
evicted if they do not tolerate the specific taints. Critical system daemon-sets that usually
tolerate these taints avoid eviction.

6.​ When network-connectivity is restored, Kubelet will update the main Ready condition to
“True”. The agents will update their new state to their respective conditions. The
scheduler will resume placing pods at the node once all the conditions are satisfied.

Component Readiness Transition:

Possible Extensions

Node Admission Control (Out Of Scope)

To provide node-recoverability guarantees upon restart, kubelet could be improved to enforce
particular admission restrictions for fundamental conditions such as
node.kubernetes.io/NetworkReady.

For instance,

1.​ if network.kubernetes.io/* readiness gates are present in the node-spec, kubelet
will monitor for all the corresponding node.status.conditions are present with
status:”True”.

2.​ Kubelet will refuse to admit pods with hostNetwork: false until all these conditions
are met.

3.​ Kubelet will create the node.kubernetes.io/NetworkReady entry once these
requirements are ready, and unblock pod admission for non-host-network pods.

Local updates:

1.​ Holding pod-admission from specific node conditions has risks. Pod-admission could be
blocked by factors external to the node (eg: operator updating the CNI condition or API
server unavailable) due to failures or network partition. Kubelet will determine
node.kubernetes.io/NetworkReady (or equivalent local state for gating existing
pods) purely based on local signals that do not require API server or external interaction
during critical Kubelet startup path. This node-admission enhancement should be
preferred only when a local update pattern is standardized for kube-critical paths.

Admission Timeouts:
​

1.​ Kubelet will wait for these network-conditions during admission with configurable
timeouts (120s) after it becomes Ready=True. This compromise is required to avoid
node-lockout risks.

2.​ If the timeout expires, and node.kubernetes.io/NetworkReady is not True,
Kubelet proceeds to start ‘existing’ non-host-network pods anyway (“best-effort”).

3.​ Kubelet will set another condition KubeletNetworkPrerequisiteTimeout=True
indicating it started pods in a potentially network-degraded state.

Flapping Conditions:

None

1.​ To prevent unstable node readiness caused by frequently changing critical conditions
like node.kubernetes.io/NetworkReady, Kubelet will wait for these conditions to
remain "True" for X seconds before considering the overall network readiness as True.

2.​ Kubelet will update the node.kubernetes.io/NetworkReady condition with
appropriate reason and message indicating the unexpected behavior. There will also
be kubelet metrics to record the frequency of updates to capture the volatility.

Implementation Considerations:

Pod-Level Node-Readiness API (Out of Scope)

Pods could declare their 'readiness requirements' to specify their dependencies on particular
node readiness conditions, offering an alternative approach to node readiness-gates. This would
provide finer-grained control over the node conditions that workloads require before being
scheduled.

A new field, potentially named nodeReadinessRequirements, could be added to the
PodSpec. This field would allow a pod to optionally list the node conditions (e.g.,
nvidia.com/GPUDriverReady) that must be True for it to run on a node.

The pod scheduling logic is:

a.​ If pod.spec.nodeReadinessRequirements is defined, the scheduler would
evaluate only these requirements against the node.status.Conditions. If a required
condition, such as nvidia.com/GPUDriversReady, is currently False, the Scheduler
would prevent the pod from being scheduled on that node.

b.​ If pod.spec.nodeReadinessRequirements is not defined, the scheduler falls back
to evaluating for all conditions listed in the node.spec.readinessGates

For example, pods that do not require GPUs would not need to wait for the GPUDriversReady
condition to become True.

// Need GPU ready
apiVersion: v1
kind: Pod
metadata:
 name: gpu-app-1
spec:
 nodeReadinessRequirements:
 - conditionType: "network.kubernetes.io/NetworkProxyReady"

 status: "True"
 - conditionType: "nvidia.com/GPUDriversReady"
 status: "True"
 containers:
 ...

// Does not need GPU ready
apiVersion: v1
kind: Pod
metadata:
 name: cpu-app-1
spec:
 nodeReadinessRequirements:
 - conditionType: "network.kubernetes.io/NetworkProxyReady"
 status: "True"
 containers:
 ...

// If no specific readiness requirements are specified,
// pod will not be scheduled on a node where readiness-gates are not met.
apiVersion: v1
kind: Pod
metadata:
 name: legacy-pod
spec:
 containers:
 ...

Pros

●​ Granular control and flexibility leading to better node-utilization while also ensuring
critical node-dependencies.

●​ Pod clearly expresses its intent on node specific dependencies.

Cons

●​ Application developers need to be aware of the node-level dependencies. This concern
could be mitigated with cluster level abstraction such as mutating webhooks based on
workload characteristics.

Why is this not in readiness-gates scope?

Gating is

Test Plan

<TBD>

Graduation Criteria

<TBD>

Upgrade / Downgrade Strategy

Upgrade

Gate Disabled → Enabled:

1.​ Existing nodes will not have spec.readinessGates defined. They will continue to
function as before.

2.​ New nodes or existing nodes where the field is added will start enforcing the gates.
External controllers if involved may need deploying / updating to manage the conditions.

3.​ Adding new readiness-gate to existing nodes should preferably be gradual.
4.​ Existing nodes can co-exist with new readiness-gates enabled nodes.

Component Update:

1.​ When a daemonset / agent is handling a rollout following RollingUpdate strategy,
kubernetes will terminate old pods and create new ones on a node-by-node basis
(respecting maxUnavailable settings).

2.​ The new agent should ideally set its status.condition as “True” only when the
new version is fully operational.

3.​ If the new agent updates its status.condition as “False” (with reason as
‘Upgrading’) during the upgrade process, the node will become unschedulable for
new application pods during the upgrade window when the daemon-set is upgrading and
its associated gate condition remains “False”.

4.​ Existing pods already running on the node will not be evicted by temporary Condition
transition on the node.

5.​ Once the upgrade on the node is complete and the new version sets its condition to
“True” the node will become schedulable again.

6.​ If daemonset rolling update fails based on pod’s readiness probes, the daemon-set
rollout on that node will stall. This is standard kubernetes behavior and requires admin
intervention to unblock. If this failing agent also fails to maintain its status.condition
for the readiness-gate, the node will remain unschedulable until the deployment is
resolved and the condition is “True”.

Downgrade

1.​ When readiness-gates are removed from a node, the scheduler will stop evaluating the
readinessGates field. Nodes previously blocked by gates may become schedulable
(based only on Ready condition and taints).

2.​ When the scheduler plugin is disabled, the readinessGates field remains in the spec
but has no effect. External controllers managing the conditions may become redundant
for scheduling purposes but can still be useful for observability. Status patching will
continue but won't affect scheduling via this mechanism.

Production Readiness Review
<TBD>

Implementation History
<TBD>

Benefits
●​ Provides a standardized, declarative API to handle kubernetes node initialization

dependencies.
●​ Ensures application pods are only scheduled on nodes where prerequisite services are

confirmed ready.
●​ Decreases the need for cluster components to hold broad nodes/patch permissions.

Drawbacks
●​ Requires external controllers / agents to be written / configured correctly to manage the

status conditions. Misconfigured controllers could render nodes perpetually
unschedulable.​
​
Mitigation: Node administrations can set up monitoring to alert on specific gate failures.​

●​ Potential for increased node.status patch requests to the API server, although
targeted patching of conditions should be manageable.​
​
Mitigation: Promote standardized client-libraries and standard implementations for
agents to patch NodeStatus on meaningful state changes, not as heart-beats. This
could go in controller-runtime or a separate node-project itself under the

https://github.com/kubernetes-sigs/controller-runtime

kubernetes-sigs organization and maintained by sig-node.​

●​ Defining the right set of gates requires careful consideration by the cluster administrator.​
​
Mitigation: Pre-defined profiles or common readiness-gate patterns for critical
node-services eg: CNI, service-mesh use-cases.

Alternatives

Custom Taint/Toleration controller
Existing mechanisms such as taints can be used to mark the node as ‘not-schedulable’ during
node bootstrap. Subsequently, a custom taint-management controller will monitor the node for a
specific side-effect. Once this effect is detected, the controller will untaint the node to make it
available for scheduled pods.

Compare Taints and Tolerations
The common workaround involves:

1.​ Applying a NoSchedule taint (e.g.,node.kubernetes.io/unschedulable) to new
nodes.

2.​ Configuring critical DaemonSets/workloads to tolerate this taint.
3.​ Implementing an external controller (or a daemonset / process) that monitors the status

of these critical workloads on each node.
4.​ Once the critical workloads are deemed ready, this controller removes the taint from the

node, allowing general pods to be scheduled.

Readiness gates provides advantages over existing taints-based approach:

 Taints / Tolerations
(custom taint-lifecycle controller)

Two scenarios:

a.​ ‘npd’ like node-agent on each node, acts
as a taint-controller that needs to have
high-privileges. The sole purpose of this
controller is to handle taint management
for the node.

b.​ An operator that watches nodes and
relies on ‘annotations’ or ‘labels’ for
node-understanding and patches
different taint life-cycles.

Taints / Tolerations
(component specific taint-controller agents)

Each critical agent/DaemonSet has its own
taint-controller (or built-in logic) e.g., CNI agent
controller, GPU driver agent controller, Istio
agent controller, running on the node. Each is
responsible for:

a.​ Knowing its own readiness state locally.
b.​ If it's not ready, ensuring a specific taint it

"owns" (e.g.,
cni.example.com/agent-not-read
y:NoSchedule) is present on its
node.spec.taints.

c.​ If it becomes ready, removing its specific
taint from node.spec.taints.

Node Readiness Gates

Each component reports its health / status as an update to
node.status.condition.

a.​ For one-time run needs (eg: a patch script), this would be
an init-container that runs to completion.

b.​ For ‘agents’ this could be a standard side-car pattern that
will integrate with their health-signal. This could be a
standard implementation / helper library that could be
provided as reference for implementation. It will look
something like

None

side-car periodically checks the main container
and reports its readiness condition.
name: readiness-reporter
image: condition-reporter:v1.0
securityContext:
 runAsNonRoot: true
env:
- name: NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
- name: CONDITION_TYPE
 value: "network.kubernetes.io/cni-configured"
- name: CHECK_POINT
 value: "http://localhost:8080/healthz"
- name: POLL_INTERVAL
 value: 30s
- name: REPORT_STRATEGY
 value: ReportOnSuccessAndTerminate

High Privileges nodes/patch privileges needed for taint
controller, which is seen as security-risk for wider
enablement.

Each agent needs its own high-privilege
(node/patch) controller for managing taints
exposing the surface further wide.

Reduces the concern by needing only nodes/status patch
permission

Visibility Taints are opaque; hard to debug why a node is
still tainted.

Taints are either present or not. Doesn’t tell
anything about the failures, which are buried
deep into the agent logs.

Same as previous Give better / granular visibility into which components are ready
by looking at node-conditions.

Single glass of pane access to readiness failures, providing better
debuggabililty exposing the observed failure conditions and
reasons directly on the node object.

Standardization Taints are not designed for expressing
node-prerequisites.

Domain specific custom taints with different logic
hinders standard tooling: eg: ambiguous
meaning for prefixes or taint labels might conflict

Same as previous Readiness-gates specifically designed for expressing readiness
information with standardized dns-style conditions provide a
hierarchical structure and ownership isolation.

Semantic clarity NodeSpec is for ‘desired’ node state, node
observations don't fit in there.

Same as previous Node Readiness Gates and Conditions capture declarative intent
and observed component statuses separately.

Complexity Separate custom controllers for taint
lifecycle-management in a cluster gets especially
complex when multiple component readiness /
dependencies are involved. This gets harder
especially in a practical enterprise setup where

Reduces the ‘shared’ burden of maintaining a
common external controller by isolating
Multiple agent controllers need to coordinate on
‘removing’ taints. One agent could remove taint
not knowing other components could still need it.

Simplify agents / external-controllers to only report their own
health / status without complex coordination or taint management
logic. Each component reports only its status.

Shifts readiness evaluation to a built-in component (scheduler) for

multiple-agents are owned by different teams
and need to collaborate to achieve this.

Need reconciliation loops to ensure taints are
correct, or complex tolerations in each of your
workload pods. App teams need visibility into the
infrastructure components and other agents -
alternatively separate mutating webhook for
ingesting tolerations for dependency
requirements.

Taint isolation could be achieved at a cost: each
component using unique taints for various states
could lead to a proliferation of tolerations that
would need to be managed for every pod.

There’s no single entity owning the ‘readiness’
responsibility, making it hard to manage and
debug ‘why node is not ready’.

Each agent (likely third-party) needs to build their
own non-trivial ‘taint-management’ logic, in
addition to business logic, which is impractical.

individual -dependencies.

Provide granular readiness control on the node.

Taint/Toleration Controller Ensure Readiness with Satisfying
Conditions
This option considers only part of the broader solution, including the aspect where components
update the node object's status with observed conditions and a Kubernetes controller manages
taints that correspond to readiness-requirements.

API comparison:
To compare the option where a ‘built-in’ enhanced readiness aware controller manages
readiness-guarantees using the existing ‘taint’ api and node.status.conditions.

 Taints API​

Node Readiness Gates API

Functional
Difference

Since the readiness-controller will remove the original user-declared
readiness-taints upon fulfilling conditions, the intent will be lost after
establishing the initial bootstrap readiness.

This will have two consequences:

1.​ No traces on what were the established readiness on a node.
2.​ Node readiness gate will be working only during node-startup time.

On a bootstrapped node, when corresponding readiness-condition
changes to NotReady, it will not have any effect.

User readiness intent is available as an api and can be reliably established for component
restarts.

Key differences:

1.​ Node spec captures user declared readiness intent.
2.​ Readiness condition changes can be guarded by readiness-gates. eg: new pods will

not be scheduled during security-agent upgrade when node is in non-compliant state.

User experience 1.​ The application owners will specify the tolerations (for its own and
other required readiness-taints) that need to be tolerated for their
pods at bootstrap.

2.​ Different teams / component owners need to coordinate with
cluster-admin knowing ahead of time what taints their pods are
tolerating.

1.​ Cluster-Admin will specify the infrastructure readiness requirements that will be
applicable for all nodes.

2.​ There are no ordering guarantees on the daemonsets. If specific ordering is required,
cluster-admin will continue to use other existing mechanisms (eg: init-containers).

None None

3.​ Sequencing of applications is not inherently solved, but
cluster-admin can manage the ordering with tolerations.

Example:

Cluster Admin:

Added initial taints on the node:

kind: KubeletConfiguration

taints:
existing categorical taints
- key: nvidia.com/gpu
 value: true
 effect: NoSchedule
- key: team
 value: ml-infra
 effect: NoSchedule
- key: security-level
 value: high
 effect: NoExecute

taint configuration for readiness requirements
this assumes new readiness taints follow some structure.
- key: readiness-taint.datadog.com/agent-not-ready
 value: true
 effect: NoSchedule
- key: readiness-taint.cni.example.com/pending
 value: true
 effect: NoSchedule
- key: readiness-taint.security-agent.corp.com/pending
 value: true
 effect: NoSchedule
- key: readiness-taint.nvidia.gpu.com/driver-not-installed
 value: true
 effect: NoSchedule

Optional: New Taint-Management Controller Config
(ReadinessTaintRule) to map readiness Conditions to Taints:

Why is this config required?

-​ Conditions are owned by agents (possibly third-party) however
‘taints’ cannot be decided by the controller for the end-user -
should not conflict with existing behavior. eg: auto-scaling taint
considerations during Cilium installation.

-​ ‘effect’ cannot be determined by the controller.

Example:

Cluster Admin:

Added initial taints and readiness-gates on the node:

kind: KubeletConfiguration

existing categorical taints
- key: nvidia.com/gpu
 value: true
 effect: NoSchedule
- key: team
 value: ml-infra
 effect: NoSchedule
- key: security-level
 value: high
 effect: NoExecute

-- Proposed Configuration --
nodeReadinessGates:
- "datadog.com/AgentReady"
- "network.kubernetes.io/CNIReady"
- "security-agent.corp.com/AgentReady"
- "device.kubernetes.io/nvidia/GPUReady"

No separate ReadinessTaintRule CRD is needed. spec.readinessGates is the single
source-of-truth for prerequisites.

https://docs.cilium.io/en/stable/installation/taints/
https://docs.cilium.io/en/stable/installation/taints/

None

None

None

None

// hypothetical CRD ReadinessTaintRule for
// mapping taint with condition.
apiVersion: node.taintcontroller.k8s.io/v1alpha
kind: ReadinessTaintRule
metadata:
 name: cni-readiness-rule
spec:
 # Condition watched by the taint-management-controller
 readinessCondition: "cni.example.com/NetworkReady"
 # Taint to remove when condition is True
 targetTaint:
 key: "cni.example.com/pending"
 effect: "NoSchedule"

ML App Developer (targeted node):

// PodSpec for ML App
spec:
 tolerations:
 # Must tolerate GPU categorical taints (existing
tolerations)
 - key: nvidia.com/gpu
 operator: Exists
 effect: NoSchedule
 - key: ml-infra
 operator: Exists
 effect: NoSchedule

Other teams (managing critical components)

●​ admission-controller to query for ‘ReadinessTaintRule’ CRDs and
inject tolerations for all readiness-taints for critical daemon-sets.

●​ alternatively, craft individual tolerations in the pod-spec as below

// Networking DaemonSet
// PodSpec for CNI installation
spec:
 tolerations:
 # categorical taints
 - key: nvidia.com/gpu
 ...

ML App Developer (targeted node):

// PodSpec for ML App
spec:
 tolerations:
 # Must tolerate the GPU categorical taints (existing tolerations)
 - key: nvidia.com/gpu
 operator: Exists
 effect: NoSchedule
 - key: ml-infra
 operator: Exists
 effect: NoSchedule

 - key: ml-infra
 ...

 # its own readiness-taint
 - key: readiness-taint.cni.example.com/pending
 operator: Equal
 value: True
 effect: NoSchedule
 # need to be aware-of/handle all other readiness-taints
 - key: readiness-taint.security-agent.corp.com/pending
 operator: Exists
 effect: NoSchedule
 - key: readiness-taint.datadog.com/agent-not-ready
 operator: Exists
 effect: NoSchedule

// Security DaemonSet
// PodSpec for security-agent installation
spec:
 tolerations:
 # categorical taints
 - key: nvidia.com/gpu
 ...
 - key: ml-infra
 ...​

 # its own readiness-taint
 - key: readiness-taint.security-agent.corp.com/pending
 operator: Equal
 value: True
 effect: NoSchedule
 # need to be aware-of/handle all other readiness-taints
 - key: readiness-taint.datadog.com/agent-not-ready
 operator: Exists
 effect: NoSchedule

// Observability DaemonSet
// PodSpec for logging-agent installation
spec:
 tolerations:
 # categorical taints
 - key: nvidia.com/gpu
 ...
 - key: ml-infra
 ...​

 # its own readiness-taint
 - key: readiness-taint.datadog.com/agent-not-ready
 operator: Equal

 value: True
 effect: NoSchedule

Semantics and
Intent

Node is assumed “not ready for workloads” because of a repulsive property
(taints). The intent is realized by an external controller by removing these
negative signals upon certain ‘status.conditions’ are fulfilled.

Node explicitly declares its prerequisites for readiness in ‘spec.readinessGates’. This intent is
realized by positive confirmation from each required component (Condition=True).

API Load Each readiness-taint has a multiplicative effect on the cluster:
readiness-actors x nnn nodes.

1.​ Agent patches NodeStatus with Condition update.
2.​ TaintController is informed and reads updates from the node object.
3.​ TaintController patches NodeSpec to remove each mapping taint.

Note: status.condition patch is a light-weight patch at /status subresource
compared to taint-removal at /node.

The load from condition patches remains unchanged. But the ‘taint removal’ is not present.

1.​ Agent patches NodeStatus with Condition update.
2.​ TaintController is informed and reads updates from the node object.

Eventual Consistency
Why is it even necessary to address this? Like any distributed system, can we simply allow
failures and rely on retries until the operations eventually succeed.

Compare Simple Retries
1.​ The fundamental difference between node readiness-gates and retry until success is

proactive vs reactive management - proactive systems prevent the wastage of cluster
resources leading to significant cost savings. In contrast, solely relying on a reactive,
retry-until-success strategy can create cascading failures, particularly in large-scale
workloads like ML training jobs. Readiness Gates provide critical guardrails for AI/ML
workflows ensuring custom drivers, model weights, and special configurations are fully
prepared prior to scheduling.

2.​ Node Readiness Gates bring in a lot of value outside of just scheduling correctness. For
example, auto-scaling systems can leverage richer operational insights from granular
readiness conditions to make better scaling decisions on different failure modes.

	Release Signoff Checklist
	Summary
	Motivation
	Goals
	Non-Goals

	Proposal
	Main-Idea:
	User-Stories
	Story 1: Ensuring Comprehensive Network Readiness
	Story 2: Reliable Readiness Signal for Autoscaling
	Story 3: Security Agent / Policy Readiness

	Example Walkthrough
	Detailed flow

	Design Details
	API Changes
	High Level Design
	Labels for Readiness Gates
	Pros
	Cons

	Standardized Condition Patterns
	Node Readiness Timeout
	Implementation considerations:

	Evaluation Logic
	Scheduling Condition:

	Scope of Configuration
	Handling Ready → Not Ready Transitions
	Node Readiness Transition:
	Principles:
	Scenarios:

	Component Readiness Transition:

	Possible Extensions
	Node Admission Control (Out Of Scope)
	Pod-Level Node-Readiness API (Out of Scope)
	Pros
	Cons
	Why is this not in readiness-gates scope?

	Test Plan
	Graduation Criteria
	Upgrade / Downgrade Strategy
	Upgrade
	Downgrade

	Production Readiness Review
	Implementation History
	Benefits
	Drawbacks
	Alternatives
	Custom Taint/Toleration controller
	Compare Taints and Tolerations

	Taint/Toleration Controller Ensure Readiness with Satisfying Conditions
	Eventual Consistency
	Compare Simple Retries

	

